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ABSTRACT 

We are interested in commitment problems in potentially faulty distributed environments; for 
such problems, the behaviour of failed processes during recovery is relevant to consistency. In 
particular, we examine negotiated commitment, which is the problem of ensuring that each par- 
ticipant in a negotiation reaches a consistent local decision on the outcome. Even undecided, 
recovering participants must reach a consistent decision on the outcome, because other partic- 
ipants may have committed to an outcome and taken further actions based upon the expected 
commitment of the recovering participant. 

To facilitate the use of knowledge theory to guide the design of protocols for commitment 
problems, we give an account of process failure and recovery. Using knowledge theory, we show 
that independent recovery is impossible - -  i.e., a recovering participant whose decision must be 
based on some knowledge about other participants in the system cannot decide upon recovering 
without communicating with other participants. I_f the participant is in a decided state upon 
recovery without such communication, then it must have been decided when it failed, and 
furthermore it must have been decided before it failed. We also give levels of interparticipant 
knowledge necessary for achieving nonblocking recovery in the absence of total participant 
failure. 
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1. I N T R O D U C T I O N  

Knowledge theory has been used recently to analyse some problems in potentially faulty dis- 
tributed environments (e.g., [5,7]), but the issue of process recovery has been ignored. In 
agreement (or consensus) problems, such as Byzantine Agreement, the nonfaulty participants 
at tempt to agree on some value of interest. The post-failure actions or decisions of faulty pro- 
cesses are irrelevant to the consistency of the outcome. Therefore, in designing protocols for 
such problems, one need not include recovery actions. Dwork and Moses [5], for example, give a 
knowledge theoretic analysis of Byzantine Agreement protocols in a round-based model of com- 
putation which admits crash failures; they discuss a knowledge-based protocol which all correct 
(nonfailed) processors use to attain Simultaneous Byzantine Agreement. Halpern and Moses 
[11] and Haipern and Zuck [12] use knowledge theory to analyse the effects of communication 
failures in distributed environments, but they do not address process failures. 

In commitment problems, such as Atomic Commitment [6], the behaviour of faulty processes 
during recovery is not ignored; rather, recovering processes are bound by the same consistency 
requirements as if they had not failed. When designing resilient distributed protocols for prob- 
lems in which failing processes are not excused from consistency requirements, one must actually 
design three subprotocols: (1) a failure-free protocol, to be executed by the participants in ex- 
ecutions without failures; (2) a termination protocol, to be executed by nonfailed participants 
which detect failures and are unsure of the outcome of the overall protocol relevant to them, to 
at tempt to terminate consistently; and (3) a recovery protocol, to be executed by participants 
which fail and then recover, to allow such participants to terminate consistently. To facilitate 
the use of knowledge theory to guide the design of these protocols, we give an account of failure 
and recovery. 

We consider recovery in the context of a problem called negotiated commitment, which is 
the problem of ensuring that all parties in a negotiation commit to a consistent view of the 
outcome of the negotiation. Negotiated commitment is fundamental to building negotiating 
systems. In the most basic negotiation (of which other negotiations are elaborations), com- 
mitment proceeds as follows: an individual with a task to share (the manager) announces a 
contract embodying the task to its list of potential partners (the contractors) and requests bids 
for accomplishing the task; the contractors reply with bid messages; the manager considers the 
bids, chooses contractors to receive the contract, and notifies the contractors of its decision. 
The participants must agree on the outcome of the manager-centric negotiation, to prevent 
inconsistent (and potentially disastrous) actions being taken based on incorrect perceptions of 
the outcome. Atomic commitment is a special case of negotiated commitment. 

Negotiated commitment arises in supporting dynamic interaction of agents in organizational 
systems. Examples include automated stock trading systems, distributed planning systems, and 
distributed transaction systems. Using a knowledge theoretic approach, Mazer [13] addresses 
issues important to negotiated commitment, such as definitions of consistency, independence of 
awards, number of awards, binding power of bids, and design of commitment protocols. As our 
basis for this discussion of recovery, we use one family of negotiated commitment problems in 
which each contractor is bound by its bid and in which zero or more awards, each independent 
of the others, may be given in a specific negotiation instance. 

Our contributions in this paper include: an introduction to the problem of negotiated 
commitment; a characterization of process failure and recovery; a knowledge theoretic proof of 
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the impossibility of independent  recovery (while this was known for atomic commitment  (e.g., 
[14]), our result is for a more general problem and uses a different formal tool); and a distinction 
between nonblocking terminat ion and nonblocking recovery, including a partial characterization 
of the knowledge required to achieve nonblocking recovery. 

Section 2 introduces our event-based model of distributed computat ions and the constraints 
which govern the construction of the possible executions of a distributed protocol. Then, in 
Section 3, we give a temporal  knowledge logic to be used in specifying and analyzing negotiated 
commitment ,  and we show some key intermediate results on the evolution of knowledge in 
distributed computations.  In particular, we identify an important  class of local formulas whose 
values cannot be known remotely by default (e.g., by failure detection) but only by message 
receipt. Section 4 presents a formal specification of consistent negotiated commitment;  we 
analyse the specifications to yield knowledge states which must  hold when decisions hold. In 
Section 5, we are finally ready to address recovery. We specify when a process may recover, 
and we define independent recovery; then we show it to be impossible. This is true because 
the concomitant  knowledge states needed by a recovering process for decision cannot be gained 
during recovery without communication with other processes. Furthermore,  we show that  
general nonblocking recovery is impossible but that  a slightly weaker notion of nonblocking 
recovery can be achieved. We also characterize levels of knowledge necessary for this kind of 
nonblocking recovery. 

2. M O D E L  OF D I S T R I B U T E D  S Y S T E M S  

In this model, adapted from [4,7,8], a distributed system consists of two types of elements: (D 
processes, which can execute events (let II represent the set of n processes in the system); and 

a communication system, .Af, which contains a set of message packets of the form (p, ~ q), 
representing a message _m_ from process p to process q.* 

Each process in a distributed system is characterized by a set of process executions, each of 
which is a sequence of abstract events. These events include: LOCAL (the executing process 
performs an unspecified internal action with no external communication);  SEN D(_~_.,p) (the 
executing process sends message ~ to process p); RECV(_~_, p) (the executing process receives 
message _m from process p); and FAIL (the executing process crash-fails). Given a protocol 
or algorithm for a process set H in a distributed environment with specific properties, the 
distributed system prescribed by that  protocol is modeled by the set of possible executions, 
g ,  over H. Each member of £ captures a process execution for each process in II and the 
behaviour of the communication system - -  intuitively, a complete description of an execution 
of the system [9]. In order to examine the system at various steps in an execution, we introduce 
a set of external observation .frames, which allow us to capture each execution as a series of 
snapshots.We identify the set of frames .T with the nonnegative integers. 

Formally, an execution e E £ is a function mapping a frame f G .T to a snapshot e(f) ;  
the set of snapshots of g ,  denoted S(C), is {e(f)  le e £ a n d  f e .T'}. Each snapshot maps 
each process p to a pair, (history, state), and maps the communication system, Af, to a set 
of message packets (the message packets "in transit" during the snapshot).  The history is the 
finite sequence of events executed by p (its partial execution) in e up to frame f ;  the state is 

* Assume we have some vocabulary ~ from which ~ is taken. 
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the state which p occupies in frame f of execution e. For clarity, we write e(f,  p).history and 
e(f ,  p).state for the mappings to p's history and state, respectively, in frame f of execution 
e, and e( f ,W')  for the mapping to the contents of .Af. e( f ,p )  without a "." qualifier means 
e( f , p).history. 

We will need some more notation. For P C II, P denotes II - P.  d -I e( f ,  p) means that d 
is the last event in p's event sequence in snapshot e( f ) .  e( f  ++ 1, p).history = e(f, p).history + d 
indicates the concatenation, in frame f ÷ 1, of event d onto p's process execution in e( f )  
(i.e., p executed event d between frames f and f + 1). For snapshots t,s G 8(g) ,  s =p t i f f  
s(p).history = t(p).history, and (for P C II) s = p  t iiTs =p t for a l l p  E P.  s = H  t itT 
s(.M) = t(.A/'), s = t iiT s =rl t and s = ~  t. Given el,e E £ ,  and f E .Y', e(f) ~ ex(.f) iiT 
e(g) = el(g) for all 0 _< g _< f .  For z E 1I V {At}, el(f)  ~-x e(f) is short for el(g) =x e(g) for 
all 0 _< g < f .  For X _C 1I U {.A/'}, el(f)  =-x e(f) is short for el(g) =x e(g) for all z E X and 
0 < g < f .  For two snapshots e(f) ,  e'(g) E $($) ,  e'(g) is a proper eztension (or extension) of 
e(f),  denoted e'(g) > e(f) (or _>), if e'(f) ~ e(f) and g > f (or >). For g, f  E .~ such that  
g _> f ,  e(g, p) - e(f, p) yields the suffix of p's history in e(g) obtained by removing p's history 
in e( f )  (that is, the events executed by p between frames f and g). 

The formation of valid executions of a distributed system and the snapshots thereof is 
governed by constraints which reflect certain properties of the system being modelled. We give 
some here. e(0, p) is the empty sequence A for all p E II, and e(0,.M) = 0 - -  the system starts 
"empty". The sequence of events of any process in one snapshot must be prefixed by, and 
extend by zero or one events, the sequence of events of that process in the preceding snapshot. 
Only messages which were sent but not yet received may appear in the message system. A 
message must be in the message system in the snapshot before that in which it is received. A 
message packet which has disappeared from the message system may not "magically" reappear. 
We also assume "honest" messages - -  i.e., if 5 E N D(~b, p) "-I s(q), then s ~ Kqcb. Communication 
failure is modelled by allowing any message packet in the communication system to disappear 
(in a similar execution), though no message must disappear. Finally, messages from one process 
to another can only be received in the order sent. 

As argued in [6], only crash failures make sense in the context of commitment problems. 
In a crash failure, the failing process stops executing events; if it recovers, it executes events 
according to its protocol. A FAIL event models a process crash failure. A system g is subject 
to process crash failures if it satisfies the following system-level constraint: 

A P r o c e s s  M a y  ( B u t  N e e d  N o t )  Fail: Given an e ( f ) E  S ( g ) a n d  p E 17I, if FALL7(e(f-l ,p) 
(i.e., p is not failed in the previous snapshot) and A ~ e ( f , p )  - e ( f  - 1,p) ~ FAIL 
(i.e., p has just executed some nonfailure event) then there is some e I Ggsuch that: 

O e ' ( f )  -=n\(p) e(f);  ~e~( / ,p ) .h i s tory  = e ( f  - 1,p).history + FAIL; ® e ~ ( f  - 1) _=ff 
e ( f  - 1); and ~) if RECV(_~_, q) -t e( f ,  p), then el(f ,  Af) = e( f ,  .A/') U {(q, _~_., p)}; otherwise if 
SEND(.~_, q) -t e( f ,p ) ,  then e'(f,.A/') = e ( f , A  0 \ {(q, _~_, p)}; otherwise, e ' ( / ,  Af) = e( f ,  Af). 

If a nonfailed process has just executed some nonfailure event in some execution e in frame f ,  
then there is an execution e ~ which is identical to e up to frame ff except that  (1,2) f s  last 
event is replaced by FAIL, and (3,4) if p's last event was RECV (or SEND), then the received 
message appears in (or does not appear in) the communication system in e ~. T h e  following 
process execution level constraint models executions in which processes cannot recover from 
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failures: ( N o  P r o c e s s  F a i l u r e  R e c o v e r y )  For p E I I ,  f E .~, e E g ,  if FAIL --t e(f,p), then 
e(f,p) = e(g,p), for all g > f (no event may follow a FAIL event in a process execution). 

The ability of a process to execute an event may depend on the events executed by other 
processes and on the behaviour of the communication system. An impor tant  example is the 
RECV event - -  a process can execute a RECV event only if there is an appropriate message in the 
communicat ion system. Fault detection can also affect a process' allowed executions. Consider 
two snapshots e(f) and el(g) such that  e(f) =p el(g); it is not necessarily the case that  
e(f) =~ el(g). We may wish to know if there is an execution e:(h) such that  e2(h) =p e(f  + 1) 
and e2(h) =~ e~(g-t- 1). We can describe process progress constraints which prescribe such 
possible fusions following receive, failure-detection, or other events. The constraint needed in 
this paper, called Noncommunicative Progress, says that  if none of the processes in P has, in 
its last event in e( f  -t- 1), received a message from, or detected a failure of, a process in P ,  then 
the projections of P from e(f-t- 1) and of T from el (g-t- 1) may be fused (because the last event 
of each p E P does not depend upon the actions of any other elements of the system). 

Our model of distributed systems captures a system with asynchronous (or nonblocking) 
sends and blocking receives [1] (cf. [8]). A message, when it is received, contains information 
about the sender's state that ,  in general, is not necessarily still its current state. An important  
exception to this is the passing of messages reflecting stable properties - -  in our analysis of 
distributed negotiation, we are almost exclusively concerned with stable properties. 

3. K N O W L E D G E  L O G I C  

This temporal  modal  logic, based on [10], allows us to talk about the knowledge ascribed to 
processes in a distributed computat ion and the future states of propositions. The language has 
the following symbols: a set • of primitive propositional variables; a set II of process names; 
{,,~,V,~,q2,(,)}; {K~ I x e II}; and {Kx  I X C_ II}. The set of well-formed formulae £ n ( ¢ )  is 
the smallest set such that  (1) every member of ¢ is a formula, and (2) if ¢ and ¢ are formulae, 
then so are (,,~ ¢), (¢ V ¢) ,  O ¢ ,  q2¢, gx¢ ,  Kx¢.  We abbreviate (,-, ((,,~ ¢) V (,-, ¢)))  by 
(¢ A ¢) ,  and ((,-~ ¢) V ¢)  by (¢ D ¢). t For X = {xl,  x 2 , . . . ,  xm}, and ¢(,) a wit mentioning 

X, X e~X~) (x  ) de.~ ¢(x/xl)A ~)(x/x2)A... A ¢(x/xm); that  is, the conjunction of instances of ¢ with 
all appearances of x in each instance of ¢ replaced uniformly by an element of X.  

We use a multiple knower, "possible snapshots" semantics, a possible worlds semantics. A 
Kripke model of the language £11(¢) is a tuple M = ( g  ,.A,~,pl,~p2,...,~pn), where g is a system 
over II, .A :¢~  2 s(x), ( that  is, .A maps each primitive proposition to the set of snapshots in which 
the proposition holds), and each ~.pl is a binary "snapshot similarity" relation on the snapshots 
in the system g ,  one for each process in II. Given two snapshots s , t  E $(g) ,  (s , t )  e~,p iff 
s(p).state = t(p).state. ~pl divides the set of snapshots into equivalence classes for each pi. For 
P C_ II, we write s~pt  iff s~pt  for all p E P .  

Given a model M,  we write ( M , s ) #  ¢ to express that  ¢ holds in snapshot s of the given 
model. (If M is understood from context, we write s ~ ¢.) We define # as follows (assume we 
are given e(f) =s E S(g), and wffs ¢, ¢ E £n(~) ) :  

1. For ¢ CO, ( M , s )  ~ ¢ iffs  E A(¢). 

t in the sequel, we elide the parentheses "(" and ")" in the usual way in formulae in which no ambiguity 
results. 
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2. ( M ,  s) ~ (~  ¢) iff (M,  s) ~ ¢ does not  hold. 

3. ( M ,  s) ~ (¢ V ,¢) iff ( M ,  s) ~ ¢ or (M,  s) ~ ¢ (inclusively). 

4. (Eventua l ly )  (M, e(f)) ~ ~ ¢  iff, for all e' E$ such that e(f )  _= e'(f), there is some h > f 
such that (M, e'(h)) ~ ¢ (i.e., iff ¢ is true now or will be in any execution extending s). 

5. (Never )  (M, e(f ) )  ~ ~ ¢  iff, for all e I EC such that e(f) ~_ e'(f), (M, e'(h)) ~,,~ ¢ for all 
h _> f (i.e., ¢ does not hold now and never will in any possible extension of e(f)).  $ 

. ( P r o c e s s  K n o w l e d g e )  For p E II, ( M ,  s) ~ Kp¢  iff, for all e'(g) E S(g) such tha t  
e(f)~,pe'(g), ( M ,  el(g)) ~ ¢ (i.e., iff ¢ is t rue  in all snapshots  which look to p similar to  
the  current  one). 

. ( I m p l i c i t  K n o w l e d g e )  For P C_ II, (M,  s) ~ Kp¢ iff for all e'(g) E S(g) such tha t  
e(f),~ee'(g), ( M ,  e'(g)) ~ ¢ (i.e., i f f (M,  e'(g)) ~ ¢ for all (e(f), e'(g)) E ~,plO~,p2M.. ,'Spin, 
where P = { p l , p 2 , . . .  ,pro}). 

Notice t ha t  ( M ,  s) ~ I f  pC iff ( M ,  s) ~ K{p}¢. 
We use a specialized in te rpre ta t ion  called a complete history interpretation [11] in which 

s(p).state = s(p).history, for all s E S(g ) ,  p e II. Therefore,  s~,pt iff s =p t. Recall t ha t  ~p 
deals wi th  s ta te  similari ty and =p with execution similarity. Under  this in terpre ta t ion ,  two 
snapshots  s and t f rom S(C) look similar to p if p executes the  same sequence of events in s 
and in t. Note  tha t  other processes may  execute different sequences of events in s and in t. In 
this in terpre ta t ion ,  the  process '  s ta te  reflects the  most  informat ion  possible about  a process '  
execution.  

A d d i t i o n a l  C o n c e p t s  

We present  some impor t an t  addi t ional  concepts,  based on the  compu ta t i on  model  and the  logic, 
which we use in our discussion of negot ia ted  c o m m i t m e n t  and recovery. These  results will help 
us analyse the  bidding and decision proposi t ions of the par t ic ipants .  

L o c a l i t y ,  S tab i l i ty~  a n d  N o n u n i f o r m i t y  

A wff ¢ is local to P, for P C_ II, if, for all s E S(C),  s ~ Kp¢ V Kp ,,~ ¢. T h a t  is, P always 
knows the  value of ¢. Local formulae are in tended to model  predicates whose value is controlled 
by the  actions of the  processes to which the formulae are local [4,7]. ¢ is uniquely local to P C II 
if ¢ is local to P and not  local to P .  

The  next  two results will be impor t an t  for analysing some of the specifications of negot ia ted  
c o m m i t m e n t  which have the form of the  const ra int  given in each lemma.  The  first l emma states 
tha t  if a wff uniquely local to a process q mus t  hold whenever  a wff uniquely local to another  
process p holds, then  whenever p's wff holds, p mus t  know tha t  q's wff holds. 

t"e(f) ~ q)~b" is not the same as "e(f) ~,~, 0¢" .  If we were to define [] ("Always") in the obvious way 
parallel to ¢P, then q~qb is the same as [] ~-, ~b, but because "never" is a very useful concept in our analysis, we 
use a single symbol instead of two. 
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L e m m a  1 For all s • 3(g) ,  p, q • II, ¢, ¢ wffs such that  ¢ is uniquely local to p and ¢ is 
uniquely local to q, if the constraint "s ~ ¢ D ¢"  must hold, then s ~ ¢ D Kp¢. 

Proof: By way of contradiction (henceforth, "bwoc"), assume not. Then, for some s E 3(g), 
p, q EI I ,  ¢, ¢ as above, s ~ CA ,-~ Kp¢. Then there must exist some t E 3(g) such that s~pt and 
t ~ ¢. Since (D ¢ is uniquely local to p, (~) s ~ ¢, and(i) taps, then t ~ CA ~ ¢, contradicting the 
given constraint. [] 

A wff ¢ is stable if the following property holds: for all s e 8(g) ,  if e(f) ~ ¢, then for all 
g > f ,  e(g) ~ ¢. A stable wiT stays true forever after it becomes true [11]. 

L e m m a  2 For ¢ , ¢  stable wffs, if, for all e • g ,  e(0) ~ ~9(¢ A ¢),  then, for all s • S(E), 
s ~ ¢ D ~ ¢  and s ~ ¢ D ~¢.  

Proof: We prove the former; the latter follows analogously. Bwoc, assume e(0) ~ q~(¢ A ¢), but 
s ~ CA ~ ~9¢. Then there is an el Eg extending s such that el(g) ~ ¢ A ¢, for some g E.T', violating 
the antecedent. [] 

A wff ¢ is valid (or unsatifiable) in a system g if, for all s e ,S(C), s ~ ¢ (or s ~,-~ ¢). A 
wff ¢ is nonuniform in a system g if it is neither valid nor unsatisfiable. 

F a i l u r e - D e t e c t a b l e  P r o p o s i t i o n s  

We give each process p E II a local predicate FAILEDp E~,. For any s E S(g) ,  s ~ FAILEDp 
iff FAIL ~ s(p). Under our current assumptions, which allow no process recovery, the FAILEDp 
predicate is stable (this will change when we address process recovery). We use the 
PROCDETECT(p) event executed by q to model q's detection of p's failure. Given a snapshot 
s E S(£), Failed(s) = {p IP E I I  and FAll_ --t s(p)}. For FAILEDpE q~ and P C II, we abbreviate 
by ERe the formula p E P(FAILEDp V Kp¢); that is, every process in P is failed or knows ¢ 
[7]. 

A wife ,  uniquely local top  e II, is failure-detectable by q • II (q # p) if, for all e(f) • 8(£) ,  if 
(~) e ( f -  1) ~,,~ g q ¢  and PROCDETECT(p) 7f e ( f -  1, q) and(i) PROCDETECT(p) --t e(f ,  q), then 
s ~ Kq¢. That  is, the act of detecting p's failure leads q to know ¢. For example, FAILEDp is 
failure-detectable. A wff ¢ uniquely local to p is called failure-insecure if the following property 
holds: for all s • S(C), if FAIL --t s(p), then s ~,,~ ¢. A wff ¢ uniquely local to p is called 
failure-ensured if the following property holds: for all s • S(g) ,  if FAIL --t s(p), then s ~ ¢. A 
wff ¢ uniquely local to p is failure-unrelated if ¢ is neither failure-ensured nor failure-insecure. 
The following lemmas show that failure of a process p cannot determine the values of any two 
distinct wffs which are stable, nonuniform, uniquely local to p, and cannot hold simultaneously. 
Negotiated commitment involves bidding and decision propositions of exactly this type. 

L a m i n a  3 Given p • II, wffs ¢, ¢ both stable, nonuniform, and uniquely local to p, if, for all 
e • g ,  e(0) ~ ~ ( ¢  A ¢) ,  then (D neither ¢ nor ¢ is failure-ensured, and (~) neither ¢ nor ¢ is 
failure-insecure. [] 

L e m m a  4 If a nonuniform wff ¢ uniquely local to p is failure-unrelated, then ¢ is non-failure- 
detectable. [] 

Therefore, "For all e E g ,  e(0) ~ ¢P(¢A¢)", where ¢ and ¢ are stable, nonuniform, and uniquely 
local to the same process, tells us that ¢ and ¢ are failure-unrelated and non-failure-detectable. 
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N o n d e f a u l t  P r o p o s i t i o n s  

In some systems,  processes may  get to know the value of certain proposi t ions  local to o ther  
processes wi thou t  receiving any messages (e.g., by de tec t ing  failures) [7]. Nondefaul t  wffs are 
facts for which this is not  possible. Several impor t an t  proposi t ions in the  specification of 
negot ia ted  c o m m i t m e n t  are provably nondefaul t .  A wff ¢ is called nondefault if the  following 
proper ty  holds: for all 8 E S (g ) ,  P C II such tha t  ¢ is uniquely local to  T ,  if e(f) ~,,~ 
( g p ¢  V g p  ,~ ¢) and,  for all p e P, ~ E P, e( f  + 1,p)  - e(f,p) ~ RECV(.~_,~), for all .~_, then  
e( f  + 1) ~,-~ ( K p ¢  V K p  ~ ¢). T h a t  is, a process set P cannot  come to know a nondefaul t  wff 
uniquely local to  P wi thou t  receiving a message. 

T h e o r e m  5 If ¢ is uniquely local to q and is non-failure-detectable,  t hen  ¢ is nondefaul t .  
Proof: Assume not. (If ¢ is uniform, then nondefaultness is trivial; assume nonuniform.) Then 

choose e(f) e S(g) such that, for somep e II\{q), e ( f -  1) ~,,, (KpCVKp ~, ¢) and e ( f , p ) - e ( f - l , p )  # 
RECV(.~_, p~ for all ~ e II \ {p}, and e(f) ~ Kp ~ ¢. Therefore, p does not receive a message, yet it 
comes to know ~ ¢. (Choose Kp ~ ¢ without loss of generality; the rest of the proof follows if one 
switches Kp¢ for Kp ~ ¢ and ¢ with ~ ¢.) 

Since e(f - 1) ~ Kp ~ ¢, there is el(g) e S(g) such that el(g)~p e(f - 1) and el(g) ~ ¢, 
or el(g) ~ ~b. Choose e2(h) e 8(g) such that e(f)~pe2(h) and el(g)~qe2(h) (possible because of 
noncommunicative progress and process execution prefix extension). 

Now e2(h) ~ Kp(~ ¢) A ~b, which is impossible. § [] 

Notice t ha t  if FAILEDq is not  (assumed to be) stable and failure-detectable,  then  KpFAILEDq 
may never hold; p mus t  always be unsure  of whether  q is live or failed [4]. Stabi l i ty  is needed be- 
cause au then t ic  failure detect ion requires tha t  FAILEDq still hold at  the  snapshot  of detect ion,  
and failure de tec t ion  may  take arbi t rar i ly  long to occur  after the  failure. Fai lure-detectabi l i ty  
is required to achieve the  knowledge level KpFAILEDq, for p ~ q. 

4. N E G O T I A T E D  C O M M I T M E N T  

Recall the  s imple negot ia t ion  described in Section 1. For concreteness,  we say t ha t  each con- 
t rac tor  in a d i s t r ibu ted  negot ia t ion  may  choose i m m u t a b l y  only one of two bidding opt ions 
(based on the  cont rac t  announcement ) :  Bid or No-Bid. Each cont rac tor  can reach exact ly one 
of two i m m u t a b l e  decisions on the  negotiat ion:  Accept or Refuse¶. The  manager  reaches one 
i m m u t a b l e  decision for each contractor:  ei ther A w e d  or Reject. The  decision of a cont rac tor  
c is consistent with the  manager ' s  decision for c if m decides Award (resp., Reject)  for c and c 
decides Accept  (resp., Refuse). The  decisions are inconsistent if m decides Award (resp., Re- 
ject)  for c and c decides Refuse (resp., Accept) .  The  decisions of two contractors  are implici t ly  
mutua l ly  consistent ,  by definition.II 

§This theorem can be used to reprove the knowledge gain and loss theorems of [4,9] for non-failure-related 
process knowledge. Furthermore, if we extend the notion of potential  causality from [4,9] to include process 
failure, then the knowledge gain theorem still holds, under the assumption of N o  P r o c e s s  F a i l u r e  R e c o v e r y .  
The knowledge loss theorem is unchanged by the addit ion of failure, because failure-detectable propositions must 
be stable for fai lure-detectabil i ty to hold. 

¶Loosely speaking, Acceptmeans that  the contractor commits to continuing on to perform the contract.  Refuse 
means that  the contractor commits to not performing the contract. 

IIThis is true for independent awards. The definition of intercontractor consistency changes for negotiated 
commitment  with dependent  awards (such as atomic commitment)  - -  see [13]. 
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In our description of negotiat ing systems (N-systems), we have a set C of contractor  pro- 
cesses and a singleton set M (={ra})  for the manager  process. C fq.A4 = 0, and II = .M UC. For 
each c EC, we define four primitive propositions, BIDe, NO-BIDe, ACCEPTc, and REFUSEe, 
each of which is stable and uniquely local to e. For the manager  process ra, we define two 
primitive propositions for each contractor  e, AWARDemand REJECTern, each of which is stable 
and uniquely local to ra. The  stability of the propositions reflects the immutabi l i ty  of the deci- 
sions they represent ( tha t  is, the commitment ) .  We begin our consideration of the  negotiat ion 
after  the initial contract  announcements  have been sent out and received by the members  of C. 
Each contractor  will eventually set its bid or fail. We want the bids to be set independent ly  
of each other,  after  the system begins execution - -  this reflects the lack of collusion assumed. 
If a process is able to bid (or to not bid) in some snapshot of an execution, then  it is able 
to not bid (or to bid) in a snapshot of another  execution which, up to the bidding snapshot,  
appears the same as the first one to all other  processes and to the communicat ion system. Our 
bid constraints,  in combinat ion with the A P r o c e s s  N e e d  N o t  Fal l  constraint ,  yield tha t  all 
combinations of bids are possible. 

Now we give some of the conditions in the specification of negotiated commitment ;  we 
require these for our later  results. 

F a i l u r e - f r e e  D e c i s i o n s :  For all e E C, there is (D an e E g such tha t  e contains no process 
failures or communicat ion failures and (for some f E .T) e(f) ~AWARD~nand (for some 
g E.T') e(g) ~ (ACCEPTcVREFUSEc); and (~) an el Eg such tha t  el contains no process 
failures or communicat ion failures and (for some h E.T) e l (h)  ~REJECT~,n and (for some 
i E.T') el(i) ~ (ACCEPTcVREFUSEc). 
(For each contractor ,  there is some (at  least one) execution without  failures in which both 
the  manager  and the contractor  will decide.) 

P o s t - F a i l u r e  Dec i s ions :  For all e E g and f E ~ ,  if Failed(e(f)) = 0, then there are el E 
g and h E.~such tha t  el(f) ~..e(f), there are no process or communicat ion failures in el(i) 
for f < i < h, and e l (h)  I= c E C(ACCEPTcVREFUSEc) A c E C(AWARD~nVREJECTCm). 
(If no process is now failed and if no new process or communicat ion failures occur for suf- 
ficiently long, then all processes will decide.) 

N o  U n i l a t e r a l  A w a r d s :  For all e E C and s E S(£), s ~AWARD,~DBIDc. 
(The manager  can award a contract  only to a bidding contractor .)  

N o n t r i v i a l  A w a r d  Dec i s i on :  For all e(f) E ,~(£) such tha t  e ( f -  1) ~ K,nBIDc and e(f) 
K,nBIDc, there is el(g) > e(f) such tha t  el(g) ~REJECTCm. 
(Any t ime the  manager  gets a bid from a contractor  e, there is an extension in which m 

can reject c.) 

D e c i s i o n  H a r m o n y  proscribes inconsistent commitment  decisions. 

D e c i s i o n  H a r m o n y :  For all c EC and e E £ ,  
(~) e(O) ~ C9(AWARD~nAREFUSEc); (~)e(O) ~ ¢P(REJECT~m^ACCEPTc) 
((D and (~) insist tha t  m and c do not decide inconsistently; e.g., (~) states that  in no 

execution may  m award to c and c refuse.) 
® e(O) ~ C3(AWARD~AREJECT~,~,); ~ e(O) ~ C3(ACCEPT¢^REFUSE~) 
(only one of two possible decisions is allowed). 
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An N-system g is called nonblocking if, for all s E S(g) ,  
s ~ c e C~(FAILEDcVACCEPTcVREFUSEc)Ac • C~(FAILEDmVAWARD~VREJECT~m). 
Tha t  is, each process eventually fails or decides. Informally, a process is blocked when it must  
await the repair of failures before proceeding [14,2]. Blocking is undesirable, because it may  
cause part icipants to wait for an arbi trar i ly long t ime before deciding consistently, making 
a contract  undecided for arbi trari ly long at the blocked part icipant 's  site, uselessly holding 
resources. (As shown in [13] for negotiated commitment ,  and as known for o ther  problems as 
well [11], failure-free communicat ions are required to achieve nonblocking.) 

We can analyse the above specifications to yield insights into concomitant  knowledge states. 
For example,  by Lemmas 3 and 4, Theorem 5, and D e c i s i o n  H a r m o n y ,  we can conclude tha t  
the decision propositions are nondefault .  Similarly, BIDe and NO-BIDe are nondefault .  Further ,  
~ ¢ ,  for ¢ E {BIDc,NO-BIDc,AWARD~n,REJECT~m,ACCEPTc,REFUSEc}, is nondefault .  By 
Lemma 1 and N o  U n i l a t e r a l  A w a r d s ,  we can conclude that ,  for any N-system £ ,  any s • 
$ (£ ) ,  and any c • C, s ~AWARD,~D KmBIDc. From these results, we can conclude that ,  
before m can award to c, m must  receive a message giving c's bid. This is beginning to 
prescribe some of the message exchange required in a protocol for negotiated commitment .  

The  following result shows the most general s tate  of knowledge which must  hold locally if 
a process decides without  risk of inconsistency. 

T h e o r e m  6 For any N-system £ ,  for all s E 8 (£ ) ,  c e C, 0 8  ~REFLSEcD KcCPAWARD~; 
(~) s ~REJECTCmD Km CPACCEPTc; ® s ~ACCEPTcD K¢CPREJECT~,n; (~) s ~AWARD~D 
Km C3 REFUSEc. 

Proof. We will prove this for the first of the four claims - -  the proofs for the other three are 
analogous. Assume bwoc that such a system exists. Then s ~REFUSE¢A(~ Kc~AWARD~n); therefore, 
there is e'(g) • 3(£) such that e'(g)~ce(f) and e'(g) ~ ¢PAWARD,~,, so there is an extension of e'(g), 
say e"(h), such that e"(h) ~AWARD,~. By similarity and stability, e"(h) ~REFUSEc. This violates 
Decision H a r m o n y .  [] 

We can also show tha t  the above implications cannot  be equivalences in some contexts,  such as 
nonblocking [13]. (If  they  were equivalences, then, as soon as a process reached the consequent 
level of knowledge, the antecedent  proposition would hold; but, for example, the consequent 
knowledge level is not sufficient to achieve nonblocking.) 

Assume tha t  we can identify a level of knowledge ( tha t  is, a wff involving knowledge) for 
a process which is both  necessary and sufficient for tha t  process to decide without  risk of 
inconsistency. We assume tha t  all processes will decide ( the decision proposition will hold) in 
the same snapshot in which the identified knowledge holds (this means tha t  the  process executes 
no superfluous events before deciding - -  cL the nondominated  atomic commi tment  protocols 
of [8]). 

5 .  R E C O V E R Y  

We want to allow a process which has failed to recover eventually. We allow recovery only when 
the system has reached some stable or equilibrium point **. The  equilibrium point we choose is 

"'This is essential for reasoning about termination, during which we assume that FAILEDp is stable. While this 
assumption is not strictly valid (otherwise, we could not have recovery!), stability of FAILEDp allows detecting 
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tha t  in which all nonfailed participants have decided as much as possible given the current  set 
of failed processes - -  tha t  is, all nonfailed processes which have not decided will never decide 
in any extension in which the currently failed processes are still failed [2]. tt 

For e( f )  E ,5(g), let CDecided(e(f))={c I c E Cand e( f )  ~ACCEPTcVREFUSEc},  and let 
MDecided(e(f))={c I c E C and e( f )  ~AWARDemVREJECTem}. We say p may recover in 
snapshot e( f )  if(  D p E Failed(e(f)), and (~) for all e'(g) > e( f )  such tha t  Failed(e'(h))13 
Failed(e(f)) = Failed(e(f)), f < h < g: CDecided(s) = CDecided(e'(g))and MDecided(s) 
= MDecided(e'(g)). Tha t  is, p can recover in snapshot e( f )  if, in all consecutive snapshots 
extending e( f )  such tha t  (at  least) the currently failed processes are still failed, the currently 
undecided live processes are still undecided (no process has fur ther  decided). 

To discuss process failure recovery, we must  loosen our N o  P r o c e s s  F a i l u r e  R e c o v e r y  
constraint.  A process with a nonFAIL event following FAIL in its process execution is no longer 
failed. To model recovery, we say tha t  a RECOVER event is executed (we use a distinct recovery 
event to make explicit the action taken). Therefore, we say tha t  p is in its initial recovery 
stage in snapshot e( f )  if RECOVER --t e(f ,p) .  The following conditions apply to recovery: 

(~) ( A u t h e n t i c  R e c o v e r y )  if e(f ,  p) - e ( f  - 1, p) = RECOVER, then p may recover in snapshot 
e ( f -  1); and if FAIL --t e ( f -  1,p) and FAIL 7 f e(f ,p) ,  then RECOVER --I e(f ,p) .  ~ ( N o n t r i v i a l  
Recovery)  If p could recover in snapshot e( f  - 1), then there is el Eg such tha t  e ( f  - 1) =- 
e l ( f  - 1) and RECOVER --t el( / ,p);  also, there is e2 Eg such tha t  e ( f -  1) ~_ e 2 ( f -  1) and 
FAIL -t e2(f,p) (p may recover, but it need not). 

I n d e p e n d e n t  R e c o v e r y  

Independent  recovery is the ability of a process to decide harmoniously after  failure without 
sending or receiving any messages. For c E C, c can recover independently in snapshot s if c is in 
its initial recovery stage in s and s ~ACCEPTcVREFUSEc.  That  is, c must  have decided one 
way or the other. The manager  m can recover independent ly  in snapshot s if m is in its initial 
recovery stage at snapshot s and, for all c E C, s ~(AWARD,~VREJECTC, n). An N-system £ 
supports independent  recovery if, for all p E I I  and all s E 3 (£ ) ,  p can recover independent ly  

in s. 

T h e o r e m  7 There  is no N-system supporting independent  recovery. 

Proof: (We show this for c E C .) Find e(f) E s(g) such that e(ff) ~ACCEPTcAAWARD~. 
Therefore, at least e(ff) ~ KeqgREJECT~rnAKrnBID¢. Now find e(g) < e(f) such that e ( g -  1) ~,.~ 
gmBIDc and e(g) ~ KmBIDc. Therefore, e(g) ~ Ke~gREJECT~mA "" Kc~gAWARD~ (because of 
Nont r iv ia l  Award  Decisions). 

processes to infer certain system knowledge states necessary for decision. A stabil i ty assumption has also been 
necessary for problems such as deadlock detection and computation restart  [3]. 

t t In  [14], Skeen talks of a more complicated recovery strategy in which a process may recover at  any time and 
a t t empt  to rejoin operational  sites executing the termination protocol. If a centralized terminat ion protocol is 
used, then the recovering process must find the current coordinator and send the prescribed message indicating its 
local state. The coordinator responds with a new state for the recovering process to occupy. Until  the coordinator 
responds, the process has not fully recovered and cannot be considered an active partner  in the protocol. The 
conclusion Skeen draws (p. 135) is that  there is l i t t le to be gained by allowing processes to rejoin the termination 
protocol. Our equilibrium assumption above corresponds to the situation in which no coordinator responds until 
all known live part icipants  in the (termination) protocol have terminated if possible. 
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Therefore, there is el(h) • S(g) such that el(h)~,ce(g) and el(h) ~..~ ¢SREJECT~m, so there is 
e2(i) • S(E) such that e2(i) _> el(h) and e2(i) ~REJECTCm. Similarly, there is es(j) • S(g) such 
that es(j)~ce(g) and es(j) ~.-, qgAWARD~, so there is e4(k) • S(£) such that e4(k) > es(j) and 
e4(k) ~AWARD,~. 

Now let e5 be such that eh(g) =- e(g) and eh(g T 1, c) -- eh(g, c) + FAIL. Pick l > g such that eh(l) is 
c's initial recovery stage. Now eh(g)~ce(g), so eh(g) ~..~ KcCSREJECT~,~A ,~, K¢CSAWARD~. Similarly, 
by nondefaultness of REJECT~m and of AWARD~n , eh(/) ~ .-~ KcCPREJECTCmA ..~ Kc~AWARD~ (i.e., 
neither FAIL nor RECOVER could have yielded KflSREJECT~m or KcCSAWARD~n. ) 

Therefore, eh(l) ~ACCEPTcA ~REFUSEc, or eh(l) ~... (ACCEPTcVREFUSEc). [] 

To unders tand why this result holds, recall tha t  we, the external  observers of a distr ibuted 
system, ascribe knowledge to all processes, including a process whose last event in the snap- 
shot we are examining is FAll_. Furthermore,  the decision propositions, such as ACCEPTc or 
REFUSEc, are ascribed by us to the process based on the knowledge ascribed to process c in 
each snapshot.  We know that  ¢ and (0¢, for ¢ E {AWARD~,REJECTCm,ACCEPTc,REFUSEc} 
are both  nondefault .  Therefore,  for a process to decide, the process must  receive a message 
telling it (at  least) the most general opposite knowledge level we gave in Theorem 6, or some- 
thing from which tha t  can be inferred.$$ Therefore, if the last event for c in a snapshot is FAll_, 
then, in terms of the propositions of interest for decision, c will not gain any more knowledge 
from the FAll_ event than  it had from its previous event, nor will it gain any more knowledge 
in its initial recovery stage (i.e., when c doesn' t  receive or send anything,  just  shakes off the 
cobwebs and looks around).  

In other  words, if ACCEPTc or REFUSEc or other  nondefault  propositions are going to 
be ascribed to c in the FAll_ snapshot,  then the same propositions must  hold for c in at least 
the event before the FAll_ - -  FAll- cannot  yield the level of knowledge about  the local s ta te  
of another  process needed to decide consistently. The  same argument  holds for RECOVER. 
Therefore,  independent  recovery is not possible. If a process has decided upon recovery, then 
it must  have decided before failing. Tha t  is, if FAll- ~ e(f, c) and e(f) ~ACCEPTc, then 
e( f  - 1) ~ACCEPTc (and similarly for propositions REFUSEc, AWARD~, and REJECT~m, 
and for gmBID¢ and KmNO-BIDc). If RECOVER ~ e(ff, c) and e(f) ~ACCEPTc, then e(f  - 
1) ~ACCEPTc (and similarly for REFUSEc, AWARD,R, and REJECT~m, and for KmBID~ and 
KmNO-BIDc). 

When designing recovery protocols, we take into account the level of knowledge which holds 
for the recovering process when it executes its RECOVER event - -  for the knowledge relevant 
to deciding, tha t  turns out to be the knowledge which holds in the snapshot before the FAll_ 
event from which the process is recovering [13]. 

N o n b l o c k i n g  R e c o v e r y  

Given tha t  we cannot  have independent  recovery in an N-system, we ask whether  we can have 
nonblocking recovery. Tha t  is, can a recovering process always decide, assuming it does not fail, 

~tIn a reduced-view interpretation, in which s(p).state ~ s(p).history, executing the RECV event is not enough 
to ensure that the state of local knowledge inferred from the received message holds - -  the process must actually 
be in a state which explicitly reflects having received the message, even if the process then fails (for example, 
receiving and then writing the message to stable storage - -  only after the write is completed is the process in 
the desired state). 
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no ma t t e r  what  other  processes do? The answer is no. One of the scenarios under which we 
cannot  have nonblocking recovery is to ta l  failure. Given an N-system g ,  a snapshot  s E S (£ )  
features total failures if Failed(s) = II. An N-system £ features total failures if any s e ,.~(£) 

features to ta l  failures. 

T h e o r e m  8 There  is no nonblocking N-system featuring total  failures. 
Proof: Assume bwoc that such a system exists. Find a failure-free e(f) such that e(ff) ~ACCEPTcA 

AWARD~n. Therefore, e(ff) ~ g,nSIDc. Now find g < f such that e(g - 1) ~ g,nBIDc and e(g) 
K,~BIDc. Therefore, e(g) ~ K¢q)REJECTC,~A ~ Kc~AWARD~. 

Now find e2 e £  such that e2(g) ~ e(g) and e2(g + 1,p) = e(g,p) + FAIL for all p • II [total 
failure occurs]. Now find e3(h) > e2(g) such that e3(h, e) - e3(h - 1, c) = RECOVER and RECOVER ¢ 
e3(h,p) - e3(g,p) for all p • II\{c} (i.e., c is the first to recover). 

Proceeding as in the proof of theorem 7, e3(h) ~ K¢CPREJECTCrnA ~ KcAWARD~. We know that 
c cannot recover independently; c must communicate with others. By the choice of the execution e3, c 
will not receive any further messages about m's knowledge of e's bid unless some other process sends 
one. Without loss of generality, we may assume e3 extends e3(h) such that RECOVER 7{ es(i, p) for all 
p • II, all i > h. Therefore, e3(i) ~0,, (REFUSEcVACCEPT¢), for all i >_ h. [] 

Therefore, c is blocked at least until it can receive some messages from other  processes. For a 
recovery protocol  to be nonblocking, at least one process must be correct (i.e., not  yet failed) to 
aid the recovering one(s). Skeen [14] alludes to this in his discussion of nonblocking recovery 
strategies for atomic commitment .  

Even if we do not have total  failure, we may not yet have nonblocking recovery. Weak 
nonblocking recovery is nonblocking recovery in the absence of total  failures; we assume weak 
nonblocking recovery in the remaining discussion. We must  distinguish between nonblocking 
behaviour  under a no-recovery assumption and nonblocking in a system which admits  recovery. 
In the former, a process p which fails satisfies the nonblocking requirement.  Any process q which 
must  be explicitly consistent with p can continue, using a terminat ion protocol,  to decide or to 
fail, thereby satisfying nonblocking. Because p will never recover, it will never need to know 
anything abou t  q's behaviour  while p was failed. If we allow p to recover, however, p will need 
to know about  q's behaviour  while p was failed, to ensure that  p does not decide inconsistently. 
If q fails before p can communicate  with q, then p must communicate  with others about  q's 
actions. If q does not tell others of its decision before q fails, then no process will be able to 
help p, so p must  block. Therefore, q must  ensure, before it decides, tha t  every process will 

eventually know what  q's decision direction is or will fail. 

T h e o r e m  9 If an N-system g is nonblocking for recovery at snapshot  s E S (g ) ,  then 

1. Ug<fFailed(e(g)) ~ II (some process(es) did not yet fail). 

2. if s ~AWARDC~VREJECTC m, then s ~ Km~ErI(C3REJECTCmVq)AWARD~). 
(The manager,  when decided about  c, must know that  eventually all processes will know 

a direction for c or fail.) 
Proof: Assume bwoc that s ~AWARD,~VREJECT~m, but s ~ I i ,n~ Er~(C3REJECT~mVT 
AWARD,~). Then there is el(g) E S(~) such that el(g)~ms and el(g) ~ ~ E n ( q )  REJECT~,,Vf3 
AWARD,~). Therefore, there is e2 EC such that e2(g~-= el(g) and, for all h _> g, e2(h) ~',~ 
En(q)REJECT~,nV~AWARD~). That is, e2(h) ~,-~ [p e II(FAILEDp vKp[q)REJECTC,~v 
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. 

q~AWARD~n]) ]. Therefore, there is p E II such that e2(h) ~ ,., (FAILEDpVKp[qgREJECT~mV 
¢)AWARD,~]). Therefore, p does not know the directions for c and has not failed. Now assume 
that c is recovering in e2(h) and e~(h) ~.~ Kc(q~REJECT~mVq~AWARD,~). c needs direction from 
another process; p cannot direct c to decide. Assume without loss of generality that FAIL -q e2(h, q) 
for all q EII  \ {p, c). Then no process can direct c to decide. Therefore, e is blocked. 

if s ~ACCEPTcVREFUSEc, then s ~ KeOEn(q)REFUSEeVq)ACCEPTc). 
(A decided contractor must know that  eventually all processes will know a direction for c 
or fail.) 
Proof. Analogous to the proof of item two. [] 

These necessary knowledge levels for nonblocking recovery are stronger than the levels for non- 
blocking terminat ion (i.e., nonblocking under the N o  P r o c e s s  F a i l u r e  R e c o v e r y  assumption).  
This is essentially because, for termination,  the deciding process p need only know that  any 
process with which it must be explicitly consistent will eventually know p's direction or fail. 
Here, we require that  p knows that  all processes will eventually know p's direction or fail. This 
knowledge level is not, however, sufficient to achieve nonblocking recovery. 

Dependent  negotiated commitment  requires that ,  along with the specification of manager- 
contractor decision harmony given above, each member of manager-chosen contractor depen- 
dency sets (nonintersecting subsets of C) must be harmonious with each other. The levels of 
knowledge given in Theorem 9 can be generalized for dependent  negotiated commitment  by 
requiring that  eventually all participants will either know a direction for all codependents in 
c's dependency set or fail. (In the independent scenario, each dependency set is a singleton.) 
In atomic commitment ,  the contractor codependency set is C; nonblocking terminat ion pro- 
tocols are such that  any deciding process knows that  eventually all processes will know the 
decision direction for all processes (or fail) and can therefore tell an uncertain process its di- 
rection. Therefore, nonblocking atomic commitment  protocols achieve the levels of knowledge 
identified above for nonblocking recovery. This is likely the reason that  the distinction be- 
tween no-recovery nonblocking terminat ion and nonblocking recovery has not been addressed 
previously. 

6. S U M M A R Y  

We discussed process recovery in faulty distributed environments, in the context of the problem 
of negotiated commitment .  We presented a computat ion model and a temporal  knowledge logic 
in which we specified negotiated commitment  and found some clues, in the form of required 
knowledge states, to the message passing required in a negotiated commitment  protocol. We 
defined process failure, recovery, and independent recovery. Using knowledge theory, we showed 
that  independent  recovery is impossible in general, and we gave knowledge levels necessary for 
weak nonblocking recovery. The proofs of the concomitant  knowledge states and of the impossi- 
bility of independent  recovery and general nonblocking recovery depended upon nondefaultness, 
an impor tant  property of certain propositions. 
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