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A b s t r a c t :  We provide a model for reasoning about knowledge anti probabil- 
ity together. We a.llow explicit mention of probabilities in formulas, so that our 
language has formulas tha.t essentia.lly say "a.ccording to agent i, formula. (p holds 
with probability a.t least o~." The language is powerfid enough to allow reason- 
ing a~bout higher-order probabilities, as well as allowing explicit comparisons of the 
probabilities an agent places on distinct events. We present a general framework for 
interpreting such formulas, a.nd consider various properties that might hold of the in- 
terrelationship between agents' subjective probability spaces at different states. We 
provide a. complete a.xiomatiza.tion for rea.soning about knowledge a.nd probability, 
prove a. small model property, and obtain decision procedures. We then consider 
the effects of adding common knowledge and a. probabilistic va.ria.nt of common 
knowledge to the language. 
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1 I n t r o d u c t i o n  

Reasoning about knowledge has become an active topic of investigation for researchers in such 
diverse fields as philosophy [llin62], economics [Aum76], and artificial intelligence [Moo85]. 
Recently the interest of theoretical computer scientists has been sparked, since reasoning about 
knowledge ha.s been shown to be a. useful tool in analyzing distributed systems (see [Hal87] for 
an overview and further references). 

In many of the application areas for reasoning about knowledge, it is important  to be able 
to reason about the probability of certain events as well as the knowledge of agents. In par- 
ticular, this arises in distributed systems applications when we want to analyze randomized or 
probabilistic programs. Not surprisingly, researchers have considered knowledge and prot)abil- 
ity before. Indeed, all the works in economics on reasoning about knowledge, going back to 
Aumann's  seminal paper [Aum76], have probability built into the model, ttowever, they do 
not consider a logical language that  explicitly allows reasoning about probability. In this paper 
we consider a language which extends the traditional logic of knowledge by allowing explicit 
reasoning about probability along the lines discussed in a companion paper [FIIM88]. 

In the standard possible-worlds model of knowledge (which we briefly review in the next 
section), agent i knows a fact (p, written Kip, in a world or slate s if ~o is true in all the worlds 
the agent considers possible in world s. We want to reason not only about an agent's knowledge, 
but also about the subjective probability he places on certain events. In order to do this, we 
extend the language considered in [FILM88], which is essentially a formalization of Nilsson's 
probability logic [Ni186]. Typical formulas in the logic of [FHM88] include m(~o) > 2m.(~p) and 
rn(~p) < 1/3, where ~p and ~p are propositional formulas. These formulas can be viewed as 
saying "to is twice as probable as ~/)" and "tp has probability less than 1/3", respectively. Since 
we want to reason about agent i's subjective probability, we modify their language to allow 
formulas such as mi(~) _> 2rai(~/)). We also allow ~o and ~b here to be arbitrary formulas (which 
may themselves contain nested occurences of the modal operators mj and Kj) rather than just 
propositional formula.s. This gives us the power to reason about higher-order probabilities (see 
[Gai86] for more discussion on this subject, as well as added references) and to reason about 
the probability that an agent knows a certain fact. 

In order to give semantics to such a language in the possible-worlds framework, roughly 
speaking, we assume that at each state each agent has a probability on the worlds he considers 
possible. Then a formula such as mi(~)  >_ 2mi(,~) is true at state s if, according to agent 
i's subjective probability at state s, the event ~p is twice as probable as !b. For technical and 
philosophical reasons, we find it convenient to view the probability in general as being placed on 
a subset o17 the worlds that the agents considers possible, rather than the set of all worlds that  
the agent considers possible in a given state. As we shall show by example, different choices 
for the probability space seem to correspond to different ass ,mptions about the background 
context. 

Despite the richness of the resulting language, we can combine the the well-known techniques 
for reasoning about knowledge with the techniques for reasoning about probability introduced in 
[FtlM88] to obtain an elegant complete axiomatization for the resulting language. Just as there 
are different assumptions we can make about the relationship between the worlds that  agent 
i considers possible, leading to different axioms for knowledge (see [HM85] for an overview), 
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there are a.lso different assumptions about the interrelationships between agents' subjective 
probalfility spaces at different states, which also can be ea.ptured a.xiomatieally. We discuss 
these assumptions and their a.ppropriateness, and show how these assumptions can effect the 
complexity of [,he decision procedure for [,he language. 

This paper is eh)sely related to a number of other works. Propositional t)robabilistic vari- 
ants of temporal logic [11S8,1,l,$82] and dynamic logic [1-"e18,l, Koz85] have also been studied, 
with the goal or analyzing probalfilistie prograrns, l)robabilistie temporal logic papers have 
traditionally limited the language s~ that the only probabilistic s tatements  that can be made 
are Boolean combinations or formulas or the form "~p occurs with probability one." '['he logics 
studied in [Fela4,Koz85] (t(7 bear s~rrle superficial resemblance to ours in tha,t explicit probabil- 
ity s tatements are allowed, as well as linear combinations of statements.  Indeed, the probability 
logic considered in [FILM88|, where the only fi)rmulas in the s(:ope or the modal opera l, or m, are 
propositit~na.I formulas, is a fragment of Feldman's h~gic, l towever, there are some rundamenlal  
differences a.s well, which arise rr()m the tact thai. the main oi)ject of interesl, in these other logics 
are programs. As a. result, our language and those used in [Fela,l,Koz85] are incompa.rable. The 
languages used in [Fela.l,Koz85] are richer than the one we consider here in that they a.ll(>w 
explicit reasoning about  programs, but poorcr in that they ca.n talk ai)out the probal)ility of 
(July a restricted class or t~)rruulas. Moreover, there are significant techni(:al differences in the 
semantics of knowledge opera.t,,rs (our Ki's) and the program (,I>erat(~rs of[FelS,I,Koz85]. 

There are two ~d.her papers that consider reasoning a.bout knowledge and un(:ertainl.y in 
a. possible worlds framework somewhat similar to our own. llalpern and MeAllester [II M8ta] 
(:onsider a language that allows reasoning a.b~)ut knowledge a.nd likelihood, but I.heir notion or 
likelihood, based on the logi<: orl ikelihood or [lIR.87], (:onsiders only a. qualitative notion of 
likelihood, ra.ther than explicit prol)abilities. While this may be appropriate for some appliea.- 
tions, it is not useful for a.n analysis or pr(~toeols. Ruspini [Rus87] discusses <:ertain relations 
tha.l, hold l>etween knowledge and prt)l)abilil.y in the one-agent case, a.nd relates this in l.urn I.o 
l)em pster-Sh a.fer belief functions [Sh a79]. 

The rest of I, his l)a.per is organized as folh)ws. The next section contains a brief review 
of the classical possible-worlds semantics for knowledge and a. discussion of how knowledge 
can be aseril)ed to pr()cesses in a disl.ril)uted system. In Section 3 we describe the extended 
language fi>r kn(~wle(lge an<] probability and discuss some assumptions that can be placed (.)n l.he 
inl, errela.l,i<~nships between agents' subje(:tive l)roi)ability spaces at different sta.tes. In section 4 
we state our results on (()replete axiomatiza.ti(~ns a.nd decision procedures (detailed proofs are 
left to the t~]ll paper). In Section 5 we exten<l the language to allow e()mmon knowledge and 
probabilistic common knowledge. In Section 6 we give our (:(,iclusions. 

2 The s tandard Kripke model  for knowledge  

In this se(:tion we briefly review the standar<l $5 possible-worlds semantics rot knowledge. The 
reader is referred to [1|M85] for more details. 

In order to reason formally about  knowledge we need a. la.nguage. Suppose we consider a. 
system with n agents, say 1 , . . . , n ,  and we have a set 4~0 of primitive propositions about which 
we wish t.o reason. (For disl, ril)uted systems applications these will typically represent stal.e- 
ments snch as ~q, he value of variable z is 0"; in natural language situations they might represen t 
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stal.ern(:nl, s ()f the form "It is raining in San Fra,nciseo.") We const ruct  more (:omplieated fi,r- 
mulas by ('losing ()Jr 4) o under c(,n.i,nction, negati()n, and the moda.1 opera tors  K;, i = 1 , . . . , n  
(where l(Ao is read "agent  i knows ~p"). 

We give semantics  to these fi~rrnulas by means of  Kripke structures [Kri63], which fi)rma.lize 
the intui t ions behind possible worlds. A Kripke structure for knowledge (for n agents)  is a, 
Imple (S, Tr, ~I,.-.,/C,,.), where S is a set. of .qtale.~ ( tho~ght  ()f as s ta tes  of aIrairs or possil)le 
worlds), ~r(s) is a trutl~ a.ssignment to the primit ive proposi t ions of (l)0 for ea.ch sta.te ,q E S 
(i.e:, ~r(s)(p) E { t r u e ,  fa l se}  for each primit ive proposi t ion p (E 4)0 and s ta te  s E S), and Ki 
is a.n equivalence relali()n on the sta.tes of S, for i = I , . . . , n .  The  K, i rela.tion is intended to 
cal)ture the possibil i ty relalion acc()rding t() agent, i: (.% t) E K,i if in world s agent  i considers 
I a. possil)]e ,,,(,rid.' We define /C,(.,) -- {.,'] (,,,,, ') G /Q}. 

We now assign truth va.Iues to fi)rmulas at a. sta.te in a. s t r , ( ' tu re .  We write ( M , s )  ~ ~o if 
the fi)rrnuIa. ~o is true at sta.te s in Kripke s t ruc ture  31. 

( M , s )  ~ p (for p E (T~0) ill" 7r(s)(p) = t r u e  
(M,.~) ~ ~,^ ,/~ iW (M,.~) ~ ¢ and (M,.,) k- ~/' 
(M, .~) ~ -~¢ iY (M, .~) I~ 
(~t,.~) ~ ~C~ ilr ( M , 0  ~ ~ for all ~, ~ ~,.(.~). 

The last clause, in this definiti(,n ( :apt , res  the intuition that  agent  i knows ~p in world (M,s )  
exa.ctly if ~ is true in all worlds tha.t i considers possible. 

Given a s t ruc ture  M = (S,~r,K,j , . . . ,K, , , , ) ,  we say a. formula, is cp is valid in M, and write 
m ]= ~, if (M,.~) ~ ~, f,)r every state..~ in .9, and say tha.t ~, is .sati.sfiable in m if (m, .q)  ~ ~, f(,r 
some sta.te s in S. We sa.y a. fi)rrnula (p is valid if it is valid in all s t ructures ,  a.nd it is .sati,sfiable 
if it is satisfiat)le in some s t ructure .  |1, is easy to check that  a rormula ~o is valid in M (resp. 
valid) ir and only i f -~o is not satisfiable in 3f (resp. not satisfiable).  

[t is well known that  the fi)ll()wing set of axioms a.nd inference rules, which goes ha.ok I.o 
llintikka. [llin62], provides a. comple te  a xiornatiza.tion fi)r the notion of knowledge tha.t we are 
considering. Tha t  is, each of the axioms below is valid, the inferen(:e rules preserve va.lidity, 
a.nd all valid fi)rmulas ca.n be proved from theme axioms and rules (see [11M85] fi)r a. proof): 

K 1 .  
K 2 .  
K 3 .  

K 4 .  
K 5 .  

All instances of proposi t ional  tautologies 
( Kicp A I ( ; (V ~ ~b)) ~ l(i~l, 

R 1 .  From ~o and ~o =~ ¢ infer ¢ ( m o d , s  ponens)  
R 2 .  From ~ infer l(i~ (knowledge generaliza.tion) 

While philosophers ha.ve spent, years d e b a t i , g  the appropria.teness of this a.pproa.ch for cap- 
turing the notion of knowledge as a.pplied to human rea.soning (see [Len78] for a review of the 
per t inent  l i terature) ,  there a,re ma.ny a.pp]i(:ath)ns in dis t r ibuted sys tems where it has proved 

IWe could take /C,i to be a~ arbitrary binary relation, but for distributed systems applications, taking it to 
be an equivalence relal, ior~ seems m~,st appr, q)riate (see [lla186] For further cliscussi(,n of this pc, tat). 
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quite useful (see [Hal87] for an overview). We now briefly review how knowledge is ascribed to 
processes in distributed systems. More details on the model can be found in [Ha386]. 

A distributed system consists of a collection of processes, say 1 , . . . , n ,  connected by a 
communication network. We think of these processes as running some protocol. At any time in 
the execution of such a protocol, the system is in some global state, which is a tuple of the form 
(e, I t , . . . ,  In), where li is the local state of process i, and e is the state of the environment. We 
think of the global state as providing a "snapshot" of the state of the system at any time. The 
environment includes everything that we consider relevant to the system that is not described 
in the state of the processes. A run of a system is just  a function from the naturM numbers to 
global states. Intuitively, a run describes a possible execution of a system over time (where we 
think of time as ranging over natural numbers). We identify a system with a set of runs (these 
can be thought of as the possible runs of the system when running a particular protocol). We 
often speak of a pair (r, m), consisting of a run r and a time m, as a point. Associated with 
any point ( r ,m)  we have r(m), the global state of the system at this point. We can define 
equivMence relations " i ,  for i = 1 , . . . ,  n, on points via (r, m) ,-q (r ~, m °) itf process i has the 

same local state at the global states r(m.) and r'(m'). 
Suppose we fix a set q)0 of primitive propositions. We define an interpreted s y s t e m /  to be 

a pair (7~, a'), where 7¢ is a system (set of runs), and r is a truth assignment to the primitive 
propositions of q~0 at every point in 7¢. With this definition, it is easy to view an interpreted 
system as a Kripke structure, where the points play the role of states and the El relation is 
given by ,-q. In particular, we have 

( I ,  r, m) ~ l i i~  iff (/', r ' ,  m')  ~ ~ for all (r ' ,  m °) such that (r', m') ~i (r, m). 

3 Adding probability 

The formula Kip says that ~ is true at all the worlds that  agent i considers possible. We 
want to extend our language to allows formulas such as m;(~) _> a, which intuitively says that 
"according to agent i, formula. ~p holds with probability at least a." In fact, it turns out to be 
convenient to extend the language even further. Specifically, if ~Pt, . . . ,  cpk are formulas, then so 
is 01mi(~,t)+" "+Okmi(~k) _> tr, where 0 t , . . . ,  Ok, a are arbitrary real numbers, and k _> 1. We 
call such a form ula an i-probability formula. An expression of the form 0t mi(~pt) + ' "  + Ok mi(~k) 
is called a term. Allowing arbitrary linear combinations of terms in / -probabi l i ty  formulas gives 
us a great deal of flexibility in expressing relationships between probabilities of events. Notice 
we do not allow mixed formulas such as m;(~,) + m./(¢) _> a.  ~ 

We use a number of abbreviations throughout the paper for readability. For example, we 
use mi(cp) >_ mi(¢)  as an abbreviation for mi(~p) - mi (¢)  > O, mi(~p) <_ a for -mi (~)  >_ - a ,  
mi(~)  < ot for ~(mi(~) > a), and mi(~)  = a for (miCv) > a) ^ (md(~) < a). We also use 
K~(~,) as an abbreviation for Ki(mi(~) _> a). Intuitively, this says that "agent i knows that 
the probability of ~ is greater than or equal to a." 

2There would be no difficulty giving semantics to such formulas, but some of our results on decision procedures 
and axiomatizations seem to require that we not allow such mixed formulas. We return to this point in the next 
section. 
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The language used here extends that considered in [FHM88] in two ways. First, rather than 
have just  one "probability modality" m, we have a modality mi for each agent i, to capture 
the idea of subjective probability. Secondly, rather than restricting the formulas that  appear 
in the scope of the probabili ty modMity to be propositional, we allow them to be arbitrary. In 
particular, we allow higher-order probability formulas such as mi(mj(~o) >_ a)) > ft. 

Before we give formal semantics to this language, we briefly review some material from 
probabili ty theory (see [Fe157] or any other basic text on probabili ty theory for more details). 
A probability space is a tuple (n,  X, #) where Ft is a set, X is a a-algebra of subsets of f~ (i.e., a 
set of subsets containing ~ and closed under complementat ion and countable union), whose 
elements are called the measurable sets, and a probabili ty measure tt defined on the elements 
of X.  Note that It does not assign a probabili ty to all subsets of 9t, but  only to the measurable 
sets. The inner measure It. corresponding to It is defined on 3.11 subsets of ~; if A C_ ~, we have 

t t , (A) = sup{it(B) I B c A and B ~ X}.  

Thus, the inner measure of A is essentially the measure of the largest measurable set contained 
in A. The properties of probability spaces guarantee that  #.  is well defined, and that if A is 
measurable, then # . (A)  = #(A). 

Given a structure M = ( S , a ' , E 1 , . . . , / ~ n ) ,  in order to decide whether a probabili ty for- 
mula is true at a state s in M, we need to associate with each state s a probabili ty space. 
Thus we take a Kripke structure for knowledge and probability (for n agents) to be a tuple 
(S ,a ' , / g l , . . . , /~ , ,~P) ,  where P is a function that assigns to each agent i E { 1 , . . . , n }  and state 
s E S a probabili ty space 7~(i,s). We shall usually write 7~(i,s) as /'i,, = (Si , , ,Xi , , ,# i , , ) .  
Intuitively, the probabili ty space ~Pi,, describes agent i's subjective probabili ty distribution at 
state s. It seems unreasonable for agent i to assume that there is any positive probabili ty on 
a subset of worlds that  he does not consider possible; thus we assume in the remainder of the 
paper that Si,, C K~i(s). It might seem reasonable to take Si,, = ~i(s),  but, as we shall see 
below, there are good technical and philosophical reasons to allow Si,, to be a proper subset, a 

We can give semantics to formulas not involving probabili ty just  as before. To give semantics 
to i-probability formulas, assume inductively we have defined (M, s) ~ ~o for each state s E S. 
Define Si,,(~0) = {s' 6 Si,, ](M, s') ~ ~o}. Then the obvious way to define the semantics of a 
formula such as #i (~)  _> a is 

(m, s) _> i f  > 

The only problem with this definition is that  the set Si,,(~o) might not be measurable (i.e., not 
in Xi,,),  so that  #i,,(Si,,(~o)) might not be well defined. We discuss this issue in more detail 
below (and, in fact, provide sufficient conditions to guarantee that  this set is measurable), but  
in order to deal with this problem in general, we use the inner measures (#i, ,) ,  rather than #i,,. 
Thus mi(~p) >_ ot is true at the state s if there is some measurable set (according to agent i) 
contained in Si,,(~o) whose measure is at least or. More generally, we have 

( M , s )  ~ Olmi(~ol) + . . .  + Okmi(~ok) _> a iff Ol(lti,s).(Si,s(~ol)) + . . .  + Ok(Izi,s).(Si,s(~oh)) > a. 

lit is easy to extend #i,o to a measure on any superset T of Si,, by simply taking T - Si,o to be a measurable 
set with measure O. Thus we always can, if we like, think of the measure as really being defined on Ki(s). 
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This completes the semantic definition for the whole language. 

Before we discuss the properties of this language, it is helpSfl to consider a detailed example. 
This example illustrates some of the subtleties involved in choosing the probability spaces at 
each state. 

Suppose we have two agents. Agent 2 has an input bit, either 0 or 1. He then tosses a fair 
coin, and performs an action a if the coin toss agrees with the input bit, i.e., if the coin toss 
lands heads and the input bit is 1, or if the coin lands tails and the input bit is 0. We assume 
that agent 1 never learns agent 2's input bit or the outcome of his coin toss. From agent l 's 
viewpoint, if agent 2's input bit is 0, then the probability that agent 2 performs action a is 
1/2 (since the probability of the coin landing heads is 1/2); similarly, if agent 2's input bit is 
1, then the probability of agent 2 performing action a is 1/2. Thus, it seems reasonable to say 
that  agent 1 knows that the a priori  probability of agent 2 performing action a is 1/2. Note 
that  we do not need to assume a probability distribution on the input bits for this argument 
to hold. Indeed, it holds independent of the probability distribution, and even if there is no 
probability distribution on the input bit. 

Now suppose we want to capture this argument in our formal system. From agent l 's point 
of view, there are four possibilities: (1, h), (1, f), (0, h), (0, t) (the input bit was 1 and the coin 
landed heads, the input bit was 1 and the coin landed tails, etc.). We can view these as the 
possible worlds or states in a Kripke structure. Call them sl, s2, s3, and s4 respectively; let S 
be the set consisting of all four states. Assume that  we have primitive propositions A, H, T, 
B0, and BI in the language, denoting the events that action a is performed, the coin landed 
heads, the coin landed tails, agent 2's input bit is 0, and agent 2's input bit is 1. Thus H is 
true at states sl and s3, A is true at states sl and s4, and so on. To simplify the discussion, 
suppose that  somehow we have decided what agent 2's subjective probability space is at each 
state. What  should agent l 's subjective probability space be? We now describe three plausible 
answers to this question. 

1. We can associate with each state the probability space consisting of all four states, i.e., all 
the possible worlds. In this case, the only candidates for measurable sets (besides the 
whole space and the empty set) are {sl,s3} (which corresponds to the event "the coin 
landed heads") and {s2, s4}. Each of these sets has probability 1/2. Call the resulting 
Kripke structure M0. Note that we cannot take {Sl) to be a measurable set, since we have 
no probability on the input bit being 1. We also cannot take {sl, s4}, which corresponds to 
the event "action a is performed", to be measurable. This is because if it were measura.ble, 
then, since the set of measurable sets is closed under finite intersection, we would have to 
take {sl} to be measurable. 

2. We can associate with states sl and s2, where the input bit is 1, the probability space 
consisting only of st and s2, with {sl} and {s2} both being measurable and having measure 
1/2. Similarly, we can associate with states s3 and s4 the probability space consisting 
only of s3 and s4, with {s3} having measure 1/2. Thus, when the input bit is 1, we take 
the probability space to consist of only those states where input bit is 1, with the obvious 
probability on that space; simila.rly for when the input bit is 0. Call this Kripke structure 
Mi. 

3. Finally, we can make the trivial choice of associating with each state the probability space 
consisting of that state a|one, and giving it measure 1. Call the resulting Kripke structure 
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M2. 

Of the three Kripke structures above, it is easy to see that  only M1 supports the informal 

reasoning above. It is easy to check that  we have (M1, s) ~ K~/~A, for every state s E S. On the 
other hand, in every state of M2, we have either ml (A)  = 1 (in states sl and s4) or ml (A)  = 0 (in 
states s2 and s3). Thus, for every state s E S, we have (M2, s) ~ K1(ral(A) = 1 v ml (A)  = 0) 

and (M2,s) ~ ~K~/2A. Finally, in M0, the event A is not measurable, nor does it contain 
any non-empty measurable sets. Thus, we have (Mo, s) ~ I{1(ml(A) = 0) (where now ml 
represents the inner measure, since A is not measurable). 

Does this mean that M1 is somehow the "right" Kripke structure for this situation? Not 
necessarily. A better  understanding can be attained if we think of this as a two-step process 
developing over time. At the first step, "nature" (nondeterministically) selects agent 2's input 
bit. Then agent 2 tosses the coin. We can think of M2 as describing the situation after the 
coin has landed. It does not make sense to say that  the probability of heads is 1/2 at this time 
(although it does make sense to say that the a priori probability of heads is 1/2), nor does it 
make sense to say that  the probability of performing action a is 1/2. After the coin has landed, 
either it landed heads or it didn't;  either a was performed or it wasn't. This is the intuitive 
explanation for why the formula I(l((ral(A) -- 1) V (rex(A) = 0)) is valid in M2. U l  describes 
the situation after nature has made her decision, but before the coin is tossed. Thus, agent ] 
knows that  either the input bit is 1 or the input bit is 0 (although he doesn't  know which one). 
As expected, the formula I(l((ral(Bo) = 1)V (ml(B1) = 0)) holds in this situation. M0 can be 
viewed as describing the initial situation, before nature has made her decision. At this point 
the event "the input bit is 0" is not measurable and we cannot at tach a probability to it. 

We can capture these intuitions nicely using runs. There are four runs, say rl,r2, r3,r4, 
corresponding to the four states above. There are three relevant times: 0 (before nature has 
decided on the input bit), 1 (after nature has decided, but before the coin is tossed), and 2 
(after the coin is tossed). Agent l 's local state contains only the time (since agent 1 never learns 
anything about the coin or the input bit); agent 2's local state contains the time, the input bit 
(at times I and 2), and the outcome of the coin toss (at time 2). We can omit the environment 
from the global state; everything relevant is already captured by the states of the agents. Thus, 
for example, r3(1) = (1, (1,0)) and r3(2) = (2, (2, 0, h)). We now interpret the propositons A, 
H, etc. to mean that  the action a has been or eventually will be performed, heads has been or 
eventually will be tossed, etc. Thus, proposition A is true at the point (rj ,  k) if the action a is 
performed at (rj, 3). Similarly, H is true at (U, k) if heads is tossed in run rj ,  and so on. 

Clearly at each time k = 0,1,2,  agent 1 considers the four points ( r j ,k ) ,  j = 1,2,3,4,  
possible. At time 0 we can add on a probability structure to make this look like M0. At time 
1, defining the probability spaces so that  we get Kripke structure Mi seems to be appropriate, 
while at time 2, Kripke structure M2 seems appropriate. Thus, although it seems that  in some 
sense agent l 's knowledge about the input bit and the outcome of the coin toss does not change 
over time, the subjective probability spaces used by agent 1 may change (for example, to reflect 
the fact that  the coin has been tossed). 

Even in this simple example we can already see that  the decision of how to assign the 
probability spaces is not completely straightforward. In general, it seems that  it will depend in 
more detail on the form of the analysis. This example Mready shows that in general at a state 
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s, we do not want to take Si,o = E i ( s ) .  Note that Si,, = IQ(s) only in M0 above; in particular, 
in M1, where we can carry out the informal reasoning which says that  action a occurs with 
probabili ty 1/2, we have Si,o as a strict subset of IQ(s). 4 

Observe that  in our example, at every point (r, k), we took the probabili ty space to consist 
of all (r ' ,  k) such that r(k) = re(k); i.e., all the points with the same global state. Moreover, 
if we had included agent 2 in the discussion, we would have assigned agent 2 exactly the same 
subjective probabili ty space as agent I at every point. 

In fact, the probabili ty here is not subjective at all. It is an objective probability, generated 
by the toss of the coin. Although the agents have different sets of points they consider possible, 
they agree on what the probabili ty space is at each point. This is a quite natural  assumption in 
distributed systems. Intuitively, if the agents had complete information about  the global state 
of the system, they would agree on what the appropriate probabili ty space should be. ~ 

In the context of a Kripke structure for knowledge and probability where :Pi,, is agent i's 
probability space at state s, objective probabili ty corresponds to the condition: 

O B J .  Pi,, = "Pj,, for all s and all agents i , j .  

Because of our assumption that Si,, C lQ(s), it follows that OBJ  implies that  Si,, C ICj(s) for 
all states s and agents i and j .  Thus, if we had required that Si,o = IQ(s) for each agent i, 
then OBJ  could hold only in Kripke structures where K~i(s) = Ej(s)  for all states s and agents 
i and j .  

We now consider some other assumptions about  the interrelationship between an agent's 
subjective probabili ty spaces at different states. A rather natural  assumption to make on the 
choice of probabili ty space is that  it is the same in all worlds the agent considers possible. In the 
context of distributed systems, this would mean that an agent's probabili ty space is determined 
by his local state. We call this property SDP (state-determined probability). Formally, we have: 

S D P .  (s, s') E K:i implies ~oi, ̀ = 79i,,,. 

Of the three Kripke structures we considered above, only M0 satisfies SDP. It seems that 
SDP is most natural where there are no nondetermistic choices that  have been made by "na- 
ture". SDP is an assumption that has often been made. Indeed, it is implicitly assumed 
in much of the economists'  work (e.g. [Aum76,Cav83]). In these papers it is assumed that 
each agent views the set S of all worlds as a probability space. Thus, for each agent i we 
have a probabili ty space 7~i = (S, Xi,#i).6 Agent i's subjective probability of an event e at 
a state s is taken to be the conditional probabili ty of e given agent i's set of possible worlds. 
More formally, we. have Pi,, = ( /Q(s) ,Xi , , , / t i , , ) ,  where Xi,, = { A n  ~i (s )  lA e Xi},  and 
tti,,(A 1"3 )El(S)) = #i(A)/#i(IQ(s)).  7 Note that  the resulting Kripke structure has the SDP 
property. 

4The example preseuted here is a simplification of one given by Mark Tuttle. It was Mark who first pointed 
out to us the need to allow Si,° to be a proper subset of/Ci(s). 

SMark Tuttle and Yoram Moses first pointed out to us that in distributed systems applications, an appropriate 
choice is often an objective probability with the probability space consisting of all the points with the same global 
state. This approach was first taken in [HMT88]. 

6Aumann actually assumes that there is an objective probability on the whole space, so that 7:'i = 7:'/for all 
agents i and j .  This corresponds to the agents having a common prior distribution. 

7This approach runs into slight technical difficulties if/Ci(s) is not measurable, or has measure 0. However, 
it is always assumed that this is not the case. 
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While M1 and M~ in our example above do not satisfy SDP, they do satisfy a weaker 
property which we call uniformity. Roughly speaking, uniformity holds if we can partition 
Ki(s) into subsets such that  at every point in a given subset T, the probability is placed on T. 
More formally, uniformity holds if: 

U N I F .  For all i, s, and t, if Pi,, = (Si,,,Xi,,,l~i,,) and t E Si,,, then Pi,t = Pi,,. 

Again, note that SDP is a special case of UNIF, and that  all the structures in our example 
above satisfy UNIF. 

There is one last property of interest to us, which seems to have been assumed in all previous 
papers involving reasoning about probability, and that  is that  all formulas define measurable 
sets. As shown in [FHM88] (and as we shall see again below), reasoning about probability is 
simplified if we assume that all formulas define measurable sets. More precisely, we say formulas 
define measurable sets in M if 

M E A S .  For every formula ~, the set Si,,(~) E Xi,,. 

Clearly if primitive propositions define measurable sets, then all propositional formulas 
define measurable sets. However, there is no particular reason to expect that  a probability 
formula such as mi(p) + mi(q) > 1/2 will define a measurable set (in fact, it is easy to show 
in general it will not). Let PMEAS be the property which says that all primitive propositions 
define measurable sets. (Note that PMEAS does not holds in M0, but does hold in M1 and 
M2). The following lemma describes sufficient conditions for MEAS to hold. 

L e m m a  3.1: If M is a structure satisfying OBJ, UNIF, and PMEAS, then M satisfies MEAS. 

Proof." A straightforward induction on the structure of formulas ~ shows that  Si,,(~o) is mea- 
surable for all formulas ~o. The assumption OBJ implies that  for all agents i and j ,  the set 
Si,, C_ Kj(s), so it is easy to see that  Si,°(Ifj(~o)) is either Si,, or 0. In either case it is mea- 
surable. Similarly, we can show that  OBJ and UNIF together imply that  for any probability 
formula ~, we have that Si,,(~0) is either Si,, or 0. | 

It seems that OBJ, UNIF, and PMEAS are often reasonable assumptions in distributed 
systems applications, so this lemma is of more than just pure technical interest. 

4 Complete  axiomatizations and decision procedures 

We now describe a natural  complete axiomatization for the logic of probability and knowledge. 
The axiom system can be modularized into several components: 

I. A x i o m  a n d  ru l e  for  p r o p o s i t i o n a l  r e a s o n i n g  
Axiom K1 and rule R1 from section 2 

I I .  A x i o m s  a n d  ru l e  for  r e a s o n i n g  a b o u t  k n o w l e d g e  
Axioms K2-K5 and rule R2 from section 2 

I I I .  A x i o m s  a n d  ru l e  for  r e a s o n i n g  a b o u t  probabi l i ty  
Any set of axioms that  allow us to prove all valid i-probability formulas will do. In the mea- 
surable case ( that  is, where MEAS holds), the axioms below (taken from [FHM88]), together 
with axiom K1 and rule R1 suffice: 
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P 1 .  mi(true) = 1 (the probability of the event true is 1) 
P 2 .  mi(false) = 0 (the probability of the event false is 0) 

P 3 .  (Oimi(~Ol)+" .+Okmi(~ok) > a) ~ (01mi(~ol)+" "+Okmi(~ok)+Omi(~Ok+l) _~ o~) (adding 
and deleting 0 terms) 

P 4 .  (Olmi(~Ol) + " "  + Okmi(cPk) > or) ~ (Ojtmi(~ojl)'" + Ojhmi(~Ojh) ~_ Or), if j l , . . .  , jk is a 
permuta t ion  of 1 , . . . , k  (permutat ion)  

PS .  (Olmi(~pl) +""  + Okmi(~'h) _> a) ^ (O~mi(~ol) + ' ' '  + O~mi(~pk) _> a') 
(0t + Ol)mi(~l)  + . . -  + (Ok + O~)mi(~pk) _> (a + a') (addit ion of coefficients) 

P 6 .  (0 tmi (~ l )  + ' "  + Okmi(~pk) _> a) ~ (701mi(91) +' '"  + 7Okmi(~k) >_ 7a) if 7 >_ 0 
(multiplication of coefficients) 

PT.  (t _> a)  V (t _< a)  if t is a term (dichotomy) 
P 8 .  (t _> a) ~ (t > /5)  if t is a term and a > ~ (monotonici ty)  
P g .  mi(~o ̂  ¢) + mi(~, h --1,0) = mi(~) (measurabil i ty) 

R P 1 .  From ~o ~ ¢ infer mi (¢ )  _> mi(~o) (distr ibutivity) 

Things get more complicated if we drop the measurabil i ty assumption.  It is easy to check 
that  P9 is no longer sound. As shown in [FHM88], there is another axiom that  we can replace 
P9 by to get a complete axiomatization. Fortunately, the analogue to this axiom also does the 
trick even in our setting. To even state the new axiom we need to introduce some notation.  

Let T = {~Pl , . . . ,~n}  be a set of formulas. Define an atom (over T) to be a formula of 
the form ~ A . . .  A ~p~, where ~ is either ~Pl or ~ i  for each i. Define a region (over T)  to be 
a disju'nction of atoms, and an r-region (over 7-) to be a disjunction of r inequivalent atoms. 
Note that  there are 22" inequivalent regions. We say that  R I is a subregion of R if R and R ~ are 
regions, and each disjunct of R I is a disjunct of R. Art r-subregion of a region R is an r-region 
that  is a subregion of R. Consider now the following axiom: 

, ,-.( )_ Pg ' .  E r a = l ( - 1 )  m-.ubrog o, or > 0, if is an r-region. 

It turns out that  if we replace P9 by P9 t, we get a complete axiomatization for / -probabi l i ty  
formulas in the non-measurable case. (See [FttM88] for more details, as well as proofs of 
soundness and completeness).  

Because we have knowledge in the picture, we need one more axiom to describe the inter- 
relationship between knowledge and probability. 

I V .  A x i o m  r e l a t i n g  k n o w l e d g e  a n d  p r o b a b i l i t y  
P 1 0 .  Kilo :-~ (mi(~o) = 1) 

Essentially, P10 captures the fact that  Si,, C_ IQ(s). (In particular, if we wanted to drop 
this assumption,  we would get a complete axiomatization by dropping P10.) 

Let AXMBAS consist of K1-Kb, P1-P10, R1, R2, and t tP1,  and let AX be the result of 

replacing P9 in AXMEAS by P9 ~. 

Theorem 4.1:  AX (resp. AXMEAS) is a sound and complete axiomatization for the logic of 
knowledge and probability (resp. for structures satisfying MEAS}. 
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Proof." Soundness is straightforward, as usual, so we focus on completeness. We sketch the 
proof for the measurable case; the non-measurable case follows the same lines. 

In order to prove completeness, we need only show that  if the formula ~p is consistent with 
AXMEAS, then ~v is satisfiable in a Kripke structure for knowledge and probability satisfying 
MEAS. Let Sub+(~)  be the set of subformulas of ~ and their negations. 

Following Makinson [Mak66] (see also [HM85]), we first construct a Kripke structure for 
knowledge (but not probability) by letting the states be maximal consistent subsets of Sub+(~o), 
where if s and t are states, then (s, t) E /~i precisely if s and t contain the same formulas of 
the form KiTh. By the completeness of axioms K1, P1-P9 and rules R1, RP1 for reasoning 
about probability alone (as shown in [FHM88]), it follows that for each state s, there is a 
probability space that  satisfies the probability formulas and negations of probability formulas 
of s. Furthermore, because of the axiom P10, it is possible to let the states of the probability 
space be Ki(s), in such a way that  the probability of each ~b E Sub+(~0) is the probability 
of the set of states that  contain !b. Let us call the resulting Kripke structure for knowledge 
and probability M. As usual in Makinson-style proofs, we can then show, by induction on the 
structure of formulas ~b, that for each formula. ~b E Sub+(~p), we have ,~ E s iff ( U ,  s) ~ 7p. Since 
every consistent formula lb E Sub+(~0) is contained in some state, it follows immediately that 
there is a state s (namely, a state that  contains !b) such that  (M, s) ~ lb. This is sufficient to 
prove completeness, since in particular this holds when ~b is ~. The proof in the non-measurable 
case is essentially the same, except that  now we construct an inner measure. I 

We can also capture some of the assumptions we made about systems axiomatically. In a 
precise sense, OBJ corresponds to the axiom 

P l l .  (81mi(~oi) + . . .  + Ohmi(~ok) > a) ~ (01m~(~1) + ' "  +Okm, j(~k) > a) 

Axiom P l l  says that  each i-probability formula implies the corresponding j-probabili ty formula. 
This is clearly sound if we have an objective probability distribution. 

UNIF corresponds to the axiom 

P12 .  ~p ~ (m;(~p) = 1) if ~ is an i-probability formula or the negation of an i-probability 
formula, 

while SDP corresponds to the axiom 

P13 .  ~ ~ Ki~p if ~ is an i-probability formula or the negation of an i-probability formula. 

From axiom P10 it follows that P13 implies P12, which is reasonable since SDP is a special 
case of UNIF. Since SDP says that  agent i knows the probability space (in that  it is the same 
for all states in Ki(s)), it is easy to see that agent i knows all /-probability formulas. Since 
a given /-probability formula, has the same truth value at all states where agent i's subjective 
probability space is the same, the soundness of P12 in structures satisfying UNIF is also easy 
to verify. 

The same techniques used to prove Theorem 4.1 can be extended to prove 
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T h e o r e m  4.2: Let A be a subset of { OBJ, UNIF, SDP}, and let A be the corresponding subset 
of { Pl l ,  Pl¢,P13}. Then A X  U A (resp. AXMEAS u A) is a sound and complete axiomatization 
for the logic of knowledge and probability for structures satisfying A (resp. MEASU A). s 

As is often the case in modal logics, the ideas in our completeness proof can be extended to 
get a small model property and a decision procedure. In order to state our results here, we need 
a few definitions. Let Sub(w ) be the set of all subformulas of to. It is easy to see that an upper 
bound on the size ISub(w)l of Sub(w) is the number of symbols in W, where we treat a real 
number as a single symbol. We also define the size of a Kripke structure (S, ~r , /~t , . . . ,  ~n, P )  
to be the number of states in S. (Note that the size of a Kripke structure may be infinite.) 

T h e o r e m  4.3: Let A be any subset of {MEAS, OBJ, UNIF, SDP}. The formula W is satisfiable 
in a Kripke structure satisfying .,4 i~ it is satisfiable in a Kripke structure satisfying ..4 of size 
at most [Sub(~)121S'b(v)l (or just 21S,b(~,)l if MEAS G A). 

It can be shown that this result is essentially optimal, in that  there is a sequence of formulas 
W1, Wu,.-. and a constant c > 0 such that (1) ISub(wk)l < ck, (2) Wk is satisfiable, and (3) Wk 
is satisfiable only in a structure of size at least 2 n. Indeed, this exponential lower bound holds 
even when there is only one agent. IIowever, if we assume that either UNIF or SDP hold, then 
we ca.n get polynomial-sized models in the case of one agent. 

Theorem 4.4: If the formula W just talks about the knowledge and probabilities of one agent 
and ..4 is a subset of {MEAS ,  OBJ, UNIF,  S D P }  containing either UNIF or SDP, then W is 
satisfiable in a structure satisying ..4 iff W is is satisfiable in a structure of size polynomial in 
ISub(w)l satisfying .,4. 

In order to discuss the complexity of decision procedures, we must restrict attention to the 
case where the coefficients appearing in probability formulas are rational (since the decision 
procedure will involve doing rational arithmetic). In this case, all the coefficients can be repre- 
sented as fractions where the numerator and denominator are both integers, so it makes sense 
to talk about  the length of the coefficients and the length of the formula., viewed as a string of 
symbols. Let IWI be the length of the formula. W. 

T h e o r e m  4.5:  Let A be a subset of {MEAS ,  OBJ, UNIF,  SDP} .  If it is not the case that 
UNIF or SDP is in A, then the validity problem with respect to structures satisfying A is 
complete for exponential time (i.e., there is an algorithm that decides if a formula W is valid 
in all structures satisfying .,4 that runs in time exponential in IwI, and every exponential time 
problem can be reduced to the validity problem). If UNIF or SDP is in A, then the validity 
problem with respect to structures satisfying A is complete for polynomial space. 

Again, if we restrict attention to the case of one agent and structures satisfying either UNIF 
or SDP, then we can do better.  

8While it is s traightforward to extend Theorem 4.1 to the case where we have mixed formulas of the form 
rni(~p) + rnj(~,/,) > ~ (with appropriate  modifications to axioms P3, P4, PS, and P6), the s i tuat ion seems much 
more complicated in the presence of the propert ies  U N I F  and SDP. It is due to these complexi t ies  that  we did 
not allow such mixed formulas in our language. 
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T h e o r e m  4.6: Let A be a subset of {MEAS, OBJ, UNIF, SDP} containing UNIF or SDP. 
For the case of one agent, the validity problem with respect to structures satisfying .,4 is NP- 
complete. 

5 A d d i n g  c o m m o n  k n o w l e d g e  

For many of our applications, we need to reason not only about what an individual process 
knows, but about what everyone in a group knows, or what everyone in a group knows that  
everyone else in the group knows knows. Common knowledge can be viewed as the state of 
knowledge where everyone knows, everyone knows that  everyone knows, everyone knows that  
everyone knows that  everyone knows, etc. 

It is easy to extend our language so that we can reason about common knowledge. We 
add modal operators EG (where G is a subset of {1 , . . . ,  n}) and CG, where EG~O and CG~, are 
read "everyone in the group G knows ~o" and "~o is common knowledge among the group G", 
respectively. 

(M, s) ~ EGg iff (M, s) ~ I(ito for all i E G 
(M,s) ~ Cc~ iff (M,s) ~ E~o for all k > 1, where E ~ o  is an abbreviation for Ee~o, and 

E~+t~o is an abbreviation for EGE~,. 

It is well known (again, see [ttM85]) that  we can get a complete axiomatization for the 
language of knowledge and common knowledge by adding the following axioms and rule of 
inference to the axiom system described in Section 2: 

Ci.  Ec~a _= A ec 
c2. (eCho A Cc(  ¢)) CC¢ 
C3. CG~ ~ EG(~ A CGCP) 
R C 1 .  From ~ ~ EG~a infer ~ ~ CG~. 

Axiom C3, called the fixed point axiom, says that  CG~O can be viewed as a fixed point of 
the equation X ~ EG(~ ^ X). In fact, with a little work it can be shown to be the greatest 
fixed point of this equation, that  is, it is implied by all other fixed points. For most of our 
applications, it is the fixed point characterization of common knowledge that  is essential to us 
(see [nM84b] for a discussion of fixed points). The rule of inference RC1 is called the induction 
rule. The reason is that  from the fact that ~o @ EG~ is valid, we can easily show by induction 
on k that ~ ~ E ~ o  is valid for all k. It follows that  ~ ~ CG~p is valid. 

It is perhaps not surprising that if we augment AXMEA8 with the axioms for common 
knowledge, we get a complete axiomatization for the language of knowledge, common knowl- 
edge, and probability for structures satisfying MEAS. If we want to deal with non-measurable 
structures, we must use the axiom system AX rather than AXMEAS. And again we get small 
model theorems and an exponential-time complete decision procedure (regardless of what ad- 
ditional assumptions among MEAS, OBJ, UNIF, and SDP we make). The proofs involve a 
combination of the techniques for dealing with common knowledge, and the techniques for 
probability introduced in [FHM88] and the previous section. We omit details here. 
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In [HM84b] it was observed that  common knowledge is often not attainable in practical 
distributed systems, but weaker variants of it are. One obvious variant to consider is a prob- 
abilistic variant (indeed, this was already mentioned as something to consider in [HM84b]). 
Recall that we defined K~tp to be an abbreviation for Ki(mi(~)  _> cO. We now extend our 
syntax to allow modal operators of the form E'~G and C~. We define 

(M, s) ~ E ~ o  iff (M, s) ~ K ? ~  for all i e G. 

By analogy to CGqO, we want C ~  to be the greatest fixed point of the equation X ~. 
E~(~ A X). The obvious analogue to the definition of CG¢,, namely, E ~ 0  A ( E ~ ) ~  A . . .  does 
not work. (We give a counterexample in the full paper.) However, a slight variation does work. 
Define ~ o ,~ (F~) (p = true and (F~)k+l~ = EG(~ A (F~)k~o). Then we take 

(M, s) ~ C ~  iff (M, s) ~ (F~)k~ for all k > 1. 

We remark that this actually is a generalization of the non-probabilistic case. The reason is 
_= that if we define F~cp = true and ~,k+l k E~o.  This is rG ~o = EG(~O A F~o),  then we get k 

because EG(~o A ¢) ~ EG~o A EG¢ and EGg ~ cp. The analogous facts do not hold once we add 
probabilities, as we have already observed. 

The following lemma shows that this definition indeed does have the right properties: 

L e m m a  5.1: C~.~ is the greatest fixed point solution of the equation X ~ E~(~ A X) .  

It is now easy to check that we have the following analogues to the axioms for EG and Co. 

G P 1 .  EGg ~ AieG icp. 
ot  ot  GP2 .  CG~, ~ EG(~ A CG~o ) 

R C P 1 .  From ¢ ES(¢  A infer ¢ ~ C ~ , .  

We remark that these axioms and rule of inference are sound for all types of structures we 
have considered. 

We believe we can show that these axioms and inference rule, together with the axioms and 
inference rules C1-C3 and RC1 for common knowledge discussed above and AXMEAS (resp. 
AX) gives us a sound and complete axiomatization for this extended language in the measurable 
case (resp. in the general case). Moreover, we believe we can prove a small model theorem, and 
show that the validity problem for all variants of the logic is in double exponential time. We 
are currently working out the details of the proof. 

6 Conc lus ions  

We have investigated a logic of knowledge and probability that allows explicit reasoning about 
probability. We have been able to obtain complete axiomatizations and decision procedures 
for our logic, and hope to extend these results to the language with common knowledge. We 
have also identified some important  properties that might hold of the interrelationship between 
agents' subjective probability spaces at different states. 
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It seems to us that the most important area for further research lies in understanding better 
what the appropriate choice of probability space is. Using the ideas in this paper together with 
Moses' recent work on resource-bounded reasoning [Mos88], Yoram Moses, Mark Turtle, and the 
second author have made progress on capturing interactive proofs and zero knowledge [GMR85] 
in the framework of knowledge and probability discussed in this paper. These results appear 
in [tIMT88]. Interestingly, the appropriate choice of probability space in [HMT88] seems to be 
that generated on all the points with the same global state, as in our examples in Section 3. 
Thus the probability space satisfies OBJ and UNIF, but not SDP. We have plausible arguments 
for at least two distinct choices of probability space in analyzing probabilistic variants of the 
coordinated attack problem (see [ItM84b] for a discussion of the coordinated attack problem, 
and a knowledge-based analysis of it). However, we need to have a larger body of examples in 
which to test our ideas. 

A c k n o w l e d g e m e n t s :  The foundations of this paper were greatly influenced by discussions 
the second author had with Yoram Moses and Mark Turtle in the context of their joint work 
on capturing interactive proofs [HMT88]. In particular, their observation that it was necessary 
to allow Si,, C ~i(s) caused us to rethink many of our ideas. They also suggested taking I (~a  
to be an abbreviation for Ki(mi(~) > o 0 rather than mi(~a) > o~, as was done in an early draft 
of this paper. As usual, Moshe Vardi's comments helped improve both the style and content 
of the paper. Finally, we would like to thank Nimrod Megiddo for his patient and enlightening 
discussions on linear programming. 
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