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1 I n t r o d u c t i o n  

In the  t rad i t iona l  approach  to semant ics  t r u t h  values are assigned to sentence types.  More- 
over, the  mean i ng  of l inguistic expressions is given th rough  a m a p  which  associates with 
t h e m  extra l inguis t ic  enti t ies,  in such a way tha t  the  mean ing  of a complex expression is 
derivable f rom tha t  of its components .  By t rea t ing  equal ly all tokens of the same ex- 
pression such an approach  makes  for an enormous  reduc t ion  in complextiy.  Sometimes 
modif icat ions  are needed:  The  in te rp re ta t ion  of indexicals,  expressions such as 'I ' ,  'now'  
etc.,  is de t e rmined  not  only by type  but  by context  dependen t  parameters :  a token of 'I '  
denotes  the  person  u t t e r ing  it. But  these addi t ional  pa ramete r s  can be specified and made  
explicit ,  resul t ing in a p ic ture  which  is still wi th in  the  scope of the  original  conception.  

Yet some language  games convey mean ing  in much  more  compl ica ted  ways. They  ne- 
cessi tate a radical  depa r tu re  f rom the  deno ta t iona l  style of semantics .  These  are discourses 
which  involve self-referential applicat ions of semant ic  predicates ,  ' t rue ' ,  'false',  as well as 
moda l  predicates  like 'know'  or 'necessary ' .  

Consider  for example  the  following exchange.  Max: " W h a t  I am saying at this very 
m o m e n t  is nonsense" ,  Moritz:  "Yes, wha t  you have just  sayed is nonsense" .  Apparent ly  
Max spoke nonsense  and  Mori tz  spoke to the  point .  But  Max and  Mori tz  seem to have 
asser ted the  same thing:  tha t  Max spoke nonsense.  Wherefore  the  difference? 

To avoid the  vagueness and  the  conflicting in tui t ions  tha t  go wi th  'nonsense ' ,  let us 
replace 'nonsense '  by 'not  t rue '  and  recast  the  puzzle as follows: 

l ine  1 The  sentence on line 1 is not  true.  

l ine  2 T h e  sentence  on line 1 is not  true.  

1The basic ideas underlying this paper were first presented in a conference to the memory of Bar-Hillel 
held in October 1985 at the University of Boston. Since then the framework has undergone quite a few 
developments. Various stages have been presented in lectures given at UCLA, Harvard, Princeton, Stanford 
and UC Irvine (during 1986), at a CSLI conference on the semantics of self-reference (February 1987), at 
the Pacific Division of the APA meeting (March 1987) and, most recently, in a conference at the University 
of Texas, Austin. I have benefited from many reactions, observations and discussions of the issues. Among 
the many to whom thanks are due I would like to mention in particular David Kaplan and Hillary Putnam. 
I am also indebted to Rohit Parikh for useful comments and for finding a bug in one of the earlier proofs. 
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If we assume that  the sentence on line 1 is true we get a contradiction, because on this 
assumption what it asserts is true, but what it asserts is that  the sentence on line 1 is 
not true. Consequently the sentence on line 1 is not true. But when we write this true 
conclusion on line 2 we see that  we have repeated the very same sentence whose t ru th  we 
deny. How can we then express this "something" which we feel to be true? 

Our puzzle is a reformulation of the Strong Liar designed to bring out the following 
perspective: The problem raised by the paradox is not the "contradiction in natural  lan- 
guage" but  the apparent  inability to express in the language something we know to be 
true. This problem is unsolvable if we insist on equating tokens of the same type. But in 
actual discourse it is solved by making good use of token distinctions. 

It is well known, [Montague 1963], that  the semantic paradoxes can be reconstructed 
in various modal frameworks. Indeed, using a knowledge predicate we get a~ analogous 
puzzle: 

l ine  1 The sentence on line 1 is not known by Moritz to be true. 

Observing this sentence Moritz concludes that  he has no knowledge of its t ruth,  because 
such knowledge would imply that  the sentence is true, hence that  Moritz does not know 
its t ruth.  Moritz writes his conclusion on line 2: 

l ine  2 The sentence on line 1 is not known by Moritz to be true. 

Having deduced this conclusion, Moritz knows it to be true. Thus he knows the t ruth 
of the second sentence but  not that  of the first. But these are occurences of the very same 
sentence! 

Wi th  'necessary' the puzzle is obtained by writing on line 1 "The sentence on line 1 is 
not necessarily true". Again, this sentence is not necessarily true, because then it would 
be true, hence not necessarily true. This conclusion, writ ten on another line, is necessarily 
true, because we have just  proved it. So the sentence on line 1 is not necessarily true, but 
its repetit ion on another line is. 

The moral of all these puzzles is simple: In situations of this nature  we should assign 
t ru th  values not to sentence types but to their tokens. The token on line 2 expresses 
something (fact, s tatement,  proposition - choose your favourite term) altogether different 
from what  is expressed (if anything) by the token on line 1. And, of course, what is 
expressed depends on the whole network: on the tokens tha t  the sentence refers to and on 
the tokens tha t  they in their turn refer to etc. This is what  distinguishes the self referential 
sentence-token on line 1 from its non self referential brother on line 2. 

In this respect, modal predicates like 'know' and 'necessary' are in the same boat with 
the predicate ' t rue '  and the same remedy is required. It is of course to be expected that  
the formalisms will differ according to the predicates in question, but  the same general 
framework will underlie them. In the present work we set up the formalism for truth, 
thereby providing also the framework for the various modalities. 
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There is also a general perspective from which the present work is relevant to the 
theory of knowledge. A theory describing how information is expressed through networks 
of tokens (or, in general, pointers) shows at the same time how knowledge is expressed 
evaluated and passed on. 

We base our formalism on three t ru th  values T (/ 'rue), F (False) and GAP. The third 
value signifies failure to express something which evaluates to either T or F . The t ruth 
values depend on the token's type, i.e., on what it "says", as well as on its place in the 
network. I shall present a simple general way of specifying such networks and a precisely 
defined evaluation algorithm for assigning t ru th  values. It assigns the sentence on line 1 
the value GAP, the sentence on line 2 - the value T and it yields similarly intuitive results 
in other cases. 

The concept of token is too narrow for the purpose of a general framework. For we 
might want to refer to sentences without having them displayed somewhere as tokens. We 
therefore use a more general concept, that  of pointer: 

A pointer is any object which is used to point to a sentence type. A token is a special 
case of pointer - it points to the sentence type of which it is a token. 

In our formalism we introduce pointers as a primitive structure, whose interpretation 
is given by a pointing function which associates with every pointer a sentence (or a well 
formed formula) to which it points. The function can be quite arbitrary, allowing for all 
possibilities of direct or indirect self reference. 

The upshot of this approach is a new kind of semantics in which t ru th  values are 
assigned to pointers and the usual recursive definition of t ru th  is replaced by an algorithm 
for evaluating networks. Here is a simple informal il lustration of how it works. Let Mary, 
Marjory, Max and Moritz make the following statements: 

Mary:  What  Moritz says is not true and what Marjory says is not true. 

Mori tz :  What  Max says is true. 

M a r j o r y :  Wha t  Moritz says is not true. 

M a x :  Either McX's conjecture is true or what Moritz says is false. 

The resulting network is represented in fig 1, where people serve as pointers to the cor- 
responding sentences. The arrows between pointers do not represent the pointing relation 
(which is a relation between pointers and sentence types) but direct calls in the evaluation 
procedure, (e.g., a pointer to A V B will call pointers to A and to B). The sentence-types 
associated with the pointers can be read from the diagram though they are not explicitly 
displayed. 

Assume for the sake of illustration that  McX's conjecture does not refer back (directly 
or indirectly) to the utterences of our four speakers. It might involve loops of its own, so 
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the algorithm is applied recursively. Assume that  McX is assigned F. 

~ " . 

I'=="V " ' - - . . ~ 2  cf .~ 
b~ ~.v'j o~'jV 

Fig. 1 

This leaves Max, Moritz and Marjory in a closed unresolved loop (a concept to be 
defined formally in the sequel). Both get at this stage the value G A P  . Then Mary who 
makes an assertion about Moritz and does not belong to the loop gets a s tandard (T or 
F) value. Since her assertion is true, she gets T. Had McX gotten T Max would have 
gotten T Moritz and Marjory - G A P  and Mary - T . 

In the case of the two line puzzle the network is: 

For ' i '  read: ' the sentence token on line i'. Right at the beginning we get a closed loop 
consisting of the pointer 1. It gets the value G A P .  Then 2 gets the value T . 

In general, the assignment of G A P  signifies a decision that  the pointers in question fail 
to evaluate to s tandard t ruth values. The ground for this decision is that  they constitute a 
closed loop. In more sophisticated versions of the algorithm, other grounds are considered 
as well. The main idea is to limit the assignment of G A P  to a restricted group of "guilty 
pointers". This leaves us "uninfected pointers" for making, inside the language, the as- 
sertions that  we want. What  is unexpressible in the usual denotational semantics is thus 
expressible through network evaluation. By making G A P  into something "posi t ive"--not  
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mere failure but recognised failure--we can construct on top of GAP instead of falling into 
it. 

Can this idea be formalized and applied to a fully fledged language? We shall see in 
the coming sections that  it can. 

[The assignment of t ruth values to tokens, or in general to pointers, does not signify a 
nominalistic venture of reduction. On the ontological questions concerning propositions, 
senses, meanings, etc., the proposal is neutral. If we wish, we may regard pointers as 
channels through which propositions are expressible. We may say, if we wish, that the 
sentence (token) on line 1 expresses no proposition, or a degenerate proposition, or a 
circular one. Of course, it is the whole network which determines the proposition and to 
grasp it completely we have to understand the evaluation procedure. Thus, pointers are 
in no way a substitute for propositions.] 

Most of the works on the semantic paradoxes treat the sentences on lines 1 and 2 in the 
same way. Parsons [1974] states explicitly that if 'a' and 'c~' refer in a clear unproblematic 
manner  to the same sentence then the assertion: "a is true" commits us also to the 
assertion: "o~ is true". This is indeed the case in all the models that  have been set up 
along the lines Kripke's proposal [1975] (anticipated by Martin and Woodruff [1975] and 
rediscovered by Kindt [1979] ). These models provide semantics for formal languages, with 
a distinguished predicate over sentences playing the role of the "truth predicate". The 
Weak Liar paradox is avoided by admiring some version of t ruth value gaps ("ordinary" 
gaps in Kripke's model, sentences with oscilating t ruth values - in the models of Gupta 
[1982] and Herzberger [1982]). In many respects this t ruth predicate simulates the truth 
predicate of natural languages. But in none of these models can we truly assert that the 
sentence on line 1 is not true. For the sentence used to make this assertion will share the 
same fate as the sentence on line 1. 

Consequently, we are unable to reconstruct formally what the speakers of language do 
on the spur of the moment:  to realize that by its very nature the sentence on line 1 cannot 
be true, to assert this fact in the same language and to realize that  this second assertion is 
true. The failure shows that  in these at tempted modelings we have been unable to capture 
an essential feature in the functioning of natural language. 

In the models just mentioned, if a sentence lacks a (stable) t ruth value then so does 
any sentence that  says of this sentence that it is not true, or that it is not false, or that 
it is true, or that  it is false. One gets what we call Black  Holes .  This concept and the 
hierarchy of holes are defined as follows: 

S is a O-hole if it is a gap and, by induction, S is a (n-t-1)-hole if it is a n-hole and 'S 
is true' and 'S is false' are gaps. S is a black hole if it is a n-hole for all n. By convention, 
let 'hole', without prefix, denote 1-holes. 

No information concerning the t ruth value of a hole can be stated directly. 2 As for 

2We might still convey semantic information indirectly. For if we succeed in asserting " 'S is true' is 
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black holes, they are semantic untouchables. For no semantic information about them can 
be conveyed in any way, be it as indirect and across as many layers as you may wish. 

In the systems proposed by Kripke, Gupta and Herzberger every gap is a black hole. It 
can be shown that  if t ru th  values depend only on types, then, under some mild assumptions 
concerning sentence equivalence, the sentence on line 1 is a black hole. Thus, black holes 
are bound to occur on the most elementary level of language. 

The basic (and simplest) version of our proposal eliminates the holes in all situations 
of finitary type - -  those in which every pointer calls only finitely many  pointers. To this 
class belong all the tangled loops producible when finitely many people make statements 
about each other, provided that  altogether finitely many statements are involved. In 
certain situations of infinitary type holes can appear if the language is sufficiently rich. 
The simpler type of holes can be eliminated by more sophisticated, yet intuitive, versions 
of the evaluation procedure (but these will be the subject of another paper). It seems that  
further improvements are possible. How far one can go towards the elimination of holes, 
in particular black holes, is an intriguing foundational question. 

In the broader perspective of natural  language "hole like" phenomena are bound to 
occur. Some discourses take us to the edge of meaning and some tempt us to express the 
inexpressible, or to think the unthinkable. Holes are perhaps the inevitable price for a 
powerfull language capable of evolving. But we can at least t idy up the more accessible 
levels. 

I think that  a satisfactory treatment of the semantic paradoxes should provide a sys- 
tematic account of how a network of pointers operates and how various levels of reasoning 
can be expressed in the same (untyped) language through network evaluation. I do not 
claim that  my particular version is the definitive answer. No single variant will do justice 
to all intuit ions and to all occasions. What  I am proposing is an open framework, flexible 
enough to accomodate a broad range of intuitions. 

Previous works which adopted the basic intuit ion that  distinguishes between the sen- 
tences on lines 1 and 2, are by Brian Skyrms [1970], [1982] and by Tyler Burge [1979]. 
They proposed to handle such phenomena with more tradit ional  tools, the first by con- 
struing the t ru th  predicate as intensional, the second - as an indexical. These proposals 
did not yield precisely defined systems. I find the tools which these proposals used to be 
inadequate for the problem at hand. For reasons of space this issue is analysed only in the 
expanded version of the paper. 

A most recent work on semantic self-reference is that  of Barwise and Etchemendy 
[1987]. It treats the subject within the general framework of situation semantics. The 
exact relations between their setup and the method proposed here for determining t ruth 
values remain to be sorted out. 

neither true nor false" then we imply by this that S itself is neither true nor false, the underlying assumption 
being that if S is true or false then 'S is true' inherits the same truth value. We shall see later how holes 
which are not 2-holes can arise. 
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Besides the obvious implications of this proposal for the philosophy of language it bears 
also on the semantics for computer languages as well as Artificial Intelligence. (The failure 
of a procedure to return a value may be "recognised" by another procedure, upon which it 
will declare the value of some pointer to be GAP. When each procedure can point to any 
other we get networks whose evaluation yields a semantics along the lines proposed here.) 

The relevance of our proposal for the various branches of modal logic has been men- 
tioned already. The customary representation of modality as a sentential operant, on a 
par with connectives, avoids the paradoxes but is quite restrictive; how are we going to 
construe statements involving the expressions 'knows something' or 'knows everything'? 
As Morgenstern [1986] observes: "...we cannot formulate such sentences as ' John knows 
that  Bill knows something that  he does not know.' Assuming that  knowledge about ac- 
tions is in the form of statements, we also cannot express ' John knows that  Bill knows 
how to fire a gun' unless John himself knows how to fire a gun.". The need for a predicate 
representation of knowledge is indicated clearly in recent research cf. Thomason [1986]. 

As we noted above our system has direct implication for the representation of modality 
by means of predicates over sentence-tokens, or more generally - pointers. Indeed, moves 
from the theory of t ru th  to the theory of knowledge have been carried out with respect 
to previous proposals: Asher and Kamp [1986] proposed a model for epistemic modality, 
based upon the models of Gupta and Herzberger, while Kremer [1986] and Morgenstern 
[1986] employ in a similar way Kripke's model. (Other recent works motivated by the 
needs of knowledge theory are by Perlis [1985] and by des Riviers and Levesque [1986].) 

2 T h e  S e m a n t i c s  o f  P o i n t e r s  

2.1 Pointer  Sys tems  

A pointer system for a language L consists of: 

(i) A set T' of objects called pointers. 
(ii) A mapping I from 7' onto the set of wffs (well formed formulas) of ~, associating 

with every p C T' a wff p~. We say that  p points to pJ.. 
(iii) Two functions associating with every p C "P pointers p l  and p2 such that: If 

p J.-- A * B, where • is a binary connective, then plJ,= A and p21= B; and if pJ.= ~A then 
p l l=  A and p2 = pl .  In all other cases pl  -- p2 = p. 

(In the case of pointers which are tokens pl  and p2 have natural  interpretations: If p 
is a token of A • B then pl  is the part which forms a token of A and p2 is the part which 
forms a token of B.) 

We put: 7:' = (7',$ ,( )1, ( ) 2 )  

[For languages with quantifiers enrich the structure ~ as follows: Add a two-place 
function ( )1(), taking as arguments pointers and terms of £, such that  if Q is a quantifier, 
pl= QzA(x)  and t is a term, then (plt)J.= A(t).] 
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There are many natural  ways of enriching the structure. We can consider pointers 
to other linguistic expressions and handle the syntax of the language through them (e.g., 
with every pointer p to an atomic formula we can associate a pointer p0 to the predicate 
which occurs in this formula). For the purposes of our evaluation procedure the structure 
as defined here is all we need. 

Note that  the collection of wffs constitutes trivially a pointer system, Simply define, 
for every wffA:  A.L= A and for A = B * C  put: A1 = B, A2 = C and similarly for 
negations. 

2.2 Po in ter  Calcu lus  

Assume tha t /2  is based on a vocabulary of individual constants (possibly of various sorts), 
predicates, function symbols (optional), sentential variables (optional) and the usual sen- 
tential  connectives. For simplicity we concentrate here on the propositional case. We shall 
indicate in brackets how the framework extends natural ly  to languages with quantifiers. 
All the forthcoming theorems hold for quantified languages as well. 

Assume that  among the individual constants of /3 there are pointer-constants, to be 
interpreted as pointers to the wffs of/~ itself. 

Among the predicates there are two distinguished predicates Tr( ) (for t ruth)  and Fa( ) 
(for falsity) taking pointer-constants as arguments. 

Tr and Fa are the truth predicates (called also semantic predicates). We call wffs of 
the form Tr(...), Fa(...) atomic semantic wffs. All other atomic wffs are called basic. 

We define a model for £: to be a triple: (7", T', 6) such that  

(i) T is a function assigning every basic wff a t ru th  value, which may be either T or F 
or GAP. 

(ii) T' is a pointer system for/3. 

(iii) 6 is a mapping which associates with every pointer-constant a pointer in "P (the 
pointer named by the constant). 

Let p, q, r, Pl, etc., range over pointers. For simplicity, we assume that  their names in 
/~ are 'p', 'q', ' r ' ,  'Pl ' ,  etc., i.e. - the same names used in this article. 

The atomic semantic wffs are therefore of the form Tr(p) or Fa(p). 
For Tr(p) one can read "the value of p is True", or "p points to t ru th"  or, in the case 

of tokens, "the sentence-token p is true"; similarly for Fa(p). 
Let A, B, A1, B1, ... etc. range over the wffs o f / :  . 

p.L = A1,. . . ,AT, is a shorthand for: p.L= A1 or ... or p.L = AT,. 

Note that  all the syntax of our language can be handled within the language, by 
predicates over pointers, e.g., we can have a predicate Neg() ,  such that  Neg(p) is true iff 
P.L is a negation, and similarly for all other syntactic concepts. 
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2.3 T h e  N e t w o r k  of Po in ter s  

Assume throughout some given model for £. 

D e f i n i t i o n s  p calls q directly if either of the following holds: 
(i) p~ = -~A, A • B and q is either pl  or p2. 
(it) pJ. = Tr(q) ,Fa(q) .  

Calls of type (it) are referred to as (direct) semantic calls. 

Evidently, Pi is basic iff no pointer is called directly by p. 

A network of pointers is a labeled directed graph whose vertices are pointers, each p is 
labeled by pJ. and (p, q) is an edge iff p calls q directly. 

A calling path from p to q is sequence p l , . . .  ,pn, with n > 1, p = pl ,q = Pn, such that 
every pl calls pi+l directly. 

p calls q if there is a calling path from p to q. 

The network generated by p consists of p and all the pointers called by p. 

[For languages with quantifiers add to the above definition a third clause: If p ,L = 
QxA(x)  and t is a constant term then p calls directly pit.] 

Directed graphs can be represented by what we call looped trees, or l-trees - for short. 
A looped tree is obtainable from a tree by looping back some of its leaves, "looping back" 
meaning connecting a leaf by a backward going edge to one of its ancestors. This is the 
analogue of the representation of acyclic graphs by trees. As in the acyclic case, different 
nodes in the tree may represent the same vertex in the graph. Hence the nodes of the/- t ree  
are to be labeled by the vertices of the graph. There is a simple algorithm for constructing 
the /-tree representing the network generated by some pointer; for lack of space we omit 
it. An example of an / - t ree  is given in Fig. 2 at the end of section 2.4. Note that, except 
for the leaves, we have only to indicate the major connective or the t ruth predicate. 

D e f i n i t i o n s  A set of pointers S is a loop if S # 0 and for all p, q C S there is a calling 
path in S from p to q. 

Note that  {p} is a loop iff p calls directly itself iff p$ = Tr(p),  Fa(p). 

If R C S then R is closed in S if every p C S which is called directly by some pointer 
in .R is in R. 

L is a closed loop in S if L C S, L is closed in S and L is a loop. 

2.4 T h e  Eva luat ion  A l g o r i t h m  

A valuation of a network is a partial function v which assigns t ruth values to the pointers 
in its domain. 

Dora(v) is the domain of v. 

v(p) is undefined if p • Dora(v), in which case we say that p is unevaIuated by v. The 
valuation is total if all the network pointers are evaluated. 
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We let v, u, w, v0,.., range over valuations, p, q, r, p0,... - over pointers. 

The evaluation rules are of the form: 

If C(v,p) then v(p):=value 

Here C(v,p) is a condition on the valuation v and the pointer p and 
value E {T ,F ,GAP} .  "If...then..." is interpreted operationally: IfC(v,p) is satisfied then 
make the assignment v(p) = value. 

Note tha t  'v'  figures here as a program variable which keeps changing during the ex- 
ecution. In 'C(v,p)' 'v' denotes the valuation at a certain stage, while in the consequent 
'u' is used to express the assignment statement.  

C(v,p) is called the enabling condition of the rule. If this condition is true we say that  v 
enables the rule for p, or, for short, that  the rule applies to p. To apply such a rule means 
to redefine v by putting: v(p) = value. If originally p fE Dom(v), then this application will 
extend v, if originally p E Dora(v) and v(p) 7 ~ value then the application will change an 
existing value, and if originally v(p) = value it will leave v unchanged. 

T and F are called standard values and we put: -T=DI F, -F=D] T. 
The rules are divided into s tandard rules, the jump rule, and the gap rules determining 
the assignment of GAP. 

S t a n d a r d  R u l e s  
For Basic Values: 

If pJ.= A and A is basic then v(p):= T(A) 

For Negation: 
If pJ,= -~A and v(pl)  is defined and s tandard then v(p):= -v(pl) .  

For Disjunction: 
If pJ,= A V B then 

(i) If either v(pl)  = T or v(p2) = T then v(p) := T 
(ii) If v(pl)  = v(p2) = F then v(p):= F. 

(If other connectives, say A and --~, are primitives, their s tandard rules are the obvious 
analogues of the negation and disjunction rules.) 

For the Truth  Predicates: 
If pJ,= Tr(q) and v(q) is defined and standard then v(p):= v(q) 
If p~= Fa(q) and v(q) is defined and s tandard then v(p):= -v(q) 

J u m p  R u l e  

If p.~= Yr(q),Fa(q), v(q) = GAP and v(p) # GAP then v(p) := F. 
(By v(p) # GAP we mean that  v(p) is either undefined or s tandard) 

Jump is the rule by which we ascend in the Tarskian hierarchy. If q was assigned 
GAP then an unevluated p pointing to Tr(q) or to Fa(q) will get F and if p = r l ,  where 
rl.= -~Tr(q), ~Fa(q) then r will get T . The condition that  v(p) # GAP is crucial, for 
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it may happen that  because of a loop both q and p have been assigned already GAP, in 
which case we cannot assign p a s tandard value. 

The following are the gap rules. 

Simple-Gap Rule 
If v is defined for all pointers called directly by p and none of the preceding rules applies 

to p, then v(p) := GAP. 

Closed-Loop Rule 
If S is a closed loop in the set of all pointers unevaluated by v and none of the preceding 

rules applies to to any p in S, then v(p) := GAP for all p E S. 

An application of this rule means, by definition, the assigning of GAP to all pointers 
in S, we cannot leave some of them unassigned. This is also the case in the next and last 

rule. 

Give-Up Rule 
If the set of unevaluated pointers is not empty and none of the preceding rules apply 

to any of its members, then v(p) := GAP for all unevaluated p. 

[For languages with quantifiers add standard rules for quantified sentences by treating 
existential and universal sentences as infinite disjunctions and conjunctions.] 

Kleene's strong 3-valued t ru th  tables are implied by the s tandard rules for connectives 
and the simple-gap rule. The standard rules can however be replaced by other schemes, 
for example - supervaluation schemes which will cause pointers to tautologies to have the 
value T.  The whole setup is modular in that  we can change the s tandard rules without 
changing any of the rest. 

Given a model and using the empty valuation as a start ing point, we can apply repeat- 
edly the rules. One of our theorems implies that  eventually we shall reach a total valuation 
which is closed under the rules: they become true statements when "if... then..." is inter- 
preted as a material  implication and ' := '  is replaced by '= ' .  Moreover this is true for a 
very wide class of start ing points. Another result states that  the final valuation depends 
only on the start ing point, not on the choice of rules to be applied at each stage. 
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E X A M P L E  The/-tree given below represents a network whose pointing function is as follows" 

oJ. = -~Tr(p) 
P.L = Tr(q) A Fa(r)  
q.L = Fa(s)  V Tr (p l )  
s.L = Tr (q l )  A Tr(s)  
r i  = Tr(s)  A ( X  V Tr(p2)) 

F 

?i 

S Z  

r i G . . 2  

For T(X) = F, the evaluation proceedure yields: 

v(ql) = v(sl)  = v(s) = v(s2) = G A P  (closed loop rule) 
v(rl) = F (Jump rule) 
v(r) = F (standard rule for A) 
v(r21) = F (basic values rule) 
v(p2) = T (standard rule for F a ( ) )  
v(r22) = T (standard rule for T r ( ) )  
v(r2) = T (standard rule for V) 
v(q) = v(q2)= v ( p l ) =  G A P  (closed loop rule) 
v(p) = G A P  (simple gap rule) 
v(ol) = F (Jump rule) 
v(o) = T (standard rule for -1) 
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2.5 Evaluation Sequences and Self-Supporting Valuations 

We now provide a formal analysis. The  proofs of the  theorems are omi t t ed  for reasons of 
space. They  will appear  in the  expanded  version. 

Defini t ion For a given valuat ion v the  derived valuation, v #, is the  valuat ion obtained 
by one concurrent  applicat ion of all the rules which are enabled  by v and by delet ing from 
Dora(v) the  pointers  for which no rule is enabled.  Formally: 

Dorn(v #) = {p:  v enables some rule for p } 
v#(p) = the  value assigned to p by the  rule which v enables for it. 

This  is legi t imate  because for each p at most  one rule is enabled.  

Note tha t  the  derivative operat ion is not  monotone:  v C u does not imply v # C u #. 
Define a successor of v to be any valuat ion u ob ta ined  from v by applying to some 

pointers  the  rules enabled  for t hem (including possibly deletions from Dora(v) of some 
pointers  to which no rule applies) and  leaving the  rest of v intact.  Formally, u is a successor 
of v if: Dora(v) N Dom(v #) C Dora(u) C Dora(v) U Dom(v #) and for all p E Dora(u): 

(i) Ei ther  u(p) = v(p) or u(p) = v#(p) and 
(ii) If u(p) = v#(p) and the  value is ob ta ined  by an applicat ion of the closed-loop 

or give-up rule, then  all the  pointers  which are assigned GAP by this applicat ion are in 

Dora(u). 

Defini t ion  An evaluation sequence is a well ordered sequence v0, v l , . . . ,  v ~ , . . . ,  v~, 
with a last m e m b e r  v~ such that:  (i) For all a < A, v~+l is a successor of v~. (ii) a < a '  
implies v ,  C v,,. (iii) For a a l imit ordinal  v ,  = U~<, v~. 

We call v0 the  starting point and say tha t  the  evaluat ion sequence begins with Vo and 
ends with vx. 

Note tha t  the  sequence is required to be ascending. But  we shall see tha t  for well 
behaved  s tar t ing points  any choice of successor will const i tu te  an extension and this will 
be preserved th roughout  the  evaluat ion sequence. 

Every non- to ta l  v enables some rule for some unevalua ted  pointer  ( the give-up rule is 
enabled  if no other  rule is). Hence it has a proper  successor-extension. This easily implies: 

P r o p o s i t i o n  1 For every v there is an evaluation sequence beginning with v and 
ending with a total valuation. 

Defini t ion 
A valuat ion v is supported on p if p E Dora(v) and v(p) = v#(p). 
A valuat ion is self-supporting if it is suppor ted  on all pointers  in its domain  (or, equiv- 

alently, if v C v#).  
A valuat ion v is complete if v = v #. 

Note: If p J.= Tr(p)  then  any valuat ion defined on p is suppor ted  on p. But if 
p.~ = Fa(p),-~Tr(p) then  v is suppor ted  on p iff v(p) = GAP. The  dis t inct ion between 
the  Truth-Teller  and the  Liar is thus brought  out. 
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It is easily seen that a valuation is complete iff it is self-supporting and total. Also if v 
is self-supporting then any successor of v extends v (follows trivially from v C v # and the 
definition of successor). 

P r o p o s i t i o n  2 (i) I f  v is supported on p and u extends v then u is supported on p. 
(it) I f u  is a successor o f v  which extends v then u is supported on all p E Dora(u) - Dora(v). 
(iii) I f  v is self-supporting then any successor of v is self-supporting. 

By a chain of valuations we mean a family of valuations which is totally ordered by 
inclusion. 

P r o p o s i t i o n  3 A union of  a chain of self-supporting valuations is self-supporting. 
Using the last two propositions one shows: 

T h e o r e m  1 Let Vo be any self-supporting valuation. Construct a sequence as 
follows: I f  v ,  is defined and has a successor different f rom it, choose as Va+l any such 
successor and, for limit ordinals j3, i f  the v.y are defined for all "7 </3 put: vt~ = [.J~<f~ v~. 

Then this is an evaluation sequence, all v~ are self-supporting and the last one is a 
complete valuation. 

The next theorem guarantees that the end results do not depend on the order of 
applying the rules. The proof uses more delicate arguments than those used for the previous 
theorems. Note that we cannot appeal to some fixpoint argument because we are not in a 
monotone situation. 

Let S be a non-empty set of pointers unevaluated by v. Say that S is a gap set for v if 
it is the set of all pointers which are assigned G A P  by a single application of a gap rule to 
v. We have 3 kinds of gap sets: A simple-gap set is a singleton consisting of an unevaluated 
pointer to which the simple-gap rule applies. A a closed-loop set is a closed loop in the 
unevaluated pointers to which the closed-loop rule applies. A give-up set consists of all 
unevaluated pointers when the give-up rule applies. ( The simple-gap rule may apply also 
to an evaluated pointer, but for a single-gap set we require it to be unevaluated.) 

T h e o r e m  2 Let Uo, Ul , . . .  and Vo, Va,. . .  be evaluation sequences ending with the 
total valuations u and v, respectively. I f  uo = Vo, then u = v, and the simple-gap sets 
closed-loop sets and give-up sets ( i f  any) of the two sequences are the same. 

[In the proof one shows by induction on o~ that  (i) us C v and (it) Any gap set for u ,  
is also a gap set of the same kind for some vz] 

3 B a s i c  R e s u l t s  

T h e o r e m  3 Let v be any complete valuation. I f  p.L = q.L then either v(p) = v(q) or one 
of v(p), v(q) is G A P .  

The proof is by unduction on p.L- 

Let a be a mapping of all the atomic wffs of/3 (semantic and non-semantic) into {T 
, F}. Regard a as a classical model for • in which Tr(  ) and Fa(  ) are treated like any 
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other predicates. For a complete valuation v, we say that  a is correlated with v if for all p 
such that  P,L is atomic, if v(p) is s tandard then a(p,L) = v(p). 

The previous theorem implies that  every complete valuation has a correlated classical 
model. 

P r o p o s i t i o n  4 Let a be a classical model correlated with v. Extend a to all wffs by 
the usual rules for satisfaction. Then, for all p, if v(p) is standard then a(pJ,) = v(p). 

Using Proposition 4 one can get a strengthening of Theorem 3: 

T h e o r e m  3* I f  p,~ and q,~ are logically equivalent then, for every complete valuation 
v, either v(p) = v(q) or one of v(p), v(q) is GAP.  Also if pl is logically valid v(p) is either 
T or GAP.  

(Here "logical equivMence" is equivalence via the usuM logic rules, with the t ruth 
predicates treated like any other.) 

For a given model M, the valuation determined by M is the complete valuation obtained 
via an evaluation sequence with an empty initialization. It is not difficult to see that  when 
evaluating any pointer we need to consider only the network generated by it. This easily 
implies: 

T h e o r e m  4 If  v is determined by some model, pJ, = Tr(q) ,Fa(q)  and q does not 
call p then v(p) is standard. 

D e f i n i t i o n  A network is locally .finite if every pointer calls only finitely many pointers. 

T h e o r e m  5 I f  the network is locally finite no (partial) valuation enables the give-up 
rule. 

The proof is by observing that  any finite set of pointers either contains as a subset a 
closed loop, or has a member which does not call any pointer of the set. 

Hence, for locally finite networks, we can delete the give-up rule. 

Define a subpointer of p to be either p, or pi, i = 1, 2 or, recursively, any subpointer of 
pi. Evidently, for each subformula of p,~ there is exactly one subpointer of p pointing to it. 

For the next theorem we assume that  for every formula there are infinitely many point- 
ers to it having disjoint sets of subpointers. 

T h e o r e m  6 If  v is a valuation determined by a locally finite model, then: 
(i) Every wff A has a pointer, p, to it such that v(p) is standard. 
(ii) y v(p) = GAP,  there exists q pointing to -~Tr(p) A -~Fa(p) such that v(q) = T.  

The theorem implies that  in the locally finte case we can always assert truly that  a gap 
is a gap, thus there are no holes. Local finiteness is a sufficient but not necessary condition 
for absence of holes. 

When quantifiers over pointers are available, local finiteness is not satisfied because 
infinitely many pointers can be called through a quantifier. But if every quntification 
can be reduced to finite conjunctions or disjunctions the conclusions of the theorem will 
hold (provided that  ~ t e r  carrying all the reductions the network is locally finite). This 
means that  we can use quantification of the form v x ( n ( x )  ~ B(x))  where g(x)  is a wff 
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not containing semantic predicates which is satisfied by finitely many pointers. Therefore 
assertions of the form: "Everything that  McX said is ..." do not give rise to holes. 

Some Postponed Topics 

With  unbounded quantification holes can arise provided that  the language is sufficiently 
rich. For example, consider a formalisation of something like "Every pointer which points 
to me and which says that  I am true is not true". This may yiels a hole, but  not a black 
hole (if Max asserts of this pointer that  it is not true he will get GAP, but then Moritz can 
assert that  Max's assertion is not true and get T). There are more sophisticated versions 
of the evaluation algorithm which prevent holes of this and related forms. Their discussion 
is postponed to the next paper. Also postponed to the next paper is the definition of the 
super-valuation version of the algorithm. 

It is not difficult to see that  if we are forced to employ the give-up rule then there are 
black holes. Roughly speaking, the give-up rule is enabled due to the presence of infinite 
descending branches in the / - t ree  (this is necessary but not sufficient for give-up). I think 
that  in the propositional case we are justified in not considering models involving such 
infinite descent. But for languages which are sufficient expressive with respect to pointers 
and which contain arithmetic such chains are producible by GSdel's techniques. These and 
some ideas of dealing with such phenomena will be discussed in another paper. 

Tarski's hierarchy can be reconstructed within our framework. The idea is that  the 
application of the Jump rule moves us up to a higher major  level. Each major  levels can 
be further stratifed by counting the application depth of the s tandard rules for the t ruth 
predicates and the gap rules. This chapter has been omitted for reasons of space and will 
appear in the expanded version. 
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