
OPERATIONAL POINTER SEMANTICS:

SOLUTION TO SELF-REFERENTIAL PUZZLES

Haim Gaifman
Mathemat i c s and C o m p u t e r Science Ins t i tu te

Hebrew Univers i ty Je rusa lem Israel
Visi t ing SRI and C o m p u t e r Science Stanford Univers i ty

Sep tember 19871

1 I n t r o d u c t i o n

In the t rad i t iona l approach to semant ics t r u t h values are assigned to sentence types. More-
over, the mean i ng of l inguistic expressions is given th rough a m a p which associates with
t h e m extra l inguis t ic enti t ies, in such a way tha t the mean ing of a complex expression is
derivable f rom tha t of its components . By t rea t ing equal ly all tokens of the same ex-
pression such an approach makes for an enormous reduc t ion in complextiy. Sometimes
modif icat ions are needed: The in te rp re ta t ion of indexicals, expressions such as 'I ' , 'now'
etc., is de t e rmined not only by type but by context dependen t parameters : a token of 'I '
denotes the person u t t e r ing it. But these addi t ional pa ramete r s can be specified and made
explicit , resul t ing in a p ic ture which is still wi th in the scope of the original conception.

Yet some language games convey mean ing in much more compl ica ted ways. They ne-
cessi tate a radical depa r tu re f rom the deno ta t iona l style of semantics . These are discourses
which involve self-referential applicat ions of semant ic predicates , ' t rue ' , 'false', as well as
moda l predicates like 'know' or 'necessary ' .

Consider for example the following exchange. Max: " W h a t I am saying at this very
m o m e n t is nonsense" , Moritz: "Yes, wha t you have just sayed is nonsense" . Apparent ly
Max spoke nonsense and Mori tz spoke to the point . But Max and Mori tz seem to have
asser ted the same thing: tha t Max spoke nonsense. Wherefore the difference?

To avoid the vagueness and the conflicting in tui t ions tha t go wi th 'nonsense ' , let us
replace 'nonsense ' by 'not t rue ' and recast the puzzle as follows:

l ine 1 The sentence on line 1 is not true.

l ine 2 T h e sentence on line 1 is not true.

1The basic ideas underlying this paper were first presented in a conference to the memory of Bar-Hillel
held in October 1985 at the University of Boston. Since then the framework has undergone quite a few
developments. Various stages have been presented in lectures given at UCLA, Harvard, Princeton, Stanford
and UC Irvine (during 1986), at a CSLI conference on the semantics of self-reference (February 1987), at
the Pacific Division of the APA meeting (March 1987) and, most recently, in a conference at the University
of Texas, Austin. I have benefited from many reactions, observations and discussions of the issues. Among
the many to whom thanks are due I would like to mention in particular David Kaplan and Hillary Putnam.
I am also indebted to Rohit Parikh for useful comments and for finding a bug in one of the earlier proofs.

43

44 S e s s i o n I

If we assume that the sentence on line 1 is true we get a contradiction, because on this
assumption what it asserts is true, but what it asserts is that the sentence on line 1 is
not true. Consequently the sentence on line 1 is not true. But when we write this true
conclusion on line 2 we see that we have repeated the very same sentence whose t ru th we
deny. How can we then express this "something" which we feel to be true?

Our puzzle is a reformulation of the Strong Liar designed to bring out the following
perspective: The problem raised by the paradox is not the "contradiction in natural lan-
guage" but the apparent inability to express in the language something we know to be
true. This problem is unsolvable if we insist on equating tokens of the same type. But in
actual discourse it is solved by making good use of token distinctions.

It is well known, [Montague 1963], that the semantic paradoxes can be reconstructed
in various modal frameworks. Indeed, using a knowledge predicate we get a~ analogous
puzzle:

l ine 1 The sentence on line 1 is not known by Moritz to be true.

Observing this sentence Moritz concludes that he has no knowledge of its t ruth, because
such knowledge would imply that the sentence is true, hence that Moritz does not know
its t ruth. Moritz writes his conclusion on line 2:

l ine 2 The sentence on line 1 is not known by Moritz to be true.

Having deduced this conclusion, Moritz knows it to be true. Thus he knows the t ruth
of the second sentence but not that of the first. But these are occurences of the very same
sentence!

Wi th 'necessary' the puzzle is obtained by writing on line 1 "The sentence on line 1 is
not necessarily true". Again, this sentence is not necessarily true, because then it would
be true, hence not necessarily true. This conclusion, writ ten on another line, is necessarily
true, because we have just proved it. So the sentence on line 1 is not necessarily true, but
its repetit ion on another line is.

The moral of all these puzzles is simple: In situations of this nature we should assign
t ru th values not to sentence types but to their tokens. The token on line 2 expresses
something (fact, s tatement, proposition - choose your favourite term) altogether different
from what is expressed (if anything) by the token on line 1. And, of course, what is
expressed depends on the whole network: on the tokens tha t the sentence refers to and on
the tokens tha t they in their turn refer to etc. This is what distinguishes the self referential
sentence-token on line 1 from its non self referential brother on line 2.

In this respect, modal predicates like 'know' and 'necessary' are in the same boat with
the predicate ' t rue ' and the same remedy is required. It is of course to be expected that
the formalisms will differ according to the predicates in question, but the same general
framework will underlie them. In the present work we set up the formalism for truth,
thereby providing also the framework for the various modalities.

Operational Pointer Semantics 45

There is also a general perspective from which the present work is relevant to the
theory of knowledge. A theory describing how information is expressed through networks
of tokens (or, in general, pointers) shows at the same time how knowledge is expressed
evaluated and passed on.

We base our formalism on three t ru th values T (/ 'rue), F (False) and GAP. The third
value signifies failure to express something which evaluates to either T or F . The t ruth
values depend on the token's type, i.e., on what it "says", as well as on its place in the
network. I shall present a simple general way of specifying such networks and a precisely
defined evaluation algorithm for assigning t ru th values. It assigns the sentence on line 1
the value GAP, the sentence on line 2 - the value T and it yields similarly intuitive results
in other cases.

The concept of token is too narrow for the purpose of a general framework. For we
might want to refer to sentences without having them displayed somewhere as tokens. We
therefore use a more general concept, that of pointer:

A pointer is any object which is used to point to a sentence type. A token is a special
case of pointer - it points to the sentence type of which it is a token.

In our formalism we introduce pointers as a primitive structure, whose interpretation
is given by a pointing function which associates with every pointer a sentence (or a well
formed formula) to which it points. The function can be quite arbitrary, allowing for all
possibilities of direct or indirect self reference.

The upshot of this approach is a new kind of semantics in which t ru th values are
assigned to pointers and the usual recursive definition of t ru th is replaced by an algorithm
for evaluating networks. Here is a simple informal il lustration of how it works. Let Mary,
Marjory, Max and Moritz make the following statements:

Mary: What Moritz says is not true and what Marjory says is not true.

Mori tz : What Max says is true.

M a r j o r y : Wha t Moritz says is not true.

M a x : Either McX's conjecture is true or what Moritz says is false.

The resulting network is represented in fig 1, where people serve as pointers to the cor-
responding sentences. The arrows between pointers do not represent the pointing relation
(which is a relation between pointers and sentence types) but direct calls in the evaluation
procedure, (e.g., a pointer to A V B will call pointers to A and to B). The sentence-types
associated with the pointers can be read from the diagram though they are not explicitly
displayed.

Assume for the sake of illustration that McX's conjecture does not refer back (directly
or indirectly) to the utterences of our four speakers. It might involve loops of its own, so

46 Sess ion I

the algorithm is applied recursively. Assume that McX is assigned F.

~ " .

I'=="V " ' - - . . ~ 2 cf .~
b~ ~.v'j o~'jV

Fig. 1

This leaves Max, Moritz and Marjory in a closed unresolved loop (a concept to be
defined formally in the sequel). Both get at this stage the value G A P . Then Mary who
makes an assertion about Moritz and does not belong to the loop gets a s tandard (T or
F) value. Since her assertion is true, she gets T. Had McX gotten T Max would have
gotten T Moritz and Marjory - G A P and Mary - T .

In the case of the two line puzzle the network is:

For ' i ' read: ' the sentence token on line i'. Right at the beginning we get a closed loop
consisting of the pointer 1. It gets the value G A P . Then 2 gets the value T .

In general, the assignment of G A P signifies a decision that the pointers in question fail
to evaluate to s tandard t ruth values. The ground for this decision is that they constitute a
closed loop. In more sophisticated versions of the algorithm, other grounds are considered
as well. The main idea is to limit the assignment of G A P to a restricted group of "guilty
pointers". This leaves us "uninfected pointers" for making, inside the language, the as-
sertions that we want. What is unexpressible in the usual denotational semantics is thus
expressible through network evaluation. By making G A P into something "posi t ive"--not

Operational Pointer Semantics 47

mere failure but recognised failure--we can construct on top of GAP instead of falling into
it.

Can this idea be formalized and applied to a fully fledged language? We shall see in
the coming sections that it can.

[The assignment of t ruth values to tokens, or in general to pointers, does not signify a
nominalistic venture of reduction. On the ontological questions concerning propositions,
senses, meanings, etc., the proposal is neutral. If we wish, we may regard pointers as
channels through which propositions are expressible. We may say, if we wish, that the
sentence (token) on line 1 expresses no proposition, or a degenerate proposition, or a
circular one. Of course, it is the whole network which determines the proposition and to
grasp it completely we have to understand the evaluation procedure. Thus, pointers are
in no way a substitute for propositions.]

Most of the works on the semantic paradoxes treat the sentences on lines 1 and 2 in the
same way. Parsons [1974] states explicitly that if 'a' and 'c~' refer in a clear unproblematic
manner to the same sentence then the assertion: "a is true" commits us also to the
assertion: "o~ is true". This is indeed the case in all the models that have been set up
along the lines Kripke's proposal [1975] (anticipated by Martin and Woodruff [1975] and
rediscovered by Kindt [1979]). These models provide semantics for formal languages, with
a distinguished predicate over sentences playing the role of the "truth predicate". The
Weak Liar paradox is avoided by admiring some version of t ruth value gaps ("ordinary"
gaps in Kripke's model, sentences with oscilating t ruth values - in the models of Gupta
[1982] and Herzberger [1982]). In many respects this t ruth predicate simulates the truth
predicate of natural languages. But in none of these models can we truly assert that the
sentence on line 1 is not true. For the sentence used to make this assertion will share the
same fate as the sentence on line 1.

Consequently, we are unable to reconstruct formally what the speakers of language do
on the spur of the moment: to realize that by its very nature the sentence on line 1 cannot
be true, to assert this fact in the same language and to realize that this second assertion is
true. The failure shows that in these at tempted modelings we have been unable to capture
an essential feature in the functioning of natural language.

In the models just mentioned, if a sentence lacks a (stable) t ruth value then so does
any sentence that says of this sentence that it is not true, or that it is not false, or that
it is true, or that it is false. One gets what we call Black Holes . This concept and the
hierarchy of holes are defined as follows:

S is a O-hole if it is a gap and, by induction, S is a (n-t-1)-hole if it is a n-hole and 'S
is true' and 'S is false' are gaps. S is a black hole if it is a n-hole for all n. By convention,
let 'hole', without prefix, denote 1-holes.

No information concerning the t ruth value of a hole can be stated directly. 2 As for

2We might still convey semantic information indirectly. For if we succeed in asserting " 'S is true' is

48 Sess ion I

black holes, they are semantic untouchables. For no semantic information about them can
be conveyed in any way, be it as indirect and across as many layers as you may wish.

In the systems proposed by Kripke, Gupta and Herzberger every gap is a black hole. It
can be shown that if t ru th values depend only on types, then, under some mild assumptions
concerning sentence equivalence, the sentence on line 1 is a black hole. Thus, black holes
are bound to occur on the most elementary level of language.

The basic (and simplest) version of our proposal eliminates the holes in all situations
of finitary type - - those in which every pointer calls only finitely many pointers. To this
class belong all the tangled loops producible when finitely many people make statements
about each other, provided that altogether finitely many statements are involved. In
certain situations of infinitary type holes can appear if the language is sufficiently rich.
The simpler type of holes can be eliminated by more sophisticated, yet intuitive, versions
of the evaluation procedure (but these will be the subject of another paper). It seems that
further improvements are possible. How far one can go towards the elimination of holes,
in particular black holes, is an intriguing foundational question.

In the broader perspective of natural language "hole like" phenomena are bound to
occur. Some discourses take us to the edge of meaning and some tempt us to express the
inexpressible, or to think the unthinkable. Holes are perhaps the inevitable price for a
powerfull language capable of evolving. But we can at least t idy up the more accessible
levels.

I think that a satisfactory treatment of the semantic paradoxes should provide a sys-
tematic account of how a network of pointers operates and how various levels of reasoning
can be expressed in the same (untyped) language through network evaluation. I do not
claim that my particular version is the definitive answer. No single variant will do justice
to all intuit ions and to all occasions. What I am proposing is an open framework, flexible
enough to accomodate a broad range of intuitions.

Previous works which adopted the basic intuit ion that distinguishes between the sen-
tences on lines 1 and 2, are by Brian Skyrms [1970], [1982] and by Tyler Burge [1979].
They proposed to handle such phenomena with more tradit ional tools, the first by con-
struing the t ru th predicate as intensional, the second - as an indexical. These proposals
did not yield precisely defined systems. I find the tools which these proposals used to be
inadequate for the problem at hand. For reasons of space this issue is analysed only in the
expanded version of the paper.

A most recent work on semantic self-reference is that of Barwise and Etchemendy
[1987]. It treats the subject within the general framework of situation semantics. The
exact relations between their setup and the method proposed here for determining t ruth
values remain to be sorted out.

neither true nor false" then we imply by this that S itself is neither true nor false, the underlying assumption
being that if S is true or false then 'S is true' inherits the same truth value. We shall see later how holes
which are not 2-holes can arise.

Operational Pointer Semantics 49

Besides the obvious implications of this proposal for the philosophy of language it bears
also on the semantics for computer languages as well as Artificial Intelligence. (The failure
of a procedure to return a value may be "recognised" by another procedure, upon which it
will declare the value of some pointer to be GAP. When each procedure can point to any
other we get networks whose evaluation yields a semantics along the lines proposed here.)

The relevance of our proposal for the various branches of modal logic has been men-
tioned already. The customary representation of modality as a sentential operant, on a
par with connectives, avoids the paradoxes but is quite restrictive; how are we going to
construe statements involving the expressions 'knows something' or 'knows everything'?
As Morgenstern [1986] observes: "...we cannot formulate such sentences as ' John knows
that Bill knows something that he does not know.' Assuming that knowledge about ac-
tions is in the form of statements, we also cannot express ' John knows that Bill knows
how to fire a gun' unless John himself knows how to fire a gun.". The need for a predicate
representation of knowledge is indicated clearly in recent research cf. Thomason [1986].

As we noted above our system has direct implication for the representation of modality
by means of predicates over sentence-tokens, or more generally - pointers. Indeed, moves
from the theory of t ru th to the theory of knowledge have been carried out with respect
to previous proposals: Asher and Kamp [1986] proposed a model for epistemic modality,
based upon the models of Gupta and Herzberger, while Kremer [1986] and Morgenstern
[1986] employ in a similar way Kripke's model. (Other recent works motivated by the
needs of knowledge theory are by Perlis [1985] and by des Riviers and Levesque [1986].)

2 T h e S e m a n t i c s o f P o i n t e r s

2.1 Pointer Sys tems

A pointer system for a language L consists of:

(i) A set T' of objects called pointers.
(ii) A mapping I from 7' onto the set of wffs (well formed formulas) of ~, associating

with every p C T' a wff p~. We say that p points to pJ..
(iii) Two functions associating with every p C "P pointers p l and p2 such that: If

p J.-- A * B, where • is a binary connective, then plJ,= A and p21= B; and if pJ.= ~A then
p l l= A and p2 = pl . In all other cases pl -- p2 = p.

(In the case of pointers which are tokens pl and p2 have natural interpretations: If p
is a token of A • B then pl is the part which forms a token of A and p2 is the part which
forms a token of B.)

We put: 7:' = (7',$,()1, () 2)

[For languages with quantifiers enrich the structure ~ as follows: Add a two-place
function ()1(), taking as arguments pointers and terms of £, such that if Q is a quantifier,
pl= QzA(x) and t is a term, then (plt)J.= A(t).]

50 Sess ion I

There are many natural ways of enriching the structure. We can consider pointers
to other linguistic expressions and handle the syntax of the language through them (e.g.,
with every pointer p to an atomic formula we can associate a pointer p0 to the predicate
which occurs in this formula). For the purposes of our evaluation procedure the structure
as defined here is all we need.

Note that the collection of wffs constitutes trivially a pointer system, Simply define,
for every wffA: A.L= A and for A = B * C put: A1 = B, A2 = C and similarly for
negations.

2.2 Po in ter Calcu lus

Assume tha t /2 is based on a vocabulary of individual constants (possibly of various sorts),
predicates, function symbols (optional), sentential variables (optional) and the usual sen-
tential connectives. For simplicity we concentrate here on the propositional case. We shall
indicate in brackets how the framework extends natural ly to languages with quantifiers.
All the forthcoming theorems hold for quantified languages as well.

Assume that among the individual constants of /3 there are pointer-constants, to be
interpreted as pointers to the wffs of/~ itself.

Among the predicates there are two distinguished predicates Tr() (for t ruth) and Fa()
(for falsity) taking pointer-constants as arguments.

Tr and Fa are the truth predicates (called also semantic predicates). We call wffs of
the form Tr(...), Fa(...) atomic semantic wffs. All other atomic wffs are called basic.

We define a model for £: to be a triple: (7", T', 6) such that

(i) T is a function assigning every basic wff a t ru th value, which may be either T or F
or GAP.

(ii) T' is a pointer system for/3.

(iii) 6 is a mapping which associates with every pointer-constant a pointer in "P (the
pointer named by the constant).

Let p, q, r, Pl, etc., range over pointers. For simplicity, we assume that their names in
/~ are 'p', 'q', ' r ' , 'Pl ' , etc., i.e. - the same names used in this article.

The atomic semantic wffs are therefore of the form Tr(p) or Fa(p).
For Tr(p) one can read "the value of p is True", or "p points to t ru th" or, in the case

of tokens, "the sentence-token p is true"; similarly for Fa(p).
Let A, B, A1, B1, ... etc. range over the wffs o f / : .

p.L = A1,. . . ,AT, is a shorthand for: p.L= A1 or ... or p.L = AT,.

Note that all the syntax of our language can be handled within the language, by
predicates over pointers, e.g., we can have a predicate Neg() , such that Neg(p) is true iff
P.L is a negation, and similarly for all other syntactic concepts.

Operational Pointer Semantics 51

2.3 T h e N e t w o r k of Po in ter s

Assume throughout some given model for £.

D e f i n i t i o n s p calls q directly if either of the following holds:
(i) p~ = -~A, A • B and q is either pl or p2.
(it) pJ. = Tr(q) ,Fa(q) .

Calls of type (it) are referred to as (direct) semantic calls.

Evidently, Pi is basic iff no pointer is called directly by p.

A network of pointers is a labeled directed graph whose vertices are pointers, each p is
labeled by pJ. and (p, q) is an edge iff p calls q directly.

A calling path from p to q is sequence p l , . . . ,pn, with n > 1, p = pl ,q = Pn, such that
every pl calls pi+l directly.

p calls q if there is a calling path from p to q.

The network generated by p consists of p and all the pointers called by p.

[For languages with quantifiers add to the above definition a third clause: If p ,L =
QxA(x) and t is a constant term then p calls directly pit.]

Directed graphs can be represented by what we call looped trees, or l-trees - for short.
A looped tree is obtainable from a tree by looping back some of its leaves, "looping back"
meaning connecting a leaf by a backward going edge to one of its ancestors. This is the
analogue of the representation of acyclic graphs by trees. As in the acyclic case, different
nodes in the tree may represent the same vertex in the graph. Hence the nodes of the/- t ree
are to be labeled by the vertices of the graph. There is a simple algorithm for constructing
the /-tree representing the network generated by some pointer; for lack of space we omit
it. An example of an / - t ree is given in Fig. 2 at the end of section 2.4. Note that, except
for the leaves, we have only to indicate the major connective or the t ruth predicate.

D e f i n i t i o n s A set of pointers S is a loop if S # 0 and for all p, q C S there is a calling
path in S from p to q.

Note that {p} is a loop iff p calls directly itself iff p$ = Tr(p), Fa(p).

If R C S then R is closed in S if every p C S which is called directly by some pointer
in .R is in R.

L is a closed loop in S if L C S, L is closed in S and L is a loop.

2.4 T h e Eva luat ion A l g o r i t h m

A valuation of a network is a partial function v which assigns t ruth values to the pointers
in its domain.

Dora(v) is the domain of v.

v(p) is undefined if p • Dora(v), in which case we say that p is unevaIuated by v. The
valuation is total if all the network pointers are evaluated.

52 Session I

We let v, u, w, v0,.., range over valuations, p, q, r, p0,... - over pointers.

The evaluation rules are of the form:

If C(v,p) then v(p):=value

Here C(v,p) is a condition on the valuation v and the pointer p and
value E {T ,F ,GAP} . "If...then..." is interpreted operationally: IfC(v,p) is satisfied then
make the assignment v(p) = value.

Note tha t 'v' figures here as a program variable which keeps changing during the ex-
ecution. In 'C(v,p)' 'v' denotes the valuation at a certain stage, while in the consequent
'u' is used to express the assignment statement.

C(v,p) is called the enabling condition of the rule. If this condition is true we say that v
enables the rule for p, or, for short, that the rule applies to p. To apply such a rule means
to redefine v by putting: v(p) = value. If originally p fE Dom(v), then this application will
extend v, if originally p E Dora(v) and v(p) 7 ~ value then the application will change an
existing value, and if originally v(p) = value it will leave v unchanged.

T and F are called standard values and we put: -T=DI F, -F=D] T.
The rules are divided into s tandard rules, the jump rule, and the gap rules determining
the assignment of GAP.

S t a n d a r d R u l e s
For Basic Values:

If pJ.= A and A is basic then v(p):= T(A)

For Negation:
If pJ,= -~A and v(pl) is defined and s tandard then v(p):= -v(pl) .

For Disjunction:
If pJ,= A V B then

(i) If either v(pl) = T or v(p2) = T then v(p) := T
(ii) If v(pl) = v(p2) = F then v(p):= F.

(If other connectives, say A and --~, are primitives, their s tandard rules are the obvious
analogues of the negation and disjunction rules.)

For the Truth Predicates:
If pJ,= Tr(q) and v(q) is defined and standard then v(p):= v(q)
If p~= Fa(q) and v(q) is defined and s tandard then v(p):= -v(q)

J u m p R u l e

If p.~= Yr(q),Fa(q), v(q) = GAP and v(p) # GAP then v(p) := F.
(By v(p) # GAP we mean that v(p) is either undefined or s tandard)

Jump is the rule by which we ascend in the Tarskian hierarchy. If q was assigned
GAP then an unevluated p pointing to Tr(q) or to Fa(q) will get F and if p = r l , where
rl.= -~Tr(q), ~Fa(q) then r will get T . The condition that v(p) # GAP is crucial, for

Operational Pointer Semantics 53

it may happen that because of a loop both q and p have been assigned already GAP, in
which case we cannot assign p a s tandard value.

The following are the gap rules.

Simple-Gap Rule
If v is defined for all pointers called directly by p and none of the preceding rules applies

to p, then v(p) := GAP.

Closed-Loop Rule
If S is a closed loop in the set of all pointers unevaluated by v and none of the preceding

rules applies to to any p in S, then v(p) := GAP for all p E S.

An application of this rule means, by definition, the assigning of GAP to all pointers
in S, we cannot leave some of them unassigned. This is also the case in the next and last

rule.

Give-Up Rule
If the set of unevaluated pointers is not empty and none of the preceding rules apply

to any of its members, then v(p) := GAP for all unevaluated p.

[For languages with quantifiers add standard rules for quantified sentences by treating
existential and universal sentences as infinite disjunctions and conjunctions.]

Kleene's strong 3-valued t ru th tables are implied by the s tandard rules for connectives
and the simple-gap rule. The standard rules can however be replaced by other schemes,
for example - supervaluation schemes which will cause pointers to tautologies to have the
value T. The whole setup is modular in that we can change the s tandard rules without
changing any of the rest.

Given a model and using the empty valuation as a start ing point, we can apply repeat-
edly the rules. One of our theorems implies that eventually we shall reach a total valuation
which is closed under the rules: they become true statements when "if... then..." is inter-
preted as a material implication and ' := ' is replaced by '= ' . Moreover this is true for a
very wide class of start ing points. Another result states that the final valuation depends
only on the start ing point, not on the choice of rules to be applied at each stage.

54 Sess ion I

E X A M P L E The/-tree given below represents a network whose pointing function is as follows"

oJ. = -~Tr(p)
P.L = Tr(q) A Fa(r)
q.L = Fa(s) V Tr (p l)
s.L = Tr (q l) A Tr(s)
r i = Tr(s) A (X V Tr(p2))

F

?i

S Z

r i G . . 2

For T(X) = F, the evaluation proceedure yields:

v(ql) = v(sl) = v(s) = v(s2) = G A P (closed loop rule)
v(rl) = F (Jump rule)
v(r) = F (standard rule for A)
v(r21) = F (basic values rule)
v(p2) = T (standard rule for F a ())
v(r22) = T (standard rule for T r ())
v(r2) = T (standard rule for V)
v(q) = v(q2)= v (p l) = G A P (closed loop rule)
v(p) = G A P (simple gap rule)
v(ol) = F (Jump rule)
v(o) = T (standard rule for -1)

Operational Pointer Semantics 55

2.5 Evaluation Sequences and Self-Supporting Valuations

We now provide a formal analysis. The proofs of the theorems are omi t t ed for reasons of
space. They will appear in the expanded version.

Defini t ion For a given valuat ion v the derived valuation, v #, is the valuat ion obtained
by one concurrent applicat ion of all the rules which are enabled by v and by delet ing from
Dora(v) the pointers for which no rule is enabled. Formally:

Dorn(v #) = {p: v enables some rule for p }
v#(p) = the value assigned to p by the rule which v enables for it.

This is legi t imate because for each p at most one rule is enabled.

Note tha t the derivative operat ion is not monotone: v C u does not imply v # C u #.
Define a successor of v to be any valuat ion u ob ta ined from v by applying to some

pointers the rules enabled for t hem (including possibly deletions from Dora(v) of some
pointers to which no rule applies) and leaving the rest of v intact. Formally, u is a successor
of v if: Dora(v) N Dom(v #) C Dora(u) C Dora(v) U Dom(v #) and for all p E Dora(u):

(i) Ei ther u(p) = v(p) or u(p) = v#(p) and
(ii) If u(p) = v#(p) and the value is ob ta ined by an applicat ion of the closed-loop

or give-up rule, then all the pointers which are assigned GAP by this applicat ion are in

Dora(u).

Defini t ion An evaluation sequence is a well ordered sequence v0, v l , . . . , v ~ , . . . , v~,
with a last m e m b e r v~ such that: (i) For all a < A, v~+l is a successor of v~. (ii) a < a '
implies v , C v,,. (iii) For a a l imit ordinal v , = U~<, v~.

We call v0 the starting point and say tha t the evaluat ion sequence begins with Vo and
ends with vx.

Note tha t the sequence is required to be ascending. But we shall see tha t for well
behaved s tar t ing points any choice of successor will const i tu te an extension and this will
be preserved th roughout the evaluat ion sequence.

Every non- to ta l v enables some rule for some unevalua ted pointer (the give-up rule is
enabled if no other rule is). Hence it has a proper successor-extension. This easily implies:

P r o p o s i t i o n 1 For every v there is an evaluation sequence beginning with v and
ending with a total valuation.

Defini t ion
A valuat ion v is supported on p if p E Dora(v) and v(p) = v#(p).
A valuat ion is self-supporting if it is suppor ted on all pointers in its domain (or, equiv-

alently, if v C v#).
A valuat ion v is complete if v = v #.

Note: If p J.= Tr(p) then any valuat ion defined on p is suppor ted on p. But if
p.~ = Fa(p),-~Tr(p) then v is suppor ted on p iff v(p) = GAP. The dis t inct ion between
the Truth-Teller and the Liar is thus brought out.

56 Ses s ion I

It is easily seen that a valuation is complete iff it is self-supporting and total. Also if v
is self-supporting then any successor of v extends v (follows trivially from v C v # and the
definition of successor).

P r o p o s i t i o n 2 (i) I f v is supported on p and u extends v then u is supported on p.
(it) I f u is a successor o f v which extends v then u is supported on all p E Dora(u) - Dora(v).
(iii) I f v is self-supporting then any successor of v is self-supporting.

By a chain of valuations we mean a family of valuations which is totally ordered by
inclusion.

P r o p o s i t i o n 3 A union of a chain of self-supporting valuations is self-supporting.
Using the last two propositions one shows:

T h e o r e m 1 Let Vo be any self-supporting valuation. Construct a sequence as
follows: I f v , is defined and has a successor different f rom it, choose as Va+l any such
successor and, for limit ordinals j3, i f the v.y are defined for all "7 </3 put: vt~ = [.J~<f~ v~.

Then this is an evaluation sequence, all v~ are self-supporting and the last one is a
complete valuation.

The next theorem guarantees that the end results do not depend on the order of
applying the rules. The proof uses more delicate arguments than those used for the previous
theorems. Note that we cannot appeal to some fixpoint argument because we are not in a
monotone situation.

Let S be a non-empty set of pointers unevaluated by v. Say that S is a gap set for v if
it is the set of all pointers which are assigned G A P by a single application of a gap rule to
v. We have 3 kinds of gap sets: A simple-gap set is a singleton consisting of an unevaluated
pointer to which the simple-gap rule applies. A a closed-loop set is a closed loop in the
unevaluated pointers to which the closed-loop rule applies. A give-up set consists of all
unevaluated pointers when the give-up rule applies. (The simple-gap rule may apply also
to an evaluated pointer, but for a single-gap set we require it to be unevaluated.)

T h e o r e m 2 Let Uo, Ul , . . . and Vo, Va,. . . be evaluation sequences ending with the
total valuations u and v, respectively. I f uo = Vo, then u = v, and the simple-gap sets
closed-loop sets and give-up sets (i f any) of the two sequences are the same.

[In the proof one shows by induction on o~ that (i) us C v and (it) Any gap set for u ,
is also a gap set of the same kind for some vz]

3 B a s i c R e s u l t s

T h e o r e m 3 Let v be any complete valuation. I f p.L = q.L then either v(p) = v(q) or one
of v(p), v(q) is G A P .

The proof is by unduction on p.L-

Let a be a mapping of all the atomic wffs of/3 (semantic and non-semantic) into {T
, F}. Regard a as a classical model for • in which Tr() and Fa() are treated like any

Operational Pointer Semantics 57

other predicates. For a complete valuation v, we say that a is correlated with v if for all p
such that P,L is atomic, if v(p) is s tandard then a(p,L) = v(p).

The previous theorem implies that every complete valuation has a correlated classical
model.

P r o p o s i t i o n 4 Let a be a classical model correlated with v. Extend a to all wffs by
the usual rules for satisfaction. Then, for all p, if v(p) is standard then a(pJ,) = v(p).

Using Proposition 4 one can get a strengthening of Theorem 3:

T h e o r e m 3* I f p,~ and q,~ are logically equivalent then, for every complete valuation
v, either v(p) = v(q) or one of v(p), v(q) is GAP. Also if pl is logically valid v(p) is either
T or GAP.

(Here "logical equivMence" is equivalence via the usuM logic rules, with the t ruth
predicates treated like any other.)

For a given model M, the valuation determined by M is the complete valuation obtained
via an evaluation sequence with an empty initialization. It is not difficult to see that when
evaluating any pointer we need to consider only the network generated by it. This easily
implies:

T h e o r e m 4 If v is determined by some model, pJ, = Tr(q) ,Fa(q) and q does not
call p then v(p) is standard.

D e f i n i t i o n A network is locally .finite if every pointer calls only finitely many pointers.

T h e o r e m 5 I f the network is locally finite no (partial) valuation enables the give-up
rule.

The proof is by observing that any finite set of pointers either contains as a subset a
closed loop, or has a member which does not call any pointer of the set.

Hence, for locally finite networks, we can delete the give-up rule.

Define a subpointer of p to be either p, or pi, i = 1, 2 or, recursively, any subpointer of
pi. Evidently, for each subformula of p,~ there is exactly one subpointer of p pointing to it.

For the next theorem we assume that for every formula there are infinitely many point-
ers to it having disjoint sets of subpointers.

T h e o r e m 6 If v is a valuation determined by a locally finite model, then:
(i) Every wff A has a pointer, p, to it such that v(p) is standard.
(ii) y v(p) = GAP, there exists q pointing to -~Tr(p) A -~Fa(p) such that v(q) = T.

The theorem implies that in the locally finte case we can always assert truly that a gap
is a gap, thus there are no holes. Local finiteness is a sufficient but not necessary condition
for absence of holes.

When quantifiers over pointers are available, local finiteness is not satisfied because
infinitely many pointers can be called through a quantifier. But if every quntification
can be reduced to finite conjunctions or disjunctions the conclusions of the theorem will
hold (provided that ~ t e r carrying all the reductions the network is locally finite). This
means that we can use quantification of the form v x (n (x) ~ B(x)) where g(x) is a wff

58 Sess ion I

not containing semantic predicates which is satisfied by finitely many pointers. Therefore
assertions of the form: "Everything that McX said is ..." do not give rise to holes.

Some Postponed Topics

With unbounded quantification holes can arise provided that the language is sufficiently
rich. For example, consider a formalisation of something like "Every pointer which points
to me and which says that I am true is not true". This may yiels a hole, but not a black
hole (if Max asserts of this pointer that it is not true he will get GAP, but then Moritz can
assert that Max's assertion is not true and get T). There are more sophisticated versions
of the evaluation algorithm which prevent holes of this and related forms. Their discussion
is postponed to the next paper. Also postponed to the next paper is the definition of the
super-valuation version of the algorithm.

It is not difficult to see that if we are forced to employ the give-up rule then there are
black holes. Roughly speaking, the give-up rule is enabled due to the presence of infinite
descending branches in the / - t ree (this is necessary but not sufficient for give-up). I think
that in the propositional case we are justified in not considering models involving such
infinite descent. But for languages which are sufficient expressive with respect to pointers
and which contain arithmetic such chains are producible by GSdel's techniques. These and
some ideas of dealing with such phenomena will be discussed in another paper.

Tarski's hierarchy can be reconstructed within our framework. The idea is that the
application of the Jump rule moves us up to a higher major level. Each major levels can
be further stratifed by counting the application depth of the s tandard rules for the t ruth
predicates and the gap rules. This chapter has been omitted for reasons of space and will
appear in the expanded version.

REFERNCES

(TARK is an abreviation for: Theoretical Aspects off Reasoning About Knowledge Pro-
ceedings of the 1986 conference, J. Halpern ed. Morgan Kaufman publisher.)

N. Asher and H. Kamp 1986 "The Knowers Paradox and Representational Theories of
Atti tudes" TARKpp. 131- 148.

J. Barwise and J. Etchemendy 1987 The Liar, an Essay in Truth and Circularity Oxford
University Press.

T. Burge 1979 "Semantical Paradox" The Journal of Philosophy 76 pp. 169 - 198.

J. des Rivieres and H. Levesque 1986 " The Consistancy of Syntactical Treatment of
Knowledge" TARKpp. 115- 130.

A. Gupta 1982 "Truth and Paradox" Journal of Philosophical Logic 11 pp. 1 - 60.

H. Herzberger 1982 "Notes on Naive Semantics" Journal of Philosophical Logic 11 pp.
61- 102.

Operational Pointer Semantics 59

Kindt 1979 "Introduction of the t ru th predicates into first order languages" in Formal
semantics and pragmatics for natural languages ed. Guenthner and Schmidt, Reidel.

M. Kremmer 1986 Logic and Truth Ph.D. Dissertation, University of Pitsburg.

S. Kripke 1975 "Outline of a Theory of Truth" Journal of Philosophy 72 pp. 690 - 716.

R. Mart in and P. Woodruff 1975 "On Representing "True-in-L" in L" Philosophia 5
pp. 213 - 217.

R. Montague 1963 "Syntactical Treatments of Modality, with Corollaries on Reflexion
Principles and Finite Axiomatizability" Acts Philosophies Fennica 16 pp. 153 - 167.

L. Morgenstern 1986 "A First Order Theory of Planning, Knowledge, and Action"
TARK pp. 99 - 115.

C. Parsons 1974 "The Liar Paradox" Journal of Philosophical Logic 3 pp. 381 - 412.

D. Perlis 1985 "Languages with Self-Reference I: Foundations" Artificial Intelligence
25 pp. 301 - 322.

B. Skyrms 1970 "Return of the Liar; Three-Valued Logic and the Nature of Truth"
American Philosophical Quarterly 7 pp. 153- 161

B. Skyrms 1982 "Intensional Aspects of Semantical Self Reference" notes, reprinted in
Recent Essays on Truth and the Liar Paradox ed. Mart in 1984 Oxford University Press.

R. Thomason 1986 "Paradoxes and Semantic Representation" TARK pp. 225 - 239

