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Abstract:  We provide a model for reasoning about knowledge and probabil-
ity together. We allow explicit mention of probabilities in formulas, so that our
language has formulas that essentially say “according to agent ¢, formula ¢ holds
with probability at least @.” The language is powerful enough to allow reason-
ing about higher-order probabilities, as well as allowing explicit comparisons of the
probabilities an agent places on distinct events. We present a general framework for
interpreting such formulas, and consider various properties that might hold of the in-
terrelationship between agents’ subjective probability spaces at different states. We
provide a complete axiomatization for reasoning about knowledge and probability,
prove a small model property, and obtain decision procedures. We then consider
the effects of adding common knowledge and a probabilistic variant of common
knowledge to the language.
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1 Introduction

Reasoning about knowledge has become an active topic of investigation for researchers in such
diverse fields as philosophy [Hin62], economics [Aum76], and artificial intelligence [Moo85].
Recently the interest of theoretical computer scientists has been sparked, since reasoning about
knowledge has been shown to be a useful tool in analyzing distributed systems (see [Hal87] for
an overview and further references).

In many of the application areas for reasoning about knowledge, it is important to be able
to reason about the probability of certain events as well as the knowledge of agents. In par-
ticular, this arises in distributed systems applications when we want to analyze randomized or
probabilistic programs. Not surprisingly, researchers have considered knowledge and probabil-
ity before. Indeed, all the works in economics on reasoning about knowledge, going back to
Aumann’s seminal paper [Aum76], have probability built into the model. However, they do
not consider a logical language that explicitly allows reasoning about probability. In this paper
we consider a language which extends the traditional logic of knowledge by allowing explicit
reasoning about probability along the lines discussed in a companion paper [FHM88].

In the standard possible-worlds model of knowledge (which we briefly review in the next
section), agent i knows a fact ¢, written Ky, in a world or stale s if ¢ is true in all the worlds
the agent considers possible in world s. We want to reason not only about an agent’s knowledge,
but also about the subjective probability he places on certain events. In order to do this, we
extend the langnage considered in [FIIM88], which is essentially a formalization of Nilsson’s
probability logic [Nil86]. Typical formulas in the logic of [FHM88] include m(y) > 2m(%) and
m(p) < 1/3, where ¢ and 9 are propositional formulas. These formulas can be viewed as
saying “yp is twice as probable as 9” and “p has probability less than 1/3”, respectively. Since
we want to reason about agent ¢’s subjective probability, we modify their language to allow
formulas such as m;(¢) > 2m;(3)). We also allow ¢ and 9 here to be arbitrary formulas (which
may themselves contain nested occurences of the modal operators m; and K;) rather than just
propositional formnlas. This gives us the power to reason about higher-order probabilities (see
[Gai86] for mote discussion on this subject, as well as added references) and to reason about
the probability that an agent knows a certain fact.

In order to give semantics to such a language in the possible-worlds framework, roughly
speaking, we assume that at each state each agent has a probability on the worlds he considers
possible. Then a formula such as m;(¢) > 2m;(¢) is true at state s if, according to agent
’s subjeclive probability at state s, the event ¢ is twice as probable as ¥. For technical and
philosophical reasons, we find it convenient to view the probability in general as being placed on
a subset of the worlds that the agents considers possible, rather than the set of all worlds that
the agent considers possible in a given state. As we shall show by example, different choices
for the probability space seem to correspond to different assumptions about the background
context.

Despite the richness of the resulting language, we can combine the the well-known techniques
for reasoning about knowledge with the techniques for reasoning about probability introduced in
[FHM88] to obtain an elegant complete axiomatization for the resulting language. Just as there
are different assumptions we can make about the relationship between the worlds that agent
¢ considers possible, leading to different axioms for knowledge (see [HM85] for an overview),
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there are also different assumptions about the interrelationships between agents’ subjective
probability spaces at different states, which also can be captured axiomatically. We discuss
these assumptions and their appropriatencss, and show how these assumptions can cffect the
complexity of the decision procedure for the language.

This paper is closely related to a number of other works. Propositional probabilistic vari-
ants of temporal logic [11584,1.582] and dynamic logic [Fel81, Koz85] have also been studied,
with the goal of analyzing probabilistic programs. Probabilistic temporal logic papers have
traditionally limited the language so that the only probabilistic statements that can be made
are Boolean combinations of formulas of the form “p occurs with probability one.” The logics
studied in [Fel84,Koz85] do bear some superficial resemblance to ours in that explicit probabil-
ity statements are allowed, as well as linear combinations of statements. Indeed, the probability
logic considered in [FITM88], where the only formulas in the scope of the modal operalor m are
propositional formulas, is a fragment of Feldman’s logic. Wowever, there are some fundamental
differences as well, which arise from the fact that the main object of interest in these other logics
are programs. As a result, our language and those used in [Fel84,Koz85] are incomparable. The
languages used in [Fel84,Koz85] are richer than the one we consider here in that they allow
explicit reasoning aboul programs, but poorer in that they can talk about the probability of
only a restricted class of formulas. Morcover, there are significant technical differences in the
semantics of knowledge operators (our K;’s) and the program operators of [Fel81,Koz85].

There are two other papers that consider reasoning about knowledge and wncertainty in
a possible worlds framework somewhat similar to our own. Halpern and McAllester [TIM84a]
consider a language that allows rcasoning about knowledge and likelihood, but their notion of
likelihood, based on the logic of likelihood of [ITR87], considers only a qualitative notion of
likelihood, rather than cxplicit probabilitics. While this may be appropriate for some applica-
tions, it is not useful for an analysis of protocols. Ruspini [Rus87] discusses certain relations
that hold between knowledge and probability in the one-agent case, and relates this in turn to
Dempster-Shafer belief functions [Sha79].

The rest of this paper is organized as follows. The next section contains a briel review
of the classical possible-worlds semantics for knowledge and a discussion of how knowledge
can be ascribed to processes in a distributed system. Tn Scction 3 we describe the extended
langnage for knowledge and probability and discuss some assumptions that can be placed on the
interrelationships between agents’ subjective probability spaces at different states. In section 4
we state our results on complete axiomaltizations and decision procedures (detailed proofs are
left to the full paper). Tn Section 5 we extend the language to allow common knowledge and
probabilistic common knowledge. Tn Section 6 we give our conclusions.

2 The standard Kripke model for knowledge

In this section we briefly review the standard S5 possible-worlds semantics for knowledge. The
reader is referred to [ITM85] for more details.

Tn order to reason formally about knowledge we need a language. Suppose we consider a
system with » agents, say I,...,n, and we have a set ®g of primitive propositions about which
we wish to reason. (TFor distributed systems applications these will typically represent staic-
ments such as “the value of variable z is 0”; in natural language situations they might represent
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statements of the form “It is raining in San Francisco.”) We construct more complicated for-
mulas by closing ofl & under conjunction, negation, and the modal operators K;, i = 1,...,n
(where K;p is read “agent z knows ¢”).

We give semantics to these formulas by means of Kripke structures [Kri63], which formalize
the intuitions behind possible worlds. A Kripke structure for knowledge (for n agents) is a
tuple (S,7,Ky,...,K,), where S is a set of stales (thought of as states of aflairs or possible
worlds), 7(s) is a truth assignment to the primitive propositions of ®q for cach state s € S
(i.e., 7(s)(p) € {true,false} for cach primitive proposition p € ®; and state s € S), and K;
is an cquivalence relation on the states of S, for i = 1,...,n. The K; relation is intended to
capture the possibility relation according to agent i: (s,1) € K; il in world s agent i considers
t a possible world.! We define K;(s) = {s'](s,5") € K;}.

We now assign truth values to formulas at a state in a structure. We write (M,s) k= ¢ il
the formula ¢ is true at state s in Kripke structure M.

(M,s) = p (for p € ®g) i xn(s)(p) = true
(M,s) = oAy il (M,s)Epand (M,s) = o
(]W,S) F e il (M, s) o

(M,s) = Kip it (M, 1) |= ¢ for all t € K;(s).

The last clause in this definition captures the intuition that agent 7 knows ¢ in world (M, s)
exactly if ¢ is true in all worlds that 7 considers possible.

Given a structure M = (5,7, K,,...,K,), we say a formula is ¢ is valid in M, and writc
M = @, if (M,3) |= ¢ for cvery state s in S, and say that ¢ is salisfiable in M if (M, s) |= ¢ for
some state sin .S. We say a formula ¢ is valid if it is valid in all structures, and it is satisfiable
il it is satisfiable in some structure. It is easy to check that a formula ¢ is valid in M (resp.
valid) if and only il = is not satisfiable in A (resp. not satisfiable).

It is well known that the following set of axioms and inference rules, which goes back to
Mintikka [Hin62], provides a complete axiomatization for the notion of knowledge that we are
considering. That is, each of the axioms below is valid, the inference rules preserve validity,
and all valid formulas can be proved from these axioms and rules (see [ITM85] for a proof):

K1. All instances of propositional tautologics

K2. (K;p A Ki(e = 9)) > Ky

K3. Kip= ¢

K4. Ko = K K;p

K5. = K;p = K- K;p

R1. From ¢ and ¢ = ¢ infer ¥ (modus ponens)
R2. From ¢ infer K;¢o (knowledge generalization)

While philosophers have spent years debating the appropriateness of this approach for cap-
turing the notion of knowledge as applied to human reasoning (sce [L.en78] for a review of the
pertinent literature), there are many applications in distributed systems where it has proved

'We could take K; to be an arbitrary binary relation, but for distributed systems applications, taking it to
be an equivalence relation seems most appropriate (see [Hal86] for further discussion of this pnint).
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quite useful (see [Hal87] for an overview). We now briefly review how knowledge is ascribed to
processes in distributed systems. More details on the model can be found in [Hal86].

A distributed system consists of a collection of processes, say 1,...,n, connected by a
communication network. We think of these processes as running some protocol. At any time in
the execution of such a protocol, the system is in some global state, which is a tuple of the form
(e,l1,...,1n), where [; is the local state of process ¢, and e is the state of the environment. We
think of the global state as providing a “snapshot” of the state of the system at any time. The
environment includes everything that we consider relevant to the system that is not described
in the state of the processes. A run of a system is just a function from the natural numbers to
global states. Intuitively, a run describes a possible execution of a system over time (where we
think of time as ranging over natural numbers). We identify a system with a set of runs (these
can be thought of as the possible runs of the system when running a particular protocol). We
often speak of a pair (7, m), consisting of a run 7 and a time m, as a point. Associated with
any point (r,m) we have r(m), the global state of the system at this point. We can define
equivalence relations ~;, for ¢ = 1,...,n, on points via (r,m) ~; (v/,m') iff process i has the
same local state at the global states r(m) and r'(m/’).

Suppose we fix a set ®g of primitive propositions. We define an interpreted system 7 to be
a pair (R, 7), where R is a system (set of runs), and = is a truth assignment to the primitive
propositions of ®y at every point in R. With this definition, it is easy to view an interpreted
system as a Kripke structure, where the points play the role of states and the K; relation is
given by ~;. In particular, we have

(Z,r,m) |= K iff (Z,7',m') |= ¢ for all (r',m') such that (r',m’) ~; (r, m).

3 Adding probability

The formula K;p says that ¢ is true at all the worlds that agent ¢ considers possible. We
want to extend our language to allows formulas such as m;(¢) > «, which intuitively says that
“according to agent i, formula ¢ holds with probability at least @.” In fact, it turns out to be
convenient to extend the language even further. Specifically, if ¢,,..., ¢ are formulas, then so
is Oym;(p1)+-- -+ 0mi(pr) > a, where 8y, ...,0;, a are arbitrary real numbers, and k > 1. We
call such a formula an ¢-probability formula. An expression of the form 8;m;(¢1)+- - -+ 0mi(¢x)
is called a term. Allowing arbitrary linear combinations of terms in i-probability formulas gives
us a great deal of flexibility in expressing relationships between probabilities of events. Notice
we do not allow mixed formulas such as m;(p) + m;(¢) > a.?

We use a number of abbreviations throughout the paper for readability. For example, we
use m;(p) > m;(v¥) as an abbreviation for m;(¢) — mi(¥) > 0, m;(p) < @ for —m;(p) > -«
mi(p) < a for ~(m;(p) > @), and m;(p) = a for (mi(p) > a) A (mi(p) < a). We also use
K& () as an abbreviation for Ki(mi(¢) > a). Intuitively, this says that “agent ¢ knows that
the probability of ¢ is greater than or equal to a.”

?There would be no difficulty giving semantics to such formulas, but some of our results on decision procedures
and axiomatizations seem to require that we not allow such mixed formulas. We return to this point in the next

section.
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The language used here extends that considered in [FHM88] in two ways. First, rather than
have just one “probability modality” m, we have a modality m; for each agent ¢, to capture
the idea of subjective probability. Secondly, rather than restricting the formulas that appear
in the scope of the probability modality to be propositional, we allow them to be arbitrary. In
particular, we allow higher-order probability formulas such as m;(m;(¢) > a)) > 3.

Before we give formal semantics to this language, we briefly review some material from
probability theory (see [Fel57] or any other basic text on probability theory for more details).
A probability space is a tuple (92, X, 1) where Q is a set, X is a o-algebra of subsets of Q2 (i.e., a
set of subsets containing 1 and closed under complementation and countable union), whose
elements are called the measurable sets, and a probability measure g defined on the elements
of X. Note that i does not assign a probability to all subsets of §2, but only to the measurable
sets. The inner measure p. corresponding to s is defined on all subsets of ; if A C 2, we have

pi(A) =sup{pu(B)|BC Aand Be X}

Thus, the inner measure of A is essentially the measure of the largest measurable set contained
in A. The properties of probability spaces guarantee that s, is well defined, and that if A is
measurable, then p.(A) = p(A).

Given a structure M = (5,7,Ky,...,K;), in order to decide whether a probability for-
mula is true at a state s in M, we need to associate with each state s a probability space.
Thus we take a Kripke struclure for knowledge and probability (for n agents) to be a tuple
(S,7,K1,...,Kpn,P), where P is a function that assigns to each agent ¢ € {1,...,n} and state
s € S a probability space P(i,8). We shall usually write P(¢,8) as P;, = (Si sy Xi sy i)
Intuitively, the probability space P;, describes agent i’s subjective probability distribution at
state s. It seems unreasonable for agent i to assume that there is any positive probability on
a subset of worlds that he does not consider possible; thus we assume in the remainder of the
paper that S;, C K;(s). It might seem reasonable to take S;, = K;(s), but, as we shall see

below, there are good technical and philosophical reasons to allow S;, to be a proper subset.3

We can give semantics to formulas not involving probability just as before. To give semantics
to i-probability formulas, assume inductively we have defined (M, s) |= ¢ for each state s € S.
Define S;,(¢) = {s’ € Si,|(M,s") = ¢}. Then the obvious way to define the semantics of a
formula such as p;(p) > ais

(Al’ 3) ':‘ mi(‘ﬁ) > aiff Ili,a(Si,a(Qo)) 2 a.

The only problem with this definition is that the set S; ,() might not be measurable (i.e., not
in X;,), so that p;,(S;,(¢)) might not be well defined. We discuss this issue in more detail
below (and, in fact, provide sufficient conditions to guarantee that this set is measurable), but
in order to deal with this problem in general, we use the inner measures (#;,). rather than g, ,.
Thus m;(p) > a is true at the state s if there is some measurable set (according to agent ¢)
contained in S; ,(¢) whose measure is at least a. More generally, we have

(M, 3) t: 0lmi((\01) +---+ okmi(ﬂok) Z a iff ol(ﬂi,a)*(si,a(ﬂol)) + -4 ak(ﬂi,a)*(si,a(‘Pk)) Z .

31t is easy to extend p; , to a measure on any superset T of §; . by simply taking T ~ §;, to be a measurable
set with measure 0. Thus we always can, il we like, think of the measure as really being defined on K;(s).
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This completes the semantic definition for the whole language.

Before we discuss the properties of this language, it is helpful to consider a detailed example.
This example illustrates some of the subtleties involved in choosing the probability spaces at
each state.

Suppose we have two agents. Agent 2 has an input bit, either 0 or 1. He then tosses a fair
coin, and performs an action ¢ if the coin toss agrees with the input bit, i.e., if the coin toss
lands heads and the input bit is 1, or if the coin lands tails and the input bit is 0. We assume
that agent 1 never learns agent 2’s input bit or the outcome of his coin toss. From agent 1’s
viewpoint, if agent 2’s input bit is 0, then the probability that agent 2 performs action ¢ is
1/2 (since the probability of the coin landing heads is 1/2); similarly, if agent 2’s input bit is
1, then the probability of agent 2 performing action @ is 1/2. Thus, it seems reasonable to say
that agent 1 knows that the a priori probability of agent 2 performing action a is 1/2. Note
that we do not need to assume a probability distribution on the input bits for this argument
to hold. Indeed, it holds independent of the probability distribution, and even if there is no
probability distribution on the input bit.

Now suppose we want to capture this argument in our formal system. From agent 1’s point
of view, there are four possibilities: (1, 4),(1,t),(0,%),(0,t) (the input bit was 1 and the coin
landed heads, the input bit was 1 and the coin landed tails, etc.). We can view these as the
possible worlds or states in a Kripke structure. Call them 3;, s, 83, and s, respectively; let S
be the set consisting of all four states. Assume that we have primitive propositions A, H, T,
By, and B; in the language, denoting the events that action a is performed, the coin landed
heads, the coin landed tails, agent 2’s input bit is 0, and agent 2’s input bit is 1. Thus H is
true at states s; and s3, A is true at states s; and s4, and so on. To simplify the discussion,
suppose that somehow we have decided what agent 2’s subjective probability space is at each
state. What should agent 1’s subjective probability space be? We now describe three plausible
answers to this question.

1. We can associate with each state the probability space consisting of all four states, i.e., all
the possible worlds. In this case, the only candidates for measurable sets (besides the
whole space and the empty set) are {s;,s3} (which corresponds to the event “the coin
landed heads”) and {sg2,s4}. Each of these sets has probability 1/2. Call the resulting
Kripke structure My. Note that we cannot take {s1} to be a measurable set, since we have
no probability on the input bit being 1. We also cannot take {s1, s¢}, which corresponds to
the event “action ¢ is performed”, to be measurable. This is because if it were measurable,
then, since the set of measurable sets is closed under finite intersection, we would have to
take {s;} to be measurable.

2. We can associate with states s; and ss, where the input bit is 1, the probability space
consisting only of s; and sz, with {31} and {s2} both being measurable and having measure
1/2. Similarly, we can associate with states s3 and s, the probability space consisting
only of s3 and s4, with {s3} having measure 1/2. Thus, when the input bit is 1, we take
the probability space to consist of only those states where input bit is 1, with the obvious
probability on that space; similarly for when the input bit is 0. Call this Kripke structure
M.

3. Finally, we can make the trivial choice of associating with each state the probability space
consisting of that state alone, and giving it measure 1. Call the resulting Kripke structure



284 Session 4

M,.

Of the three Kripke structures above, it is easy to see that only M; supports the informal

reasoning above. It is easy to check that we have (My,s) | Kllle, for every state 3 € S. On the
other hand, in every state of My, we have either m;(A) = 1 (in states sy and 34) or m;(A) = 0 (in
states 35 and s3). Thus, for every state s € S, we have (M2, 3) | Ki(mi1(A) =1V m(A) =0)
and (Mq,s) E —‘1(11/2.4. Finally, in My, the event A is not measurable, nor does it contain
any non-empty measurable sets. Thus, we have (Mp,s) | Ki(m1(A) = 0) (where now m;
represents the inner measure, since A is not measurable).

Does this mean that M; is somehow the “right” Kripke structure for this situation? Not
necessarily. A better understanding can be attained if we think of this as a two-step process
developing over time. At the first step, “nature” (nondeterministically) selects agent 2’s input
bit. Then agent 2 tosses the coin. We can think of M, as describing the situation after the
coin has landed. It does not make sense to say that the probability of heads is 1/2 at this time
(although it does make sense to say that the a priori probability of heads is 1/2), nor does it
make sense to say that the probability of performing action a is 1/2. After the coin has landed,
either it landed heads or it didn’t; either ¢ was performed or it wasn’t. This is the intuitive
explanation for why the formula K;((m(A) = 1) V (m;(A) = 0)) is valid in M3. M, describes
the situation after nature has made her decision, but before the coin is tossed. Thus, agent 1
knows that either the input bit is 1 or the input bit is 0 (although he doesn’t know which one).
As expected, the formula K;((m1(Bo) = 1)V (m(B1) = 0)) holds in this situation. Mo can be
viewed as describing the initial situation, before nature has made her decision. At this point
the event “the input bit is 0” is not measurable and we cannot attach a probability to it.

We can capture these intuitions nicely using runs. There are four runms, say r, 73,73, 74,
corresponding to the four states above. There are three relevant times: 0 (before nature has
decided on the input bit), 1 (after nature has decided, but before the coin is tossed), and 2
(after the coin is tossed). Agent 1’s local state contains only the time (since agent 1 never learns
anything about the coin or the input bit); agent 2’s local state contains the time, the input bit
(at times 1 and 2), and the outcome of the coin toss (at time 2). We can omit the environment
from the global state; everything relevant is already captured by the states of the agents. Thus,
for example, r3(1) = (1,(1,0)) and r3(2) = (2,(2,0,k)). We now interpret the propositons A,
H, etc. to mean that the action a has been or eventually will be performed, heads has been or
eventually will be tossed, etc. Thus, proposition A is true at the point (r;, k) if the action a is
performed at (r;,3). Similarly, H is true at (r;, k) if heads is tossed in run rj, and so on.

Clearly at each time k = 0,1,2, agent 1 considers the four points (rj,k), j = 1,2,3,4,
possible. At time 0 we can add on a probability structure to make this look like My. At time
1, defining the probability spaces so that we get Kripke structure M; seems to be appropriate,
while at time 2, Kripke structure My seems appropriate. Thus, although it seems that in some
sense agent 1’s knowledge about the input bit and the outcome of the coin toss does not change
over time, the subjective probability spaces used by agent 1 may change (for example, to reflect
the fact that the coin has been tossed).

Even in this simple example we can already see that the decision of how to assign the
probability spaces is not completely straightforward. In general, it seems that it will depend in
more detail on the form of the analysis. This example already shows that in general at a state
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s, we do not want to take S; , = K;(s). Note that S;, = K;(s) only in M, above; in particular,
in M;, where we can carry out the informal reasoning which says that action a occurs with
probability 1/2, we have S; , as a strict subset of Ki(s).

Observe that in our example, at every point (r, k), we took the probability space to consist
of all (7', k) such that r(k) = r'(k); i.e., all the points with the same global state. Moreover,
if we had included agent 2 in the discussion, we would have assigned agent 2 exactly the same
subjective probability space as agent 1 at every point.

In fact, the probability here is not subjective at all. It is an objective probability, generated
by the toss of the coin. Although the agents have different sets of points they consider possible,
they agree on what the probability space is at each point. This is a quite natural assumption in
distributed systems. Intuitively, if the agents had complete information about the global state
of the system, they would agree on what the appropriate probability space should be.’

In the context of a Kripke structure for knowledge and probability where P;, is agent i’s
probability space at state s, objective probability corresponds to the condition:

OBJ. P;, = P;, for all s and all agents ¢,j.

Because of our assumption that S;, C K;(s), it follows that OBJ implies that S;, C K;(s) for
all states s and agents ¢ and j. Thus, if we had required that S;, = K;(s) for each agent 4,
then OBJ could hold only in Kripke structures where K;(s) = K;(s) for all states s and agents
t and j.

We now consider some other assumptions about the interrelationship between an agent’s
subjective probability spaces at different states. A rather natural assumption to make on the
choice of probability space is that it is the same in all worlds the agent considers possible. In the
context of distributed systems, this would mean that an agent’s probability space is determined
by his local state. We call this property SDP (state-determined probability). Formally, we have:

SDP. (s,4') € K; implies P; , = P; ,.

Of the three Kripke structures we considered above, only My satisfies SDP. It seems that
SDP is most natural where there are no nondetermistic choices that have been made by “na-
ture”. SDP is an assumption that has often been made. Indeed, it is implicitly assumed
in much of the economists’ work (e.g. [Aum76,Cav83]). In these papers it is assumed that
each agent views the set S of all worlds as a probability space. Thus, for each agent ¢ we
have a probability space P; = (S, X;,n;).8 Agent i’s subjective probability of an event e at
a state s is taken to be the conditional probability of e given agent ¢’s set of possible worlds.
More formally, we have P;, = (Ki(s), Xi,, #is), where X;, = {ANK;(s)|A € X;}, and
i (AN Ki(3)) = pi(A)/1:i(Ki(s)).” Note that the resulting Kripke structure has the SDP
property.

‘The example presented here is a simplification of one given by Mark Tuttle. It was Mark who first pointed
out to us the need to allow §;, to be a proper subset of K;(s).

$Mark Tuttle and Yoram Moses first pointed out to us that in distributed systems applications, an appropriate
choice is often an objective probability with the probability space consisting of all the points with the same global
state. This approach was first taken in [HMT88].

® Aumann actually assumes that there is an objective probability on the whole space, so that P; = P; for all
agents 1 and j. This corresponds to the agents having a common prior distribution.

"This approach runs into slight technical difficulties if K;(s) is not measurable, or has measure 0. However,
it is always assumed that this is not the case.
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While M; and M, in our example above do not satisfy SDP, they do satisfy a weaker
property which we call uniformity. Roughly speaking, uniformity holds if we can partition
Ki(s) into subsets such that at every point in a given subset T, the probability is placed on 7'
More formally, uniformity holds if:

UNIF. For all i, s, and ¢, if P;, = (S;,, Xi,, #tis) and t € S; ,, then Pii="P;,.

Again, note that SDP is a special case of UNIF, and that all the structures in our example
above satisfy UNIF.

There is one last property of interest to us, which seems to have been assumed in all previous
papers involving reasoning about probability, and that is that all formulas define measurable
sets. As shown in [FHM88] (and as we shall see again below), reasoning about probability is
simplified if we assume that all formulas define measurable sets. More precisely, we say formulas
define measurable sets in M if

MEAS. For every formula ¢, the set S;,(¢) € X ,.

Clearly if primitive propositions define measurable sets, then all propositional formulas
define measurable sets. However, there is no particular reason to expect that a probability
formula such as m;(p) + mi(g) > 1/2 will define a measurable set (in fact, it is easy to show
in general it will not). Let PMEAS be the property which says that all primitive propositions
define measurable sets. (Note that PMEAS does not holds in My, but does hold in M; and
M3). The following lemma describes sufficient conditions for MEAS to hold.

Lemma 3.1: If M is a structure satisfying OBJ, UNIF, and PMEAS, then M satisfies MEAS.

Proof: A straightforward induction on the structure of formulas ¢ shows that S;,(¢) is mea-
surable for all formulas . The assumption OBJ implies that for all agents ¢ and j, the set
Si,s € Kj(s), so it is easy to see that S;,(K;(y)) is either Si,s or . In either case it is mea-
surable. Similarly, we can show that OBJ and UNIF together imply that for any probability
formula ¢, we have that S;,(¢) is either S;, or 0.

It seems that OBJ, UNIF, and PMEAS are often reasonable assumptions in distributed
systems applications, so this lemma is of more than just pure technical interest.

4 Complete axiomatizations and decision procedures

We now describe a natural complete axiomatization for the logic of probability and knowledge.
The axiom system can be modularized into several components:

I. Axiom and rule for propositional reasoning

Axiom K1 and rule R1 from section 2

II. Axioms and rule for reasoning about knowledge

Axioms K2-K5 and rule R2 from section 2

ITI. Axioms and rule for reasoning about probability

Any set of axioms that allow us to prove all valid i-probability formulas will do. In the mea-
surable case (that is, where MEAS holds), the axioms below (taken from [FHM88]), together
with axiom K1 and rule R1 suffice:
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P1. m;(irue) = 1 (the probability of the event true is 1)

P2. m;(false) =0 (the probability of the event false is 0)

P3. (Gimi(p1)+- -+ 0kmi(px) > @) & (0imi(p1)+- -+ Gxmi(or) +0mi(pr41) 2 @) (adding
and deleting 0 terms)

P4. (0imi(p1) + - + Oemi(pr) > @) = (0, mi(w;,) -+ + 0, mi(p;,) > a), il ji,..., Je is a
permutation of 1,...,k (permutation)

P5. (0imi(p1) + -+ + Oemi(or) 2 @) A (01mi(pr) + -+ + Omi(ox) 2 o) =
(0; + 6))mi(1) + - - + (Ok + 0})mi(x) > (e + ') (addition of coefficients)

P6. (§imi(i1) + -+ + Oemi(r) > @) = (v0imi(pr) + - - + v0emi(px) 2 va) il ¥ 2 0
(multiplication of coefficients)

P7. (1> a)V(t< a)if tis a term (dichotomy)

P8. (1> a) = (t > B)if tis a term and a > B (monotonicity)

P9. m;(p A ¥) + mi(p A ~9¥) = mi(p) (measurability)

RP1. From y = 9 infer m;(¢¥) > mi(y) (distributivity)

Things get more complicated if we drop the measurability assumption. It is easy to check
that P9 is no longer sound. As shown in [FHM88], there is another axiom that we can replace
P9 by to get a complete axiomatization. Fortunately, the analogue to this axiom also does the
trick even in our setting. To even state the new axiom we need to introduce some notation.

Let T = {¢1,...,9.} be a set of formulas. Define an atom (over 7) to be a formula of
the form ¢} A ... A ), where o} is either ¢; or —p; for each i. Define a region (over T ) to be
a disjuhction of atoms, and an r-region (over T ) to be a disjunction of r inequivalent atoms.
Note that there are 22" inequivalent regions. We say that R' is a subregion of R if R and R are
regions, and each disjunct of R’ is a disjunct of R. An r-subregion of a region R is an r-region
that is a subregion of R. Consider now the following axiom:

P9'. :n=1(__1)r—m (Ecp’ an m—subregion of ¢ m(‘P')) 20, if 14 is an r-region.

It turns out that if we replace P9 by P9’, we get a complete axiomatization for i-probability
formulas in the non-measurable case. (See [FHMS88] for more details, as well as proofs of
soundness and completeness).

Because we have knowledge in the picture, we need one more axiom to describe the inter-
relationship between knowledge and probability.

IV. Axiom relating knowledge and probability
P10. K;p = (mi(p) = 1)

Essentially, P10 captures the fact that S;, C Ki(s). (In particular, if we wanted to drop
this assumption, we would get a complete axiomatization by dropping P10.)

Let AXpEas consist of K1-K5, P1-P10, R1, R2, and RP1, and let AX be the result of
replacing P9 in AXppas by P9'.

Theorem 4.1: AX (resp. AXpEas) i @ sound and complete ariomalization for the logic of
knowledge and probability (resp. for structures satisfying MEAS).
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Proof: Soundness is straightforward, as usual, so we focus on completeness. We sketch the
proof for the measurable case; the non-measurable case follows the same lines.

In order to prove completeness, we need only show that if the formula ¢ is consistent with
AXMmE4s, then ¢ is satisfiable in a Kripke structure for knowledge and probability satisfying
MEAS. Let Sub*(¢) be the set of subformulas of ¢ and their negations.

Following Makinson [Mak66] (see also [HM85]), we first construct a Kripke structure for
knowledge (but not probability) by letting the states be maximal consistent subsets of Sub™ (),
where if s and ¢ are states, then (s,1) € K; precisely if s and  contain the same formulas of
the form K;y. By the completeness of axioms K1, P1-P9 and rules R1, RP1 for reasoning
about probability alone (as shown in [FHM88]), it follows that for each state s, there is a
probability space that satisfies the probability formulas and negations of probability formulas
of s. Furthermore, because of the axiom P10, it is possible to let the states of the probability
space be K;(s), in such a way that the probability of each ¢ € Sub*(yp) is the probability
of the set of states that contain 9. Let us call the resulting Kripke structure for knowledge
and probability M. As usual in Makinson-style proofs, we can then show, by induction on the
structure of formulas 9, that for each formula 3 € Sub*(yp), we have ¢ € s iff (M, s) |= 9. Since
every consistent formula ¥ € Sub+(<p) is contained in some state, it follows immediately that
there is a state s (namely, a state that contains ) such that (M,s) |= ¢. This is sufficient to
prove completeness, since in particular this holds when 9 is ¢. The proof in the non-measurable
case is essentially the same, except that now we construct an inner measure. il

We can also capture some of the assumptions we made about systems axiomatically. In a
precise sense, OBJ corresponds to the axiom

P11. (0imi(p1) + -+ + Okmi(pr) 2 @) = (im;(1) + -+ + Oemj(pr) > a)

Axiom P11 says that each i-probability formula implies the corresponding j-probability formula.
This is clearly sound if we have an objective probability distribution.

UNIF corresponds to the axiom

P12. ¢ = (mi(¢) = 1) if p is an i-probability formula or the negation of an i-probability
formula,

while SDP corresponds to the axiom
P13. ¢ = K;p if p is an i-probability formula or the negation of an i-probability formula.

From axiom P10 it follows that P13 implies P12, which is reasonable since SDP is a special
case of UNIF. Since SDP says that agent ¢ knows the probability space (in that it is the same
for all states in K;(s)), it is easy to see that agent ¢ knows all i-probability formulas. Since
a given :-probability formula has the same truth value at all states where agent i’s subjective
probability space is the same, the soundness of P12 in structures satisfying UNIF is also easy
to verify.

The same techniques used to prove Theorem 4.1 can be extended to prove
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Theorem 4.2: Let A be a subset of {OBJ,UNIF,SDP}, and let A be the corresponding subset
of {P11,P12,P13}. Then AXUA (resp. AXppas U A) is a sound and complete axiomalization
for the logic of knowledge and probability for structures satisfying A (resp. MEASU A)B

As is often the case in modal logics, the ideas in our completeness proof can be extended to
get a small model property and a decision procedure. In order to state our results here, we need
a few definitions. Let Sub(y) be the set of all subformulas of ¢. It is easy to see that an upper
bound on the size |Sub(y)| of Sub(ip) is the number of symbols in ¢, where we treat a real
number as a single symbol. We also define the size of a Kripke structure (S, 7, Ky,...,K,, P)
to be the number of states in S. (Note that the size of a Kripke structure may be infinite.)

Theorem 4.3: Let A be any subset of {MEAS,OBJ,UNIF,SDP}. The formula ¢ is satisfiable
in a Kripke structure satisfying A iff it is satisfiable in a Kripke structure satisfying A of size
at most |Sub()|215) (or just 21504 if MEAS € A).

It can be shown that this result is essentially optimal, in that there is a sequence of formulas
©1,93, .- and a constant ¢ > 0 such that (1) [Sub(pk)| < ck, (2) @i is satisfiable, and (3) o4
is satisfiable only in a structure of size at least 2". Indeed, this exponential lower bound holds
even when there is only one agent. However, if we assume that either UNIF or SDP hold, then
we can get polynomial-sized models in the case of one agent.

Theorem 4.4: If the formula ¢ just talks about the knowledge and probabilities of one agent
and A is a subset of (M EAS,OBJ,UNIF,SDP} containing either UNIF or SDP, then ¢ 1s
satisfiable in a structure satisying A iff ¢ 1s is satisfiable in a structure of size polynomial in
| Sub(p)| satisfying A.

In order to discuss the complexity of decision procedures, we must restrict attention to the
case where the coefficients appearing in probability formulas are rational (since the decision
procedure will involve doing rational arithmetic). In this case, all the coefficients can be repre-
sented as fractions where the numerator and denominator are both integers, so it makes sense
to talk about the length of the coeflicients and the length of the formula, viewed as a string of
symbols. Let || be the length of the formula ¢.

Theorem 4.5: Let A be a subset of {MEAS,OBJ,UNIF,SDP}. If it is not the case that
UNIF or SDP is in A, then the validity problem with respect to structures satisfying A is
complete for exponential lime (i.e., there is an algorithm that decides if a formula ¢ s vahd
in all structures satisfying A thatl runs in lime ezponential in |p|, and every ezponential time
problem can be reduced to the validity problem). If UNIF or SDP is in A, then the validity
problem with respect to structures satisfying A is complete for polynomial space.

Again, if we restrict attention to the case of one agent and structures satisfying either UNIF
or SDP, then we can do better.

8 While it is straightforward to extend Theorem 4.1 to the case where we have mixed formulas of the form
mi{¢) + m;(¥) > a (with appropriate modifications to axioms P3, P4, P5, and P6), the situation seems much
more complicated in the presence of the properties UNIF and SDP. It is due to these complexities that we did
not allow such mixed formulas in our language.
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Theorem 4.8: Let A be a subset of {M EAS,OBJ,UNIF,SDP} containing UNIF or SDP.
For the case of one agent, the validity problem with respect to structures satisfying A is NP-
complete.

5 Adding common knowledge

For many of our applications, we need to reason not only about what an individual process
knows, but about what everyone in a group knows, or what everyone in a group knows that
everyone else in the group knows knows. Common knowledge can be viewed as the state of
knowledge where everyone knows, everyone knows that everyone knows, everyone knows that
everyone knows that everyone knows, etc.

It is easy to extend our language so that we can reason about common knowledge. We
add modal operators Eg (where G is a subset of {1,...,n}) and Cg, where Egy and Cgy are
read “everyome in the group G knows ¢” and “p is common knowledge among the group G”,
respectively.

(M,8) E Egp iff (M,s)E Kipforallie G
(M,3) = Cop iff (M,s) & Ekp for all £ > 1, where ELyp is an abbreviation for Egy, and
Eg“ga is an abbreviation for EgEé(p.

It is well known (again, see [HM85]) that we can get a complete axiomatization for the
language of knowledge and common knowledge by adding the following axioms and rule of
inference to the axiom system described in Section 2:

Cl. Egy = Aicg Kiv
C2. (Cep ACq(p = ¥)) = Cgo
C3. Cgy = Eg(p A Cgp)

RC1. From ¢ = Egyp infer ¢ = Cqep.

Axiom C3, called the fized point aziom, says that Cge can be viewed as a fixed point of
the equation X = Eg(p A X). In fact, with a little work it can be shown to be the greatest
fixed point of this equation, that is, it is implied by all other fixed points. For most of our
applications, it is the fixed point characterization of common knowledge that is essential to us
(see [HM84b] for a discussion of fixed points). The rule of inference RC1 is called the induction
rule. The reason is that from the fact that ¢ = Eg¢ is valid, we can easily show by induction
on k that ¢ = Eggo is valid for all k. It follows that ¢ = Cge is valid.

It is perhaps not surprising that if we augment AXppqs with the axioms for common
knowledge, we get a complete axiomatization for the language of knowledge, common knowl-
edge, and probability for structures satisfying MEAS. If we want to deal with non-measurable
structures, we must use the axiom system AX rather than AXppas. And again we get small
model theorems and an exponential-time complete decision procedure (regardless of what ad-
ditional assumptions among MEAS, OBJ, UNIF, and SDP we make). The proofs involve a
combination of the techniques for dealing with common knowledge, and the techniques for
probability introduced in [FHM88] and the previous section. We omit details here.
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In [HM84b] it was observed that common knowledge is often not attainable in practical
distributed systems, but weaker variants of it are. One obvious variant to consider is a prob-
abilistic variant (indeed, this was already mentioned as something to consider in [HM84b]).
Recall that we defined K¢ to be an abbreviation for Ki(m;(y) > a). We now extend our
syntax to allow modal operators of the form Eg and Cg. We define

(M,s) F Egp iff (M,s) = KZp forallie G.

By analogy to Cgy, we want C&yp to be the greatest fixed point of the equation X =
E2(p A X). The obvious analogue to the definition of Cgp, namely, Egp A (E2)¢ A ... does
not work. (We give a counterexample in the full paper.) However, a slight variation does work.
Define (Fg)%p = true and (F§)**'p = EZ(p A (F2)*p). Then we take

(M, s) = Cap iff (M, s) = (F&)*p for all k > 1.

We remark that this actually is a generalization of the non-probabilistic case. The reason is
that if we define FQ¢ = true and Fgﬂ(p = Eg(p A Fkyp), then we get Fko = Ekp. This is
because Eg(pA¥) = Egp A Egy and Egp = ¢. The analogous facts do not hold once we add
probabilities, as we have already observed.

The following lemma shows that this definition indeed does have the right properties:
Lemma 5.1: C&y is the greatest fized point solution of the equation X = Eg(p A X).

It is now easy to check that we have the following analogues to the axioms for Eg and Cg.

CP1. Egy = Njcg Kf .
CP2. C&p = Eg&(p A C&yp)
RCP1. From ¢ = E&(v¥ A @) infer ¢ = Cge.

We remark that these axioms and rule of inference are sound for all types of structures we
have considered.

We believe we can show that these axioms and inference rule, together with the axioms and
inference rules C1-C3 and RC1 for common knowledge discussed above and AXagas (resp.
AX) gives us a sound and complete axiomatization for this extended language in the measurable
case (tesp. in the general case). Moreover, we believe we can prove a small model theorem, and
show that the validity problem for all variants of the logic is in double exponential time. We
are currently working out the details of the proof.

6 Conclusions

We have investigated a logic of knowledge and probability that allows explicit reasoning about
probability. We have been able to obtain complete axiomatizations and decision procedures
for our logic, and hope to extend these results to the language with common knowledge. We
have also identified some important properties that might hold of the interrelationship between
agents’ subjective probability spaces at different states.
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It seems to us that the most important area for further research lies in understanding better
what the appropriate choice of probability space is. Using the ideas in this paper together with
Moses’ recent work on resource-bounded reasoning [Mos88], Yoram Moses, Mark Tuttle, and the
second author have made progress on capturing interactive proofs and zero knowledge [GMRS85]
in the framework of knowledge and probability discussed in this paper. These results appear
in [HMT88]. Interestingly, the appropriate choice of probability space in [HMT88] seems to be
that generated on all the points with the same global state, as in our examples in Section 3.
Thus the probability space satisfies OBJ and UNIF, but not SDP. We have plausible arguments
for at least two distinct choices of probability space in analyzing probabilistic variants of the
coordinated attack problem (see [HM84b] for a discussion of the coordinated attack problem,
and a knowledge-based analysis of it). However, we need to have a larger body of examples in
which to test our ideas.
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the second author had with Yoram Moses and Mark Tuttle in the context of their joint work
on capturing interactive proofs [HMT88]. In particular, their observation that it was necessary
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of the paper. Finally, we would like to thank Nimrod Megiddo for his patient and enlightening
discussions on linear programming.

References

[Aum76] R.J. Aumann, Agreeing to disagree, Annals of Statistics 4:6, 1976, pp. 1236-1239.

[Cav83] J. Cave, Learning to agree, Economics Letters 12, 1983, pp. 147-152.

[Fel57)  W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, John
Wiley & Sons, 2nd edition, 1957.

[Fel84] Y. Feldman, A decidable propositional probabilistic dynamic logic with explicit prob-
abilities, Information and Control 63, 1984, pp. 11-38.

[FHM88] R. Fagin, J. Y. Halpern, and N. Megiddo, A logic for reasoning about probabilities,
to appear, 1988.

[Gai86] H. Gaifman, A theory of higher order probabilities, Theoretical Aspects of Reasoning
about Knowledge: Proceedings of the 1986 Conference (J. Y. Halpern, ed.), Morgan
Kaufmann, 1986, pp. 275-292.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive
proof-systems, Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 291-304.

[Hal86] J.Y. Halpern, Reasoning about knowledge: an overview, Theoretical Aspects of Rea-
soning about Knowledge: Proceedings of the 1986 Conference (J. Y. Halpern, ed.),
Morgan Kaufmann, 1986, pp. 1-17.

[Hal87] J. Y. Halpern, Using reasoning about knowledge to analyze distributed systems,
Annual Review of Computer Science, Vol. 2, Annual Reviews Inc., 1987, pp. 37-68.

[Hin62] J. Hintikka, Knowledge and Belief, Cornell University Press, 1962.

[HM84a] J. Y. Halpern and D. A. McAllester, Knowledge, likelihood, and probability, Proc.
of AAAI-84, 1984, pp. 137-141.



Reasoning about Knowledge and Probability 293

[HM84b] J. Y. Halpern and Y. Moses, Knowledge and common knowledge in a distributed
environment, Proc. 3rd ACM Symp. on Principles of Distributed Computing, 1984,
pPp. 50-61. A revised version appears as IBM Research Report RJ 4421, Aug., 1987.

(HM85] J. Y. Halpern and Y. Moses, A guide to the modal logics of knowledge and belief,
Proc. of the 9th IJCAI 1985, pp. 480-490.

[HMT88] J. Y. Halpern, Y. Moses, and M. Tuttle, A knowledge-based analysis of zero knowl-
edge, to appear, Proc. 20th ACM Symp. on Theory of Computing, 1988.

[HR87] J. Y. Halpern and M. O. Rabin, A logic to reason about likelihood, Artificial Intel-
ligence 32:3, 1987, pp. 379-405.

[HS84]  S. Hart and M. Sharir, Probabilistic temporal logics for finite and bounded models,
Proc. 16th ACM Symp. on Theory of Computing, 1984, pp. 1-13.

[Koz85] D. Kozen, Probabilistic PDL, Journal of Computer and System Science 30, 1985,
pp- 162-178.

[Kri63] S. Kripke, A semantical analysis of modal logic, Zeitschrift fir Mathematische Logik
und Grundlagen der Mathematik 9, 1963, pp. 67-96.

[Len78] W. Lenzen, Recent work in epistemic logic, Acta Philosophica Fennica 30, 1978,
pp. 1-219.

[LS82] D. Lehmann and S. Shelah, Reasoning about time and chance, Information and
Control 63, 1982, pp. 165-198.

[Mak66] D. Makinson, On some completeness theorems in modal logic, Zestschrift fiir Math-
ematische Logik und Grundlagen der Mathematik 12, 1966, pp. 379-384.

[Moo85] R. C. Moore, A formal theory of knowledge and action, Formal Theories of the
Commonsense World (J. Hobbs and R. C. Moore, eds.), Ablex Publishing Corp.,
1985.

[Mos88] Y. Moses, Resource-bounded knowledge and belief, Proceedings of the Second Con-
ference on Theoretical Aspects of Reasontng about Knowledge (M. Y. Vardi, ed.),
Morgan Kaufmann, 1988.

[Nil86]  N. Nilsson, Probabilistic logic, Artificial Intelligence 28, 1986, pp. 71-87.

[Rus87] E. H. Ruspini, Epistemic logics, probability, and the calculus of evidence, Proc. of
the 10th IJCAI, 1987, pp. 924-931.

[Sha79] G. A. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1979.



