
A KNOWLEDGE THEORETIC ACCOUNT OF RECOVERY IN DISTRIBUTED SYSTEMS:
THE CASE OF NEGOTIATED COMMITMENT

Murray S. Mazer

Department of Computer Science
University of Toronto

Toronto, Ontario
Canada M5S iA4

mazoo~toronto.csnet

ABSTRACT

We are interested in commitment problems in potentially faulty distributed environments; for
such problems, the behaviour of failed processes during recovery is relevant to consistency. In
particular, we examine negotiated commitment, which is the problem of ensuring that each par-
ticipant in a negotiation reaches a consistent local decision on the outcome. Even undecided,
recovering participants must reach a consistent decision on the outcome, because other partic-
ipants may have committed to an outcome and taken further actions based upon the expected
commitment of the recovering participant.

To facilitate the use of knowledge theory to guide the design of protocols for commitment
problems, we give an account of process failure and recovery. Using knowledge theory, we show
that independent recovery is impossible - - i.e., a recovering participant whose decision must be
based on some knowledge about other participants in the system cannot decide upon recovering
without communicating with other participants. I_f the participant is in a decided state upon
recovery without such communication, then it must have been decided when it failed, and
furthermore it must have been decided before it failed. We also give levels of interparticipant
knowledge necessary for achieving nonblocking recovery in the absence of total participant
failure.

309

310 S e s s i o n 4

1. I N T R O D U C T I O N

Knowledge theory has been used recently to analyse some problems in potentially faulty dis-
tributed environments (e.g., [5,7]), but the issue of process recovery has been ignored. In
agreement (or consensus) problems, such as Byzantine Agreement, the nonfaulty participants
at tempt to agree on some value of interest. The post-failure actions or decisions of faulty pro-
cesses are irrelevant to the consistency of the outcome. Therefore, in designing protocols for
such problems, one need not include recovery actions. Dwork and Moses [5], for example, give a
knowledge theoretic analysis of Byzantine Agreement protocols in a round-based model of com-
putation which admits crash failures; they discuss a knowledge-based protocol which all correct
(nonfailed) processors use to attain Simultaneous Byzantine Agreement. Halpern and Moses
[11] and Haipern and Zuck [12] use knowledge theory to analyse the effects of communication
failures in distributed environments, but they do not address process failures.

In commitment problems, such as Atomic Commitment [6], the behaviour of faulty processes
during recovery is not ignored; rather, recovering processes are bound by the same consistency
requirements as if they had not failed. When designing resilient distributed protocols for prob-
lems in which failing processes are not excused from consistency requirements, one must actually
design three subprotocols: (1) a failure-free protocol, to be executed by the participants in ex-
ecutions without failures; (2) a termination protocol, to be executed by nonfailed participants
which detect failures and are unsure of the outcome of the overall protocol relevant to them, to
at tempt to terminate consistently; and (3) a recovery protocol, to be executed by participants
which fail and then recover, to allow such participants to terminate consistently. To facilitate
the use of knowledge theory to guide the design of these protocols, we give an account of failure
and recovery.

We consider recovery in the context of a problem called negotiated commitment, which is
the problem of ensuring that all parties in a negotiation commit to a consistent view of the
outcome of the negotiation. Negotiated commitment is fundamental to building negotiating
systems. In the most basic negotiation (of which other negotiations are elaborations), com-
mitment proceeds as follows: an individual with a task to share (the manager) announces a
contract embodying the task to its list of potential partners (the contractors) and requests bids
for accomplishing the task; the contractors reply with bid messages; the manager considers the
bids, chooses contractors to receive the contract, and notifies the contractors of its decision.
The participants must agree on the outcome of the manager-centric negotiation, to prevent
inconsistent (and potentially disastrous) actions being taken based on incorrect perceptions of
the outcome. Atomic commitment is a special case of negotiated commitment.

Negotiated commitment arises in supporting dynamic interaction of agents in organizational
systems. Examples include automated stock trading systems, distributed planning systems, and
distributed transaction systems. Using a knowledge theoretic approach, Mazer [13] addresses
issues important to negotiated commitment, such as definitions of consistency, independence of
awards, number of awards, binding power of bids, and design of commitment protocols. As our
basis for this discussion of recovery, we use one family of negotiated commitment problems in
which each contractor is bound by its bid and in which zero or more awards, each independent
of the others, may be given in a specific negotiation instance.

Our contributions in this paper include: an introduction to the problem of negotiated
commitment; a characterization of process failure and recovery; a knowledge theoretic proof of

A Knowledge Theoretic Account of Recovery 311

the impossibility of independent recovery (while this was known for atomic commitment (e.g.,
[14]), our result is for a more general problem and uses a different formal tool); and a distinction
between nonblocking terminat ion and nonblocking recovery, including a partial characterization
of the knowledge required to achieve nonblocking recovery.

Section 2 introduces our event-based model of distributed computat ions and the constraints
which govern the construction of the possible executions of a distributed protocol. Then, in
Section 3, we give a temporal knowledge logic to be used in specifying and analyzing negotiated
commitment , and we show some key intermediate results on the evolution of knowledge in
distributed computations. In particular, we identify an important class of local formulas whose
values cannot be known remotely by default (e.g., by failure detection) but only by message
receipt. Section 4 presents a formal specification of consistent negotiated commitment; we
analyse the specifications to yield knowledge states which must hold when decisions hold. In
Section 5, we are finally ready to address recovery. We specify when a process may recover,
and we define independent recovery; then we show it to be impossible. This is true because
the concomitant knowledge states needed by a recovering process for decision cannot be gained
during recovery without communication with other processes. Furthermore, we show that
general nonblocking recovery is impossible but that a slightly weaker notion of nonblocking
recovery can be achieved. We also characterize levels of knowledge necessary for this kind of
nonblocking recovery.

2. M O D E L OF D I S T R I B U T E D S Y S T E M S

In this model, adapted from [4,7,8], a distributed system consists of two types of elements: (D
processes, which can execute events (let II represent the set of n processes in the system); and

a communication system, .Af, which contains a set of message packets of the form (p, ~ q),
representing a message _m_ from process p to process q.*

Each process in a distributed system is characterized by a set of process executions, each of
which is a sequence of abstract events. These events include: LOCAL (the executing process
performs an unspecified internal action with no external communication); SEN D(_~_.,p) (the
executing process sends message ~ to process p); RECV(_~_, p) (the executing process receives
message _m from process p); and FAIL (the executing process crash-fails). Given a protocol
or algorithm for a process set H in a distributed environment with specific properties, the
distributed system prescribed by that protocol is modeled by the set of possible executions,
g , over H. Each member of £ captures a process execution for each process in II and the
behaviour of the communication system - - intuitively, a complete description of an execution
of the system [9]. In order to examine the system at various steps in an execution, we introduce
a set of external observation .frames, which allow us to capture each execution as a series of
snapshots.We identify the set of frames .T with the nonnegative integers.

Formally, an execution e E £ is a function mapping a frame f G .T to a snapshot e(f) ;
the set of snapshots of g , denoted S(C), is {e(f) le e £ a n d f e .T'}. Each snapshot maps
each process p to a pair, (history, state), and maps the communication system, Af, to a set
of message packets (the message packets "in transit" during the snapshot). The history is the
finite sequence of events executed by p (its partial execution) in e up to frame f ; the state is

* Assume we have some vocabulary ~ from which ~ is taken.

312 Session 4

the state which p occupies in frame f of execution e. For clarity, we write e(f, p).history and
e(f , p).state for the mappings to p's history and state, respectively, in frame f of execution
e, and e(f ,W') for the mapping to the contents of .Af. e(f ,p) without a "." qualifier means
e(f , p).history.

We will need some more notation. For P C II, P denotes II - P. d -I e(f , p) means that d
is the last event in p's event sequence in snapshot e(f) . e(f ++ 1, p).history = e(f, p).history + d
indicates the concatenation, in frame f ÷ 1, of event d onto p's process execution in e(f)
(i.e., p executed event d between frames f and f + 1). For snapshots t,s G 8(g) , s =p t i f f
s(p).history = t(p).history, and (for P C II) s = p t iiTs =p t for a l l p E P. s = H t itT
s(.M) = t(.A/'), s = t iiT s =rl t and s = ~ t. Given el,e E £ , and f E .Y', e(f) ~ ex(.f) iiT
e(g) = el(g) for all 0 _< g _< f . For z E 1I V {At}, el(f) ~-x e(f) is short for el(g) =x e(g) for
all 0 _< g < f . For X _C 1I U {.A/'}, el(f) =-x e(f) is short for el(g) =x e(g) for all z E X and
0 < g < f . For two snapshots e(f) , e'(g) E $($) , e'(g) is a proper eztension (or extension) of
e(f), denoted e'(g) > e(f) (or _>), if e'(f) ~ e(f) and g > f (or >). For g, f E .~ such that
g _> f , e(g, p) - e(f, p) yields the suffix of p's history in e(g) obtained by removing p's history
in e(f) (that is, the events executed by p between frames f and g).

The formation of valid executions of a distributed system and the snapshots thereof is
governed by constraints which reflect certain properties of the system being modelled. We give
some here. e(0, p) is the empty sequence A for all p E II, and e(0,.M) = 0 - - the system starts
"empty". The sequence of events of any process in one snapshot must be prefixed by, and
extend by zero or one events, the sequence of events of that process in the preceding snapshot.
Only messages which were sent but not yet received may appear in the message system. A
message must be in the message system in the snapshot before that in which it is received. A
message packet which has disappeared from the message system may not "magically" reappear.
We also assume "honest" messages - - i.e., if 5 E N D(~b, p) "-I s(q), then s ~ Kqcb. Communication
failure is modelled by allowing any message packet in the communication system to disappear
(in a similar execution), though no message must disappear. Finally, messages from one process
to another can only be received in the order sent.

As argued in [6], only crash failures make sense in the context of commitment problems.
In a crash failure, the failing process stops executing events; if it recovers, it executes events
according to its protocol. A FAIL event models a process crash failure. A system g is subject
to process crash failures if it satisfies the following system-level constraint:

A P r o c e s s M a y (B u t N e e d N o t) Fail: Given an e (f) E S (g) a n d p E 17I, if FALL7(e(f-l ,p)
(i.e., p is not failed in the previous snapshot) and A ~ e (f , p) - e (f - 1,p) ~ FAIL
(i.e., p has just executed some nonfailure event) then there is some e I Ggsuch that:

O e ' (f) -=n\(p) e(f); ~e~(/ ,p) .h i s tory = e (f - 1,p).history + FAIL; ® e ~ (f - 1) _=ff
e (f - 1); and ~) if RECV(_~_, q) -t e(f , p), then el(f , Af) = e(f , .A/') U {(q, _~_., p)}; otherwise if
SEND(.~_, q) -t e(f ,p) , then e'(f,.A/') = e (f , A 0 \ {(q, _~_, p)}; otherwise, e ' (/ , Af) = e(f , Af).

If a nonfailed process has just executed some nonfailure event in some execution e in frame f ,
then there is an execution e ~ which is identical to e up to frame ff except that (1,2) f s last
event is replaced by FAIL, and (3,4) if p's last event was RECV (or SEND), then the received
message appears in (or does not appear in) the communication system in e ~. T h e following
process execution level constraint models executions in which processes cannot recover from

A Knowledge Theoretic Account of Recovery 313

failures: (N o P r o c e s s F a i l u r e R e c o v e r y) For p E I I , f E .~, e E g , if FAIL --t e(f,p), then
e(f,p) = e(g,p), for all g > f (no event may follow a FAIL event in a process execution).

The ability of a process to execute an event may depend on the events executed by other
processes and on the behaviour of the communication system. An impor tant example is the
RECV event - - a process can execute a RECV event only if there is an appropriate message in the
communicat ion system. Fault detection can also affect a process' allowed executions. Consider
two snapshots e(f) and el(g) such that e(f) =p el(g); it is not necessarily the case that
e(f) =~ el(g). We may wish to know if there is an execution e:(h) such that e2(h) =p e(f + 1)
and e2(h) =~ e~(g-t- 1). We can describe process progress constraints which prescribe such
possible fusions following receive, failure-detection, or other events. The constraint needed in
this paper, called Noncommunicative Progress, says that if none of the processes in P has, in
its last event in e(f -t- 1), received a message from, or detected a failure of, a process in P , then
the projections of P from e(f-t- 1) and of T from el (g-t- 1) may be fused (because the last event
of each p E P does not depend upon the actions of any other elements of the system).

Our model of distributed systems captures a system with asynchronous (or nonblocking)
sends and blocking receives [1] (cf. [8]). A message, when it is received, contains information
about the sender's state that , in general, is not necessarily still its current state. An important
exception to this is the passing of messages reflecting stable properties - - in our analysis of
distributed negotiation, we are almost exclusively concerned with stable properties.

3. K N O W L E D G E L O G I C

This temporal modal logic, based on [10], allows us to talk about the knowledge ascribed to
processes in a distributed computat ion and the future states of propositions. The language has
the following symbols: a set • of primitive propositional variables; a set II of process names;
{,,~,V,~,q2,(,)}; {K~ I x e II}; and {Kx I X C_ II}. The set of well-formed formulae £ n (¢) is
the smallest set such that (1) every member of ¢ is a formula, and (2) if ¢ and ¢ are formulae,
then so are (,,~ ¢), (¢ V ¢) , O ¢ , q2¢, gx¢ , Kx¢. We abbreviate (,-, ((,,~ ¢) V (,-, ¢))) by
(¢ A ¢) , and ((,-~ ¢) V ¢) by (¢ D ¢). t For X = {xl, x 2 , . . . , xm}, and ¢(,) a wit mentioning

X, X e~X~) (x) de.~ ¢(x/xl)A ~)(x/x2)A... A ¢(x/xm); that is, the conjunction of instances of ¢ with
all appearances of x in each instance of ¢ replaced uniformly by an element of X.

We use a multiple knower, "possible snapshots" semantics, a possible worlds semantics. A
Kripke model of the language £11(¢) is a tuple M = (g ,.A,~,pl,~p2,...,~pn), where g is a system
over II, .A :¢~ 2 s(x), (that is, .A maps each primitive proposition to the set of snapshots in which
the proposition holds), and each ~.pl is a binary "snapshot similarity" relation on the snapshots
in the system g , one for each process in II. Given two snapshots s , t E $(g) , (s , t) e~,p iff
s(p).state = t(p).state. ~pl divides the set of snapshots into equivalence classes for each pi. For
P C_ II, we write s~pt iff s~pt for all p E P .

Given a model M, we write (M , s) # ¢ to express that ¢ holds in snapshot s of the given
model. (If M is understood from context, we write s ~ ¢.) We define # as follows (assume we
are given e(f) =s E S(g), and wffs ¢, ¢ E £n(~)) :

1. For ¢ CO, (M , s) ~ ¢ iffs E A(¢).

t in the sequel, we elide the parentheses "(" and ")" in the usual way in formulae in which no ambiguity
results.

3 1 4 S e s s i o n 4

2. (M , s) ~ (~ ¢) iff (M, s) ~ ¢ does not hold.

3. (M , s) ~ (¢ V ,¢) iff (M , s) ~ ¢ or (M, s) ~ ¢ (inclusively).

4. (Eventua l ly) (M, e(f)) ~ ~ ¢ iff, for all e' E$ such that e(f) _= e'(f), there is some h > f
such that (M, e'(h)) ~ ¢ (i.e., iff ¢ is true now or will be in any execution extending s).

5. (Never) (M, e(f)) ~ ~ ¢ iff, for all e I EC such that e(f) ~_ e'(f), (M, e'(h)) ~,,~ ¢ for all
h _> f (i.e., ¢ does not hold now and never will in any possible extension of e(f)). $

. (P r o c e s s K n o w l e d g e) For p E II, (M , s) ~ Kp¢ iff, for all e'(g) E S(g) such tha t
e(f)~,pe'(g), (M , el(g)) ~ ¢ (i.e., iff ¢ is t rue in all snapshots which look to p similar to
the current one).

. (I m p l i c i t K n o w l e d g e) For P C_ II, (M, s) ~ Kp¢ iff for all e'(g) E S(g) such tha t
e(f),~ee'(g), (M , e'(g)) ~ ¢ (i.e., i f f (M, e'(g)) ~ ¢ for all (e(f), e'(g)) E ~,plO~,p2M.. ,'Spin,
where P = { p l , p 2 , . . . ,pro}).

Notice t ha t (M , s) ~ I f pC iff (M , s) ~ K{p}¢.
We use a specialized in te rpre ta t ion called a complete history interpretation [11] in which

s(p).state = s(p).history, for all s E S(g) , p e II. Therefore, s~,pt iff s =p t. Recall t ha t ~p
deals wi th s ta te similari ty and =p with execution similarity. Under this in terpre ta t ion , two
snapshots s and t f rom S(C) look similar to p if p executes the same sequence of events in s
and in t. Note tha t other processes may execute different sequences of events in s and in t. In
this in terpre ta t ion , the process ' s ta te reflects the most informat ion possible about a process '
execution.

A d d i t i o n a l C o n c e p t s

We present some impor t an t addi t ional concepts, based on the compu ta t i on model and the logic,
which we use in our discussion of negot ia ted c o m m i t m e n t and recovery. These results will help
us analyse the bidding and decision proposi t ions of the par t ic ipants .

L o c a l i t y , S tab i l i ty~ a n d N o n u n i f o r m i t y

A wff ¢ is local to P, for P C_ II, if, for all s E S(C), s ~ Kp¢ V Kp ,,~ ¢. T h a t is, P always
knows the value of ¢. Local formulae are in tended to model predicates whose value is controlled
by the actions of the processes to which the formulae are local [4,7]. ¢ is uniquely local to P C II
if ¢ is local to P and not local to P .

The next two results will be impor t an t for analysing some of the specifications of negot ia ted
c o m m i t m e n t which have the form of the const ra int given in each lemma. The first l emma states
tha t if a wff uniquely local to a process q mus t hold whenever a wff uniquely local to another
process p holds, then whenever p's wff holds, p mus t know tha t q's wff holds.

t"e(f) ~ q)~b" is not the same as "e(f) ~,~, 0¢" . If we were to define [] ("Always") in the obvious way
parallel to ¢P, then q~qb is the same as [] ~-, ~b, but because "never" is a very useful concept in our analysis, we
use a single symbol instead of two.

A Knowledge Theoretic Account of Recovery 315

L e m m a 1 For all s • 3(g) , p, q • II, ¢, ¢ wffs such that ¢ is uniquely local to p and ¢ is
uniquely local to q, if the constraint "s ~ ¢ D ¢" must hold, then s ~ ¢ D Kp¢.

Proof: By way of contradiction (henceforth, "bwoc"), assume not. Then, for some s E 3(g),
p, q EI I , ¢, ¢ as above, s ~ CA ,-~ Kp¢. Then there must exist some t E 3(g) such that s~pt and
t ~ ¢. Since (D ¢ is uniquely local to p, (~) s ~ ¢, and(i) taps, then t ~ CA ~ ¢, contradicting the
given constraint. []

A wff ¢ is stable if the following property holds: for all s e 8(g) , if e(f) ~ ¢, then for all
g > f , e(g) ~ ¢. A stable wiT stays true forever after it becomes true [11].

L e m m a 2 For ¢ , ¢ stable wffs, if, for all e • g , e(0) ~ ~9(¢ A ¢), then, for all s • S(E),
s ~ ¢ D ~ ¢ and s ~ ¢ D ~¢.

Proof: We prove the former; the latter follows analogously. Bwoc, assume e(0) ~ q~(¢ A ¢), but
s ~ CA ~ ~9¢. Then there is an el Eg extending s such that el(g) ~ ¢ A ¢, for some g E.T', violating
the antecedent. []

A wff ¢ is valid (or unsatifiable) in a system g if, for all s e ,S(C), s ~ ¢ (or s ~,-~ ¢). A
wff ¢ is nonuniform in a system g if it is neither valid nor unsatisfiable.

F a i l u r e - D e t e c t a b l e P r o p o s i t i o n s

We give each process p E II a local predicate FAILEDp E~,. For any s E S(g) , s ~ FAILEDp
iff FAIL ~ s(p). Under our current assumptions, which allow no process recovery, the FAILEDp
predicate is stable (this will change when we address process recovery). We use the
PROCDETECT(p) event executed by q to model q's detection of p's failure. Given a snapshot
s E S(£), Failed(s) = {p IP E I I and FAll_ --t s(p)}. For FAILEDpE q~ and P C II, we abbreviate
by ERe the formula p E P(FAILEDp V Kp¢); that is, every process in P is failed or knows ¢
[7].

A wife , uniquely local top e II, is failure-detectable by q • II (q # p) if, for all e(f) • 8(£) , if
(~) e (f - 1) ~,,~ g q ¢ and PROCDETECT(p) 7f e (f - 1, q) and(i) PROCDETECT(p) --t e(f , q), then
s ~ Kq¢. That is, the act of detecting p's failure leads q to know ¢. For example, FAILEDp is
failure-detectable. A wff ¢ uniquely local to p is called failure-insecure if the following property
holds: for all s • S(C), if FAIL --t s(p), then s ~,,~ ¢. A wff ¢ uniquely local to p is called
failure-ensured if the following property holds: for all s • S(g) , if FAIL --t s(p), then s ~ ¢. A
wff ¢ uniquely local to p is failure-unrelated if ¢ is neither failure-ensured nor failure-insecure.
The following lemmas show that failure of a process p cannot determine the values of any two
distinct wffs which are stable, nonuniform, uniquely local to p, and cannot hold simultaneously.
Negotiated commitment involves bidding and decision propositions of exactly this type.

L a m i n a 3 Given p • II, wffs ¢, ¢ both stable, nonuniform, and uniquely local to p, if, for all
e • g , e(0) ~ ~ (¢ A ¢) , then (D neither ¢ nor ¢ is failure-ensured, and (~) neither ¢ nor ¢ is
failure-insecure. []

L e m m a 4 If a nonuniform wff ¢ uniquely local to p is failure-unrelated, then ¢ is non-failure-
detectable. []

Therefore, "For all e E g , e(0) ~ ¢P(¢A¢)", where ¢ and ¢ are stable, nonuniform, and uniquely
local to the same process, tells us that ¢ and ¢ are failure-unrelated and non-failure-detectable.

316 S e s s i o n 4

N o n d e f a u l t P r o p o s i t i o n s

In some systems, processes may get to know the value of certain proposi t ions local to o ther
processes wi thou t receiving any messages (e.g., by de tec t ing failures) [7]. Nondefaul t wffs are
facts for which this is not possible. Several impor t an t proposi t ions in the specification of
negot ia ted c o m m i t m e n t are provably nondefaul t . A wff ¢ is called nondefault if the following
proper ty holds: for all 8 E S (g) , P C II such tha t ¢ is uniquely local to T , if e(f) ~,,~
(g p ¢ V g p ,~ ¢) and, for all p e P, ~ E P, e(f + 1,p) - e(f,p) ~ RECV(.~_,~), for all .~_, then
e(f + 1) ~,-~ (K p ¢ V K p ~ ¢). T h a t is, a process set P cannot come to know a nondefaul t wff
uniquely local to P wi thou t receiving a message.

T h e o r e m 5 If ¢ is uniquely local to q and is non-failure-detectable, t hen ¢ is nondefaul t .
Proof: Assume not. (If ¢ is uniform, then nondefaultness is trivial; assume nonuniform.) Then

choose e(f) e S(g) such that, for somep e II\{q), e (f - 1) ~,,, (KpCVKp ~, ¢) and e (f , p) - e (f - l , p) #
RECV(.~_, p~ for all ~ e II \ {p}, and e(f) ~ Kp ~ ¢. Therefore, p does not receive a message, yet it
comes to know ~ ¢. (Choose Kp ~ ¢ without loss of generality; the rest of the proof follows if one
switches Kp¢ for Kp ~ ¢ and ¢ with ~ ¢.)

Since e(f - 1) ~ Kp ~ ¢, there is el(g) e S(g) such that el(g)~p e(f - 1) and el(g) ~ ¢,
or el(g) ~ ~b. Choose e2(h) e 8(g) such that e(f)~pe2(h) and el(g)~qe2(h) (possible because of
noncommunicative progress and process execution prefix extension).

Now e2(h) ~ Kp(~ ¢) A ~b, which is impossible. § []

Notice t ha t if FAILEDq is not (assumed to be) stable and failure-detectable, then KpFAILEDq
may never hold; p mus t always be unsure of whether q is live or failed [4]. Stabi l i ty is needed be-
cause au then t ic failure detect ion requires tha t FAILEDq still hold at the snapshot of detect ion,
and failure de tec t ion may take arbi t rar i ly long to occur after the failure. Fai lure-detectabi l i ty
is required to achieve the knowledge level KpFAILEDq, for p ~ q.

4. N E G O T I A T E D C O M M I T M E N T

Recall the s imple negot ia t ion described in Section 1. For concreteness, we say t ha t each con-
t rac tor in a d i s t r ibu ted negot ia t ion may choose i m m u t a b l y only one of two bidding opt ions
(based on the cont rac t announcement) : Bid or No-Bid. Each cont rac tor can reach exact ly one
of two i m m u t a b l e decisions on the negotiat ion: Accept or Refuse¶. The manager reaches one
i m m u t a b l e decision for each contractor: ei ther A w e d or Reject. The decision of a cont rac tor
c is consistent with the manager ' s decision for c if m decides Award (resp., Reject) for c and c
decides Accept (resp., Refuse). The decisions are inconsistent if m decides Award (resp., Re-
ject) for c and c decides Refuse (resp., Accept) . The decisions of two contractors are implici t ly
mutua l ly consistent , by definition.II

§This theorem can be used to reprove the knowledge gain and loss theorems of [4,9] for non-failure-related
process knowledge. Furthermore, if we extend the notion of potential causality from [4,9] to include process
failure, then the knowledge gain theorem still holds, under the assumption of N o P r o c e s s F a i l u r e R e c o v e r y .
The knowledge loss theorem is unchanged by the addit ion of failure, because failure-detectable propositions must
be stable for fai lure-detectabil i ty to hold.

¶Loosely speaking, Acceptmeans that the contractor commits to continuing on to perform the contract. Refuse
means that the contractor commits to not performing the contract.

IIThis is true for independent awards. The definition of intercontractor consistency changes for negotiated
commitment with dependent awards (such as atomic commitment) - - see [13].

A Knowledge Theoretic Account of Recovery 317

In our description of negotiat ing systems (N-systems), we have a set C of contractor pro-
cesses and a singleton set M (={ra}) for the manager process. C fq.A4 = 0, and II = .M UC. For
each c EC, we define four primitive propositions, BIDe, NO-BIDe, ACCEPTc, and REFUSEe,
each of which is stable and uniquely local to e. For the manager process ra, we define two
primitive propositions for each contractor e, AWARDemand REJECTern, each of which is stable
and uniquely local to ra. The stability of the propositions reflects the immutabi l i ty of the deci-
sions they represent (tha t is, the commitment) . We begin our consideration of the negotiat ion
after the initial contract announcements have been sent out and received by the members of C.
Each contractor will eventually set its bid or fail. We want the bids to be set independent ly
of each other, after the system begins execution - - this reflects the lack of collusion assumed.
If a process is able to bid (or to not bid) in some snapshot of an execution, then it is able
to not bid (or to bid) in a snapshot of another execution which, up to the bidding snapshot,
appears the same as the first one to all other processes and to the communicat ion system. Our
bid constraints, in combinat ion with the A P r o c e s s N e e d N o t Fal l constraint , yield tha t all
combinations of bids are possible.

Now we give some of the conditions in the specification of negotiated commitment ; we
require these for our later results.

F a i l u r e - f r e e D e c i s i o n s : For all e E C, there is (D an e E g such tha t e contains no process
failures or communicat ion failures and (for some f E .T) e(f) ~AWARD~nand (for some
g E.T') e(g) ~ (ACCEPTcVREFUSEc); and (~) an el Eg such tha t el contains no process
failures or communicat ion failures and (for some h E.T) e l (h) ~REJECT~,n and (for some
i E.T') el(i) ~ (ACCEPTcVREFUSEc).
(For each contractor , there is some (at least one) execution without failures in which both
the manager and the contractor will decide.)

P o s t - F a i l u r e Dec i s ions : For all e E g and f E ~ , if Failed(e(f)) = 0, then there are el E
g and h E.~such tha t el(f) ~..e(f), there are no process or communicat ion failures in el(i)
for f < i < h, and e l (h) I= c E C(ACCEPTcVREFUSEc) A c E C(AWARD~nVREJECTCm).
(If no process is now failed and if no new process or communicat ion failures occur for suf-
ficiently long, then all processes will decide.)

N o U n i l a t e r a l A w a r d s : For all e E C and s E S(£), s ~AWARD,~DBIDc.
(The manager can award a contract only to a bidding contractor .)

N o n t r i v i a l A w a r d Dec i s i on : For all e(f) E ,~(£) such tha t e (f - 1) ~ K,nBIDc and e(f)
K,nBIDc, there is el(g) > e(f) such tha t el(g) ~REJECTCm.
(Any t ime the manager gets a bid from a contractor e, there is an extension in which m

can reject c.)

D e c i s i o n H a r m o n y proscribes inconsistent commitment decisions.

D e c i s i o n H a r m o n y : For all c EC and e E £ ,
(~) e(O) ~ C9(AWARD~nAREFUSEc); (~)e(O) ~ ¢P(REJECT~m^ACCEPTc)
((D and (~) insist tha t m and c do not decide inconsistently; e.g., (~) states that in no

execution may m award to c and c refuse.)
® e(O) ~ C3(AWARD~AREJECT~,~,); ~ e(O) ~ C3(ACCEPT¢^REFUSE~)
(only one of two possible decisions is allowed).

318 Session 4

An N-system g is called nonblocking if, for all s E S(g) ,
s ~ c e C~(FAILEDcVACCEPTcVREFUSEc)Ac • C~(FAILEDmVAWARD~VREJECT~m).
Tha t is, each process eventually fails or decides. Informally, a process is blocked when it must
await the repair of failures before proceeding [14,2]. Blocking is undesirable, because it may
cause part icipants to wait for an arbi trar i ly long t ime before deciding consistently, making
a contract undecided for arbi trari ly long at the blocked part icipant 's site, uselessly holding
resources. (As shown in [13] for negotiated commitment , and as known for o ther problems as
well [11], failure-free communicat ions are required to achieve nonblocking.)

We can analyse the above specifications to yield insights into concomitant knowledge states.
For example, by Lemmas 3 and 4, Theorem 5, and D e c i s i o n H a r m o n y , we can conclude tha t
the decision propositions are nondefault . Similarly, BIDe and NO-BIDe are nondefault . Further ,
~ ¢ , for ¢ E {BIDc,NO-BIDc,AWARD~n,REJECT~m,ACCEPTc,REFUSEc}, is nondefault . By
Lemma 1 and N o U n i l a t e r a l A w a r d s , we can conclude that , for any N-system £ , any s •
$ (£) , and any c • C, s ~AWARD,~D KmBIDc. From these results, we can conclude that ,
before m can award to c, m must receive a message giving c's bid. This is beginning to
prescribe some of the message exchange required in a protocol for negotiated commitment .

The following result shows the most general s tate of knowledge which must hold locally if
a process decides without risk of inconsistency.

T h e o r e m 6 For any N-system £ , for all s E 8 (£) , c e C, 0 8 ~REFLSEcD KcCPAWARD~;
(~) s ~REJECTCmD Km CPACCEPTc; ® s ~ACCEPTcD K¢CPREJECT~,n; (~) s ~AWARD~D
Km C3 REFUSEc.

Proof. We will prove this for the first of the four claims - - the proofs for the other three are
analogous. Assume bwoc that such a system exists. Then s ~REFUSE¢A(~ Kc~AWARD~n); therefore,
there is e'(g) • 3(£) such that e'(g)~ce(f) and e'(g) ~ ¢PAWARD,~,, so there is an extension of e'(g),
say e"(h), such that e"(h) ~AWARD,~. By similarity and stability, e"(h) ~REFUSEc. This violates
Decision H a r m o n y . []

We can also show tha t the above implications cannot be equivalences in some contexts, such as
nonblocking [13]. (If they were equivalences, then, as soon as a process reached the consequent
level of knowledge, the antecedent proposition would hold; but, for example, the consequent
knowledge level is not sufficient to achieve nonblocking.)

Assume tha t we can identify a level of knowledge (tha t is, a wff involving knowledge) for
a process which is both necessary and sufficient for tha t process to decide without risk of
inconsistency. We assume tha t all processes will decide (the decision proposition will hold) in
the same snapshot in which the identified knowledge holds (this means tha t the process executes
no superfluous events before deciding - - cL the nondominated atomic commi tment protocols
of [8]).

5 . R E C O V E R Y

We want to allow a process which has failed to recover eventually. We allow recovery only when
the system has reached some stable or equilibrium point **. The equilibrium point we choose is

"'This is essential for reasoning about termination, during which we assume that FAILEDp is stable. While this
assumption is not strictly valid (otherwise, we could not have recovery!), stability of FAILEDp allows detecting

A Knowledge Theoretic Account of Recovery 319

tha t in which all nonfailed participants have decided as much as possible given the current set
of failed processes - - tha t is, all nonfailed processes which have not decided will never decide
in any extension in which the currently failed processes are still failed [2]. tt

For e(f) E ,5(g), let CDecided(e(f))={c I c E Cand e(f) ~ACCEPTcVREFUSEc}, and let
MDecided(e(f))={c I c E C and e(f) ~AWARDemVREJECTem}. We say p may recover in
snapshot e(f) if(D p E Failed(e(f)), and (~) for all e'(g) > e(f) such tha t Failed(e'(h))13
Failed(e(f)) = Failed(e(f)), f < h < g: CDecided(s) = CDecided(e'(g))and MDecided(s)
= MDecided(e'(g)). Tha t is, p can recover in snapshot e(f) if, in all consecutive snapshots
extending e(f) such tha t (at least) the currently failed processes are still failed, the currently
undecided live processes are still undecided (no process has fur ther decided).

To discuss process failure recovery, we must loosen our N o P r o c e s s F a i l u r e R e c o v e r y
constraint. A process with a nonFAIL event following FAIL in its process execution is no longer
failed. To model recovery, we say tha t a RECOVER event is executed (we use a distinct recovery
event to make explicit the action taken). Therefore, we say tha t p is in its initial recovery
stage in snapshot e(f) if RECOVER --t e(f ,p) . The following conditions apply to recovery:

(~) (A u t h e n t i c R e c o v e r y) if e(f , p) - e (f - 1, p) = RECOVER, then p may recover in snapshot
e (f - 1); and if FAIL --t e (f - 1,p) and FAIL 7 f e(f ,p) , then RECOVER --I e(f ,p) . ~ (N o n t r i v i a l
Recovery) If p could recover in snapshot e(f - 1), then there is el Eg such tha t e (f - 1) =-
e l (f - 1) and RECOVER --t el(/ ,p); also, there is e2 Eg such tha t e (f - 1) ~_ e 2 (f - 1) and
FAIL -t e2(f,p) (p may recover, but it need not).

I n d e p e n d e n t R e c o v e r y

Independent recovery is the ability of a process to decide harmoniously after failure without
sending or receiving any messages. For c E C, c can recover independently in snapshot s if c is in
its initial recovery stage in s and s ~ACCEPTcVREFUSEc. That is, c must have decided one
way or the other. The manager m can recover independent ly in snapshot s if m is in its initial
recovery stage at snapshot s and, for all c E C, s ~(AWARD,~VREJECTC, n). An N-system £
supports independent recovery if, for all p E I I and all s E 3 (£) , p can recover independent ly

in s.

T h e o r e m 7 There is no N-system supporting independent recovery.

Proof: (We show this for c E C .) Find e(f) E s(g) such that e(ff) ~ACCEPTcAAWARD~.
Therefore, at least e(ff) ~ KeqgREJECT~rnAKrnBID¢. Now find e(g) < e(f) such that e (g - 1) ~,.~
gmBIDc and e(g) ~ KmBIDc. Therefore, e(g) ~ Ke~gREJECT~mA "" Kc~gAWARD~ (because of
Nont r iv ia l Award Decisions).

processes to infer certain system knowledge states necessary for decision. A stabil i ty assumption has also been
necessary for problems such as deadlock detection and computation restart [3].

t t In [14], Skeen talks of a more complicated recovery strategy in which a process may recover at any time and
a t t empt to rejoin operational sites executing the termination protocol. If a centralized terminat ion protocol is
used, then the recovering process must find the current coordinator and send the prescribed message indicating its
local state. The coordinator responds with a new state for the recovering process to occupy. Until the coordinator
responds, the process has not fully recovered and cannot be considered an active partner in the protocol. The
conclusion Skeen draws (p. 135) is that there is l i t t le to be gained by allowing processes to rejoin the termination
protocol. Our equilibrium assumption above corresponds to the situation in which no coordinator responds until
all known live part icipants in the (termination) protocol have terminated if possible.

320 Ses s ion 4

Therefore, there is el(h) • S(g) such that el(h)~,ce(g) and el(h) ~..~ ¢SREJECT~m, so there is
e2(i) • S(E) such that e2(i) _> el(h) and e2(i) ~REJECTCm. Similarly, there is es(j) • S(g) such
that es(j)~ce(g) and es(j) ~.-, qgAWARD~, so there is e4(k) • S(£) such that e4(k) > es(j) and
e4(k) ~AWARD,~.

Now let e5 be such that eh(g) =- e(g) and eh(g T 1, c) -- eh(g, c) + FAIL. Pick l > g such that eh(l) is
c's initial recovery stage. Now eh(g)~ce(g), so eh(g) ~..~ KcCSREJECT~,~A ,~, K¢CSAWARD~. Similarly,
by nondefaultness of REJECT~m and of AWARD~n , eh(/) ~ .-~ KcCPREJECTCmA ..~ Kc~AWARD~ (i.e.,
neither FAIL nor RECOVER could have yielded KflSREJECT~m or KcCSAWARD~n.)

Therefore, eh(l) ~ACCEPTcA ~REFUSEc, or eh(l) ~... (ACCEPTcVREFUSEc). []

To unders tand why this result holds, recall tha t we, the external observers of a distr ibuted
system, ascribe knowledge to all processes, including a process whose last event in the snap-
shot we are examining is FAll_. Furthermore, the decision propositions, such as ACCEPTc or
REFUSEc, are ascribed by us to the process based on the knowledge ascribed to process c in
each snapshot. We know that ¢ and (0¢, for ¢ E {AWARD~,REJECTCm,ACCEPTc,REFUSEc}
are both nondefault . Therefore, for a process to decide, the process must receive a message
telling it (at least) the most general opposite knowledge level we gave in Theorem 6, or some-
thing from which tha t can be inferred.$$ Therefore, if the last event for c in a snapshot is FAll_,
then, in terms of the propositions of interest for decision, c will not gain any more knowledge
from the FAll_ event than it had from its previous event, nor will it gain any more knowledge
in its initial recovery stage (i.e., when c doesn' t receive or send anything, just shakes off the
cobwebs and looks around).

In other words, if ACCEPTc or REFUSEc or other nondefault propositions are going to
be ascribed to c in the FAll_ snapshot, then the same propositions must hold for c in at least
the event before the FAll_ - - FAll- cannot yield the level of knowledge about the local s ta te
of another process needed to decide consistently. The same argument holds for RECOVER.
Therefore, independent recovery is not possible. If a process has decided upon recovery, then
it must have decided before failing. Tha t is, if FAll- ~ e(f, c) and e(f) ~ACCEPTc, then
e(f - 1) ~ACCEPTc (and similarly for propositions REFUSEc, AWARD~, and REJECT~m,
and for gmBID¢ and KmNO-BIDc). If RECOVER ~ e(ff, c) and e(f) ~ACCEPTc, then e(f -
1) ~ACCEPTc (and similarly for REFUSEc, AWARD,R, and REJECT~m, and for KmBID~ and
KmNO-BIDc).

When designing recovery protocols, we take into account the level of knowledge which holds
for the recovering process when it executes its RECOVER event - - for the knowledge relevant
to deciding, tha t turns out to be the knowledge which holds in the snapshot before the FAll_
event from which the process is recovering [13].

N o n b l o c k i n g R e c o v e r y

Given tha t we cannot have independent recovery in an N-system, we ask whether we can have
nonblocking recovery. Tha t is, can a recovering process always decide, assuming it does not fail,

~tIn a reduced-view interpretation, in which s(p).state ~ s(p).history, executing the RECV event is not enough
to ensure that the state of local knowledge inferred from the received message holds - - the process must actually
be in a state which explicitly reflects having received the message, even if the process then fails (for example,
receiving and then writing the message to stable storage - - only after the write is completed is the process in
the desired state).

A Knowledge Theoretic Account of Recovery 321

no ma t t e r what other processes do? The answer is no. One of the scenarios under which we
cannot have nonblocking recovery is to ta l failure. Given an N-system g , a snapshot s E S (£)
features total failures if Failed(s) = II. An N-system £ features total failures if any s e ,.~(£)

features to ta l failures.

T h e o r e m 8 There is no nonblocking N-system featuring total failures.
Proof: Assume bwoc that such a system exists. Find a failure-free e(f) such that e(ff) ~ACCEPTcA

AWARD~n. Therefore, e(ff) ~ g,nSIDc. Now find g < f such that e(g - 1) ~ g,nBIDc and e(g)
K,~BIDc. Therefore, e(g) ~ K¢q)REJECTC,~A ~ Kc~AWARD~.

Now find e2 e £ such that e2(g) ~ e(g) and e2(g + 1,p) = e(g,p) + FAIL for all p • II [total
failure occurs]. Now find e3(h) > e2(g) such that e3(h, e) - e3(h - 1, c) = RECOVER and RECOVER ¢
e3(h,p) - e3(g,p) for all p • II\{c} (i.e., c is the first to recover).

Proceeding as in the proof of theorem 7, e3(h) ~ K¢CPREJECTCrnA ~ KcAWARD~. We know that
c cannot recover independently; c must communicate with others. By the choice of the execution e3, c
will not receive any further messages about m's knowledge of e's bid unless some other process sends
one. Without loss of generality, we may assume e3 extends e3(h) such that RECOVER 7{ es(i, p) for all
p • II, all i > h. Therefore, e3(i) ~0,, (REFUSEcVACCEPT¢), for all i >_ h. []

Therefore, c is blocked at least until it can receive some messages from other processes. For a
recovery protocol to be nonblocking, at least one process must be correct (i.e., not yet failed) to
aid the recovering one(s). Skeen [14] alludes to this in his discussion of nonblocking recovery
strategies for atomic commitment .

Even if we do not have total failure, we may not yet have nonblocking recovery. Weak
nonblocking recovery is nonblocking recovery in the absence of total failures; we assume weak
nonblocking recovery in the remaining discussion. We must distinguish between nonblocking
behaviour under a no-recovery assumption and nonblocking in a system which admits recovery.
In the former, a process p which fails satisfies the nonblocking requirement. Any process q which
must be explicitly consistent with p can continue, using a terminat ion protocol, to decide or to
fail, thereby satisfying nonblocking. Because p will never recover, it will never need to know
anything abou t q's behaviour while p was failed. If we allow p to recover, however, p will need
to know about q's behaviour while p was failed, to ensure that p does not decide inconsistently.
If q fails before p can communicate with q, then p must communicate with others about q's
actions. If q does not tell others of its decision before q fails, then no process will be able to
help p, so p must block. Therefore, q must ensure, before it decides, tha t every process will

eventually know what q's decision direction is or will fail.

T h e o r e m 9 If an N-system g is nonblocking for recovery at snapshot s E S (g) , then

1. Ug<fFailed(e(g)) ~ II (some process(es) did not yet fail).

2. if s ~AWARDC~VREJECTC m, then s ~ Km~ErI(C3REJECTCmVq)AWARD~).
(The manager, when decided about c, must know that eventually all processes will know

a direction for c or fail.)
Proof: Assume bwoc that s ~AWARD,~VREJECT~m, but s ~ I i ,n~ Er~(C3REJECT~mVT
AWARD,~). Then there is el(g) E S(~) such that el(g)~ms and el(g) ~ ~ E n (q) REJECT~,,Vf3
AWARD,~). Therefore, there is e2 EC such that e2(g~-= el(g) and, for all h _> g, e2(h) ~',~
En(q)REJECT~,nV~AWARD~). That is, e2(h) ~,-~ [p e II(FAILEDp vKp[q)REJECTC,~v

3 2 2 S e s s i o n 4

.

q~AWARD~n])]. Therefore, there is p E II such that e2(h) ~ ,., (FAILEDpVKp[qgREJECT~mV
¢)AWARD,~]). Therefore, p does not know the directions for c and has not failed. Now assume
that c is recovering in e2(h) and e~(h) ~.~ Kc(q~REJECT~mVq~AWARD,~). c needs direction from
another process; p cannot direct c to decide. Assume without loss of generality that FAIL -q e2(h, q)
for all q EII \ {p, c). Then no process can direct c to decide. Therefore, e is blocked.

if s ~ACCEPTcVREFUSEc, then s ~ KeOEn(q)REFUSEeVq)ACCEPTc).
(A decided contractor must know that eventually all processes will know a direction for c
or fail.)
Proof. Analogous to the proof of item two. []

These necessary knowledge levels for nonblocking recovery are stronger than the levels for non-
blocking terminat ion (i.e., nonblocking under the N o P r o c e s s F a i l u r e R e c o v e r y assumption).
This is essentially because, for termination, the deciding process p need only know that any
process with which it must be explicitly consistent will eventually know p's direction or fail.
Here, we require that p knows that all processes will eventually know p's direction or fail. This
knowledge level is not, however, sufficient to achieve nonblocking recovery.

Dependent negotiated commitment requires that , along with the specification of manager-
contractor decision harmony given above, each member of manager-chosen contractor depen-
dency sets (nonintersecting subsets of C) must be harmonious with each other. The levels of
knowledge given in Theorem 9 can be generalized for dependent negotiated commitment by
requiring that eventually all participants will either know a direction for all codependents in
c's dependency set or fail. (In the independent scenario, each dependency set is a singleton.)
In atomic commitment , the contractor codependency set is C; nonblocking terminat ion pro-
tocols are such that any deciding process knows that eventually all processes will know the
decision direction for all processes (or fail) and can therefore tell an uncertain process its di-
rection. Therefore, nonblocking atomic commitment protocols achieve the levels of knowledge
identified above for nonblocking recovery. This is likely the reason that the distinction be-
tween no-recovery nonblocking terminat ion and nonblocking recovery has not been addressed
previously.

6. S U M M A R Y

We discussed process recovery in faulty distributed environments, in the context of the problem
of negotiated commitment . We presented a computat ion model and a temporal knowledge logic
in which we specified negotiated commitment and found some clues, in the form of required
knowledge states, to the message passing required in a negotiated commitment protocol. We
defined process failure, recovery, and independent recovery. Using knowledge theory, we showed
that independent recovery is impossible in general, and we gave knowledge levels necessary for
weak nonblocking recovery. The proofs of the concomitant knowledge states and of the impossi-
bility of independent recovery and general nonblocking recovery depended upon nondefaultness,
an impor tant property of certain propositions.

A Knowledge Theoretic Account of Recovery 323

A c k n o w l e d g e m e n t s

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada
under grant A3356. The author thanks Gerhard Lakemeyer, Vassos Hadzilacos, and Fred Lochovsky
for careful readings of earlier versions, and Hector Levesque for comments on an earlier paper which
motivated some of the results reported here.

R e f e r e n c e s

[1] G.R. Andrews and F.B. Schneider. "Concepts and Notations for Concurrent Programming."
ACM Computing Surveys, 15, 1 (March 1983), 3-43.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems, Reading MA: Addison-Wesley Publishing Company, 1987.

[3] K.M. Chandy and L. Lamport. "Distributed Snapshots: Determining Global States of Dis-
tributed Systems." ACM Transactions on Computer Systems, 3, 1 (February 1985), 63-75.

[4] K.M. Chandy and J. Misra. "How Processes Learn." Distributed Computing, 1, 1 (1986), 40-
52. (A preliminary version appears in Proc. Fourth ACM Syrup. on Principles of Distributed
Computing, August 1985, 204-14.)

[5] C. Dwork and Y. Moses. "Knowledge and Common Knowledge in a Byzantine Environment I:
Crash Failures." Proc. Conf. on Theoretical Aspects of Reasoning About Knowledge, Asilomar
CA, March 1986, 149-69.

[6] V. Hadzilacos. "On the Relationship Between the Atomic Commitment Problem and Consensus
Problems." Proc. Workshop on Fault-Tolerant Distributed Computing, March 1986, Asilomar
CA. (to be published by Springer-Verlag.)

[7] V. Hadzilacos. "A Knowledge Theoretic Analysis of Atomic Commitment Protocols (Prelimi-
nary Report)." Proc. ACM Syrup. Principles of Database Systems, 1987.

[8] V. Hadzilacos. "A Knowledge Theoretic Analysis of Atomic Commitment." Submitted for
publication, 1987.

[9] J.Y. Halpern. "Using Reasoning About Knowledge to Analyze Distributed Systems." in Annual
Review of Computer Science, Vol. $, Ed. J.F. Traub, Annual Reviews, Inc., 1987. (also
appeared as Research Report RJ5522, IBM Research Laboratory, Almaden CA.)

[10] J. Halpern and Y. Moses. "A Guide to the Modal Logics of Knowledge and Belief: A Prelimi-
nary Draft." Proc. Int'l Joint Conf. on Artificial Intelligence, 18-23 August 1985, Los Angeles
CA, 480-90.

[11] J. Halpern and Y. Moses. "Knowledge and Common Knowledge in a Distributed Environ-
ment." To appear in Journal ACM. (A preliminary version appears in Proc. Third ACM
Syrup. Principles of Distributed Computing, 1984, 50-61; a revised version appears as Research
Report RJ4421, IBM Research Laboratory, San Jose CA, 1986.)

[12] J.Y. Halpern and L. Zuck. A Little Knowledge Goes A Long Way: Simple Knowledge-based
Derivations and Correctness Proofs for a Family of Protocols, Research Report RJ5857, IBM
Research Laboratory, Almaden CA, 1987.

[13] M.S. Mazer. Ph.D. Thesis, Department of Computer Science, University of Toronto, 1987 (in
progress).

[14] M.D. Skeen. Crash Recovery in a Distributed Database System. Ph.D. Thesis, Department of
Electrical Engineering and Computer Science, University of California, Berkeley CA, 1982.

