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Abstract 

Concepts that can be expressed as solutions to multilinear pseudo boolean equations with a 

bounded degree are shown to be learnable in polynomial time from positive examples. This implies 

the leamability from positive examples of many families of boolean formulae by a unified algorithm. 

Some of these formulae were not previously known to be learnable, and some were known to be learn- 

able by different algorithms. 
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1. Introduction 

A complexity based theory of the learnable was in~oduced by Valiant in [1]. One of the motiva- 

tions of the suggested theory was "to shed light on the boundary between the classes of expressions 

that are learnable in polynomial time and those that are not, suggesting concrete principles for designing 

realistic learning systems." The results obtained in [1] and related works [2-4] are mainly about the 

learnability of boolean formulae, using the propositional calculus for representing the learned 

knowledge. These results characterize several classes of boolean functions as learnable, and several 

others as not learnable. 

Many of the negative results, about classes of boolean formulae that cannot be learned, were 

obtained with respect to specific representations of the knowledge in the learning algorithm. Examples 

are the results of Natarajan, in [3], which show that the class of boolean functions that can be learned 

from positive examples using the same class of functions for representing the learned knowledge is 

severely limited, and the results in [4], that characterize many families of boolean formulae as non 

learnable unless RP = NP.  As a specific example, consider boolean formulae in disjunctive normal 

form (DNF),  with a small (bounded) number of terms. It was shown in [4] that unless RP = NP,  

such formulae cannot be learned if the knowledge representation is also chosen to be DNF with the 

same (or even twice as many) number of terms. However, such formulae can be easily learned if the 

knowledge representation is chosen to be boolean formulae in conjunctive normal form with a bounded 

size of conjuncts (k.--CNF) [5]. 

The work presented in this paper exemplifies that some of the negative results about learnability 

are to be attributed to the specific knowledge representation scheme, not necessarily implying inherent 

difficulty in learning the concepts. We investigate the representation of knowledge in terms of pseudo 

boolean equations. We show that concepts that can be expressed as solutions to multilinear equations 

with bounded degree are learnable with one sided error from positive examples only. The family of 

concepts that can be represented and learned in this way includes k--CNF, k - t e r m - D N F  (that was 

shown not to be learnable by k - t e r m - D N F  in [4]), and a restricted version of k - D N F ,  that by using 
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the results of [3] can be identified as not learnable from positive examples, using k - D N F  as the 

scheme of knowledge representation. 

2. Definitions 

We consider n boolean variables x 1, " " " ,xn, each of which can take the value 0 or 1. A vector 

v is an assignment to each of the n variables of a value from {0,1 }. A concept is a subset of the 2 n 

vectors, where each vector in this subset is a positive example, and all the rest are negative examples 

of the concept. 

The definition of learnability of a concept by a class of representations appears in [4]. We use 
the same definition, but consider learnability from positive examples only. The learning process can be 
viewed as follows: a concept from a known class of concepts is chosen by an oracle that also fixes a 
probability distribution over its positive examples. The learner draws (positive) examples according to 
the probability distribution. A learning algorithm is applied to these examples, and produces as output 
an approximate representation of the concept. This representation is tested on both positive and nega- 
tive examples. The positive examples for the test are chosen from the same probability distribution as 
in the learning phase, but the distribution of the negative examples in the test is unknown (determined 
by the oracle). The learning algorithm is required to guarantee with arbitrary high probability arbitrary 
high score in the test. We observe that this implies that no mistake can be permitted in classifying 
negative examples as being positive. 

The following is a formal definition: A class C of concepts, each of which is of size polynomial in n, is 

learnable from positive examples by a class of representations G if there exists an algorithm that for 

any h > 1, for any c ~ C, and for any probability distribution D over the positive examples of c 

(a) The algorithm gets as input a number of positive examples polynomial in both the adjustable 

parameter h ,  and n .  The examples are obtained by sampfing from the probability distribution D .  

(b) The algorithm runs in time polynomial in both h and n .  

(c) The output of the algorithm is a representation g ¢ G such that: 

(i) g (v ) = TRUE > v is a positive example of  c. 

1 
(ii) with probability of at least (1 - "7") 

n 

1 
E D ( v )  < - - .  

v positive example h 
g (v) = F A L S E  

A pseudo boolean function f is any mapping from the set of 2 n vectors to the real axis. A con- 

cept is represented by a set of d pseudo boolean functions f l," " " ~fd if f i ( v ) =  0 i=1, • • • ,d 

whenever v is a positive example, and ~ i  f i ( v )  ~ 0 whenever v is a negative example. In other 
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words, the concept is the set of vectors that are solutions to the system of eqoations 

f i ( x l , ' ' ' , X n ) = O  i = l , ' - ' , d .  

A pseudo boolean function f is consistent with a concept if f (v) = 0 whenever v is a positive 

example. A class C of boolean formulae over n variables is represented by multilinear equations of 

degree k if every c ~ C can be represented by a k degree multilinear equation. (In general, k is a 

function of n .) For example, the boolean formula X l x/(x2 A x3) can be represented by the second 

degree (bilinear) multilinear equation: x lx  2 + x lx  3 - 2x  1 - x 2 - x 3 + 2 = O. 

The information of a pseudo boolean function (with respect to a concept) is defined as the set of 

negative examples which it can detect, i.e., 

Informat ion(f )  = {v ; f ( v )  * 0}. 

We observe that a concept is represented by the pseudo boolean functions {fl  } if and only if the func- 

tions { f l  } are all consistent with the concept, and their combined information, L. j Informat ion(f l ) ,  is 
I 

the set of all negative examples. Finally, we say that the function f 0 can be derived from the set of 

k 

consistent functions f l , . . .  ,fk if Informafion(fo)  c k.)Informafion(fi) .  
i l l  

3. Algebra ic  s t r uc tu r e  of concepts expressed by pseudo boolean functions 

A multilinear function in the variables Xl, • • • ,xn with a degree k,  is a function of the type: 

k 

M (x 1, " " " ,xn) = ~ ~ a j o . . . j ~  • x j { . . . . x j :  Each multilinear function can be viewed as a 
i=O jl< .. • <j~ 

linear combination of its monomials xh . . . . . x jc  We will use the variables {yi } to denote these monomi- 

als. For example, 2.XlX 2 + 2.XlX 3 + 4.x 4 - 5 is a bilinear function (k=2), expressed as a linear com- 

bination of the monomials { x l x  2 , x l x  3 , x 4 , 1}. The set of all monomials {Yi} up to a degree k 

has ~ elements. The representation of a multifinear function as a finear combination of monomi- 
iffiO 

als is called the canonical representation. Notice that any pseudo boolean function can be expressed as 

a multifinear function. 
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We say that two functions are identical modulo a concept  if  they have the same values for all 

positive examples of  the concept. 

Theorem 1: The set of  functions modulo a concept with r positive examples is a vector space (over 

) with a basis of  r multilinear functions. 

Proof: The set o f  functions is a vector space under the standard definition of addition and multiplica- 

tion by scalars from ~ .  To determine its dimension modulo the concept, let the set of  positive exam- 

ples be {v 1, • • ' ,vr }. For each positive example vi = ( x ~ ,  

inear function: 

• • • ,xn/) we define the following multil- 

Pi  = 1~I x a  " I~I (1 -x l t )  (1) 

For example,  if  v i = (1,0,0,1) ,  Pi  = X l ' ( 1 - x 2 ) ' ( 1 - x 3 ) ' x 4  • 

Clearly, P i ( v j )  = i .~ j  and we maintain that {P1,  " " " ,Pr}  is a basis for the vector space of  

all functions modulo the given concept. We  first show that it spans the set o f  all functions. Let  

f (x l, " • " ,xn) be an arbitrary function, and 

f ( v i )  = f ( x ~ ,  " • • ,x,~) = a i  i = 1 ,  • • • ,r . 

The following linear combination of  {Pi  } is identical to f modulo the concept: 

r 

M (Xl ,  . . . , xn)  = ~ O ~ i . P  i . 
i=1 

To see that {Pi } are linearly independent modulo the concept, consider an arbitrary linear combination 

that identically equals zero modulo the concept (i.e., equals zero for all posit ive examples):  

a l P 1 +  " ' "  + a r P r  = 0  

values of  P i " ' ' P r  for the example v i reduces the above equation to Substituting the 

a i = 0 D .  

C o r o l l a r y  1.1: There is a basis of  r monomials  {Yi } to the set of  all functions modulo a con- 
cept with r positive examples.  
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C o r o l l a r y  1.2: The canonical representation of a multilinear function is uniquely determined by 
the function values for all 2 n examples (all the positive and negative examples). 

P roo f :  By applying the above corollary to the concept for which all the examples are positive 
examples (r =2 n), the set of all 2 n monomials {Yi } is a basis, and the corollary follows from the 

uniqueness of the representation in a basis. [ ]  

3.1. A basis  o f  pseudo  boo lean  func t ions  

The next two theorems will characterize the set of consistent functions as a finite dimensional 
vector space. The advantage of this representation is that it is relatively easy to determine a basis to 
the vector space of consistent functions. Although a basis to this vector space is not necessarily a 
minimal set of consistent functions, we will show that the number of functions in a basis is polynomial 
when one is concerned only with concepts that can be represented by bounded degree multilinear equa- 
tions. 

T h e o r e m  2: Let F be a set of arbitrary functions of n binary variables. The set of all consistent 

functions modulo a concept with r positive examples that can be expressed as linear combinations of 

functions from F is a vector space of a finite dimension d = v - w ,  and 0 _< d <_ 2 n - r ,  where 

v = dim Span (F) and w = dim Span (F) modulo the concept. 

Proof: Let V = Span(F) and W = Span(F) modulo the concept .  V can be viewed as 

Span (F) modulo the concept with 2 n positive examples. The difference between V and W is that 

two different functions in V may be identical modulo the concept, and therefore, the same function in 

W (that is, when they have the same values for the r positive examples). Clearly, W c V .  Let 

P : V ~ W be the projection from V into W. P is linear, onto, and its kernel is all linear combina- 

tions of  functions that are mapped into " 0 "  in W, i.e., the required consistent functions. Therefore, the 

set of consistent functions is a vector space, and because dim Im P + dim Ker P = dim V, we 

h a v e w  + d  = v .  S i n c e W c V ,  d = v - w  >_0. To see t h a t d _ < 2  n - r ,  l e t P  b e a  set of 2 n - v  

independent functions, also independent of the functions in F .  Let ~ = dim Span(Fk.)F)  and 

g, =dim S p a n ( F u P )  modulo the concept We have: ~ = v  + 2  n - v  = 2  n, and 

_< w + 2 n - v .  But from Theorem 1, ~ = r ,  and therefore v - w _< 2 n - r  [ ]  
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T h e o r e m  3:  For a concept with r positive examples, let F = { f  1, " " " , f t  } be an arbitrary set of  t 

functions. Denote by B c F  a basis to the vectcx space o f  the functions in F modulo the concept. We 

will assume without loss of  generality that B = { f  1, " " " J w  }, where w = d im S p a n  ( F )  m o d u l o  

w 

the concept .  Let  f i  = ~ a i j ' f j  i = w + l ,  • • • ,t be the linear dependency relations modulo the 
j=l  

concept, then all the consistent functions that can be expressed as linear combinations o f  { f  1, " " " ,.ft } 

are derivable from the t - w  consistent functions: 

w 

f i -  Eaij'fy i = w + l , . . .  ,t (2) 
j=l  

P r o o f :  It is enough to consider the case in which { f  1, " " " ,.ft } are linearly independent. In this 

case, t = d i m  S p a n  ( F ) ,  and from Theorem 2 the set o f  all consistent functions that can be expressed 

as linear combinations o f  { f  1, " " " ~ft } is derivable from a basis of  t - w  consistent functions. There- 

fore, it is enough to prove that the t - w  consistent functions (2) are linearly independent. Consider an 

arbitrary linear combination of  the functions (2) that equals zero: 

! w 

Z bi ( f i  - E a iy ' f y )  = 0 (3) 
i = w + l  j = l  

To prove the theorem we have to show that bi = 0 

combination o f  functions f i  i = l , . . . , t ,  and 

i = w + l ,  • • • , t .  The left side o f  (3) is a linear 

t 

can be expressed a s  ~o~i.fi = O, with 
i l l  

Ct i = b i i = w + l ,  " " " , t .  Since {f i}  are linearly independent, ct i = 0 i = l ,  . . " , t ,  and there- 

fore, b i = 0 i = w + l ,  • • • , t .  [ ]  

C o r o l l a r y  3.1:  All consistent functions modulo a concept that can be expressed as multilinear func- 

tions with a bounded degree are derivable from a polynomial set o f  consistent functions. 

P r o o f :  For all monomials with degree not exceeding k ,  the value o f  t in Theorem 3 is ~ . 
i f 0  

[] 
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4. An a l g o r i t h m  fo r  gene ra t i ng  a basis of  cons is ten t  func t ions  

In this section we describe an algorithm that generates the consistent functions (2)• Given a set 
of functions { f i  }, and a set of positive examples, the algorithm generates a basis for the set of con- 
sistent functions that can be expressed as linear combinations of functions from { f i  }. For bounded 
degree multilinear functions the algorithm is polynomial. Furthermore, in this case the consistent func- 
tions (2) are multilinear functions with bounded degree in their canonical representation. Therefore, 
each one of them can be computed in polynomial time. 

As will be shown, the information we require to determine the consistent functions is the follow- 

ing statistics: 

= yJ .fq.O (v i ) .  Rpq i i 

Vi 
(4) 

To get a basis for the set of  consistent functions that can be expressed as linear combinations of func- 

tions in the span of F = {f  l, " " " Jet } we require the following matrix: 

Rl ,  1 • . .  R1. t 
e ~ * • . • • • • • ° 

Rt ,  1 • . . R t ,  t 

This matrix is referred to as the c o - o c c u r r e n c e  matrix .  It has the following properties: 

a) R is symmetric since by its definition Ri j  -ffi R j i .  

b) If f 1, " ' "  , f t  are independent modulo the concept, R is positive definite (and therefore, non- 

singular). 

Proof: See [6]. 

c) If f 1, " " " , f t  are linearly dependent modulo the concept, then R is singular. 

Proof: Since f 1," " " , f t  are dependent, there exist coefficients a 1," " " ,at not identically zero 

such that 

a l . f ~  + .  • • + a t . f / =  0 V p o s i t i v e  e x a m p l e s  v i (5) 

Multiplying the above equation by f j ' D  (vi) and summing over all examples we get: 

a t . R  u + • • • + a t . R t j  = 0 j = l ,  • • • , t  [ ]  

d) If f 1, " " " , f t - I  are independent modulo the concept, but f 1, " " " , f t  are dependent modulo the 

concept, then 
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f t i - (a l ' f  ~ + "  • • + a t - l ' f  ti-l ) = 0 V p o s i t i v e  e x a m p l e s  vi 

and a 1 " " " at-1 can be obtained from the system of equations 

I ] R " = 

t I LRt-l,t 

(6) 

(7) 

(In (7), R is the co,  occurrence matrix of f 1, " " " , f t - l ' )  

Proof: Because f l " ' '  f t-1 are independent, coefficients ai always exist in (5) such that 

at = - l .  [ ]  

Using the properties of the co-occurrence matrix we describe an algorithm to generate a basis of con- 

sistent functions. The algorithm runs identical phases, in which it considers a set of functions, and gen- 

erates a basis to the set of all consistent functions that can be expressed by linear combinations of them. 

The information used by the algorithm is the values of Rt, q given by Equation (4). In the algorithm, l 

is a set of linearly independent functions modulo the concept, and R is their co-occurrence matrix. 

Algorithm A: 

Initially, I = {f l} ,  andR is (R 11), a matrix of size 1×1. 

For each new function ft: 

1- Get the statistics Rjt i i = ~ f ) ' f t ' D  (vi) for all functions f j ¢  I ,  and construct the co-occurrence 
v~ 

matrix R of the functions in I k.J { f t  }. 

2- If R is singular, solve the system of equations (7), and output the consistent function (6); other- 

wise, t < - -  I U {ft  }. 

When the functions in the algorithm are chosen as the set of monomials with bounded degree, the 

number of phases is polynomial in n (because there is only a polynomial number of monomials), and 

since the solution of a system of linear equations is also polynomial, the whole algorithm is polynomial. 

Yet, a more efficient algorithm exists, based on the Choleskey decomposition for positive definite 
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matrices. This algorithm does not require solving the whole system of equations in each iteration. 

Instead, it builds a lower triangular matrix Z such that Z . Z  T = R .  

Algorithm A': 

Initially, I = {f  1 }, and Z is R~ i i .  u and u j  are auxifiary variables. 

For each new function ft: 

get the statistics Rj , t  for all f j  ~ I .  

F o r j  = 1, • • • ,111 

I l l  

U= Rt,t - j__~l U ? 

j - I  

Rj., - Eu, zji 
i=1 Uj---- 

zyj 

I f u  ~ O ,  add the r o w  u l ,u  2, . . . ,u l/ t ,u t o Z ,  i.e., 

zt/l+lg ~ - u j  j = l , . . . , l l l  
and add f t  to I .  

Z l l l + l . l l l +  1 ( - -  U 

If u = 0, output the consistent function 

a l f l + ' ' ' + a t l t f J l t - f t  = 0  

where a l  • • • a ttl are determined by forward and backward substitutions from 

Z Z T = 

l , LRt ~I., 

We observe that for N functions, the complexity of Algorithm A' is O (N3). 

5. Learnability of multilinear functions 

In this section we show that Algorithm A (or A') of the previous section can be used to learn 

consistent functions from examples in the sense of Valiant. We will construct a polynomial algorithm 

such that: For any h ,  and for any concept for which f is a consistent function with a degree bounded 

by k,  and all distributions D over the positive examples, the output of the algorithm is a polynomial 
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number of multilinear functions G = {g } with a degree not exceeding k, such that: 

1 
(i) with probability of at least (1 - ~ )  the functions G approximate consistent functions with an error 

1 
of at most - - .  

h 

(fi) f is derivable from G.  

1 
Let L (h ,s ) be the smallest integer such that in L (h ,s) Bernoulli trials, each with probability -~- 

1 
of success, the probability of having fewer than s successes is less than ~ .  Valiant shows in [1] that 

for s_>l, h > l ,  L(h , s )  _< 2"h "(s + loge h). As we show, the number of examples needed by our 

algorithm to learn multilinear consistent functions with degree bounded by k is 

Clearly, for a bounded k, N (h ,n) is polynomial in both h and n. More N(h ,n) = L ( h , ~  ). 
i=0  

precisely, 

N(h ,n )  = O(h.(logh + n k) . 

The algorithm that learns all multilinear consistent functions up to degree k is the following: 

(1)- Randomly choose N ( h , n )  examples. They are chosen according to their distribution D .  

(2)- Compute the values of all monomials Y = {yj } with a degree not exceeding k, for each of the 

examples chosen in (1). 

(3)- Compute the statistics for each pair of monomials yp, yq in Y: 
N 

i i 
Rpq = ]~YI~'Yq" 

i=1 

(Rpq counts the number of examples for which yp and yq both hold.) 

(4)- Use Algorithm A (or A'), of the previous section with the statistics obtained in step (3) to gen- 

erate the approximate consistent functions G = {g }. 

Since N is polynomial, and so is the number of all monomials with a degree not exceeding k, the 

above algorithm is polynomial in both h and n. (It is, however, exponential in k.) 
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To see that the algorithm generates approximate consistent functions with the desired probability, 

let Gj be the set of multilinear functions that would have been obtained from the learning algorithm if 

steps (2),(3),(4) would have been executed after the j ' t h  example is chosen in step (1). We observe 

that the number of multilinear consistent functions in Gj is the number of independent monomials that 

are linearly dependent on other monomials modulo the concept where the j examples chosen in (1) are 

the only positive examples. Now, if a certain monomial linearly depends on others for the first j exam- 

pies, it also depends on other monomials for the first j '  examples, where j '  _< j .  Consider a series of 

N Bernoulli trials in which a success is manifested as discovenng that at least one of the monomials 

linearly dependent on others modulo the concept after the first j examples, is linearly independent 

modulo the concept after the first j + l  examples. We have a success if and only if at least one function 

in Gj is inconsistent with the j + l ' t h  example, i.e., 

~geGj  g(vj+l)~O. 
Since our assumption is that f is a multilinear consistent function with a degree k, at least one of the 

monomials is dependent on others for all examples. Therefore, the number of successes cannot exceed 

the number of monomials of degree bounded by k. Let Xj denote the probability that the next example 

(the j + l ' t h  ) does not agree with the functions in Gj. Xj = ~,D (v) with summation over all exam- 

ples for which ~g ~ Gjg  (v) ~ O. Clearly, Xj is monotone decreasing as a function of j .  We have 

to show that 

1 1 Prob (X N > ~ ) <_ 

and this follows because if XN>-~, Xj>~ j = I . . . N , N = L ( h , ~  ), and we have a series of 
i-~ 

N Bernoulli trials, each with probability greater than -~, and with less than ~ successes. 

To see that f is derivable from G, consider a concept where the positive examples are only the 

examples chosen by the learning algorithm in step (1). Since f is also a consistent function for that 

concept, f is derivable from G by Theorem 3. 
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6. Learnability of boolean formulae by pseudo boolean functions 

The results of the previous section imply that any family of boolean formulae that can be 

represented as a set of solutions to bounded degree multilinear equations is learnable from positive 

examples. The straightforward way of translating boolean expressions into multilinear functions is by 

using the following relations: 

< > 1 - x  ; x A y < > x ' y  ; x ~ y < - - >  x + y - x ' y  (8) 

which transform any boolean formula into a pseudo boolean function that equals 1 for positive exam- 

ples, and 0 for negative examples. 

As a first example for the learning power of the multilinear functions we consider the case of 

k - C N F  formulae, that were shown to be learnable by Valiant in [1]. To learn k - C N F  formulae of n 

1 
variables with error -~-, Valiant's algorithm requires 0 (h . ( logh  + nk+l ) )  examples, while our algo- 

rithm requires only O (h .(logh + nk)) examples. 

T h e o r e m  4: k - C N F  is learnable by a multilinear equation of degree bounded by k. 

Proof: Let the k - C N F  expression be c 1 A c2 A • • • /X CN. Since each of the clauses contain at 

most k literals, it follows from (8) that it can be expressed as a mulfilinear function of degree k.  

Denote by M i the multilinear function that corresponds to c i.  M i = 1 if c i = T R U E ,  and M i = 0 if 

The following mulfilinear equation of degree k is a representation of the k - C N F  ci = F A L S E .  

expression: 

N 
E M i  - N = 0 [ ]  . 
i=1 

A k - t e r m - D N F  formula is a D N F  formula with at most k terms. It is known to be learnable 

by k - C N F  [5]. We give a direct proof for its learnability by multilinear functions. 

T h e o r e m  5: k - t e r m - D N F  is learnable by a multilinear equation of degree bounded by k.  

Proof: Let the k - t e r m - D N F  expression be m 1 ~/m2 x/ - - "  V mk, where m i  = y ~  A . . .  Ay t l  ' 

with t i = P i  + ni  Yj = xj j = 1 ' ' "  P i ,  and yj+p, = -~x~ , l+pi j = 1 • • • n i . The  following is a 
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representation by a k degree multilinear equation: 

k Pi nl 

1 7 ( E x j  x / - E v , + s - P ~ )  = o [ ]  
/=1 j= l  j=l  

Example: (x 1 A~- 2 AX3) ~/ (X'I AX2) is represented by (Xl + x3 - x2 - 2) ' (x2 - Xl - 1) = 0. 

Consider a subset of  N variables out of  the n variables x 1, " " " ,xn, and denote its elements by 

Xs~, " " " ,XsM. A concept is represented by a boolean threshold function if there are numbers N and t 

N 

such that ~ X s l  > t < - - - >  ( x  l,  • • • ,xn ) is  a p o s i t i v e  e x a m p l e .  It was shown in [4] that thres- 
i=1 

hold functions are not learnable. The following theorem shows that a restricted version of the threshold 

functions is learnable from positive examples. 

T h e o r e m  6: With the above terminology, threshold functions for which N - t _< k are learnable by 

multilinear equations of  degree k .  

Proof: The threshold functions under the condition of the theorem are represented by the following 

k N 

multilinear equation: l~I  ( ~ X s l  - t - j )  = 0 D . 
j=l i=1 

It should be noted that under the conditions of  the theorem the threshold function can be expressed as a 

k + I - D N F .  Thus, they can be learned by Valiant's algorithm, by using O (h .(logh + nk+2)) exam- 

pies. Learning them by multilinear equations requires only O (h .(logh + nk))  examples. 

Let m 1 ~ m 2  V • • • ~ m N  be a k - D N F  expression, i.e., each of the monomials {mi  } has at 

most k literals. Natarajan showed in [3] that k - D N F  expressions are not learnable by k - D N F  

expressions from positive examples. We consider a restricted version of the k - D N F  expression which 

can be viewed as a "multi  X O R "  operation. More explicitly, we consider the k - D N F  expression to be 

true if at least one of its monomials is true, and at most m are true. We observe that the same argu- 

ments used in [3] to show that the k - D N F  is not learnable by k - D N F  still hold for the above case 

for any m_>l. 
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Theorem 7: The restricted version of the k - D N F  in which at most m of the monomials can be 

true is learnable by a multilinear equation of degree bounded by m .k. 

Proof: We will consider only the case of monotone monomials. The case of non monotone monomials 

can be handled in the same method as in the proof of Theorem 5. Let the expression be 

ml  ~ m2 ~ • • • ~/mN, where mi = x i  ^ • • • A x~.. The following is a representation by an m.k  

m N tq 
degree multilinear function: H(E(Hxj) - a )  = 0 [ ]  

(x=l i=1 j=l 

7. Concluding remarks  

We have shown that the representation of learnable knowledge by the same class of representa- 

tions as those that are to be learned may be disadvantageous, as some concepts that are not learnable in 

this way are learnable by other representations. The class of pseudo boolean multilinear functions 

a ~  to provide a good representation for learnable knowledge, enabling a unified learning algorithm 

for many of the known classes of learnable concepts, as well as to others, not previously known to be 

learnable. 
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