REPRESENTING KNOWLEDGE IN LEARNING SYSTEMS
BY PSEUDO BOOLEAN FUNCTIONS

Haim Shvaytser *

Department of Computer Science
Columbia University
New York, NY 10027

Abstract

Concepts that can be expressed as solutions to multilinear pseudo boolean equations with a
bounded degree are shown to be learnable in polynomial time from positive examples. This implies
the learnability from positive examples of many families of boolean formulae by a unified algorithm.
Some of these formulae were not previously known to be learnable, and some were known to be learn-

able by different algorithms.

* Author’s current address: Department of Computer Science, Cornell University, Ithaca, NY 14853.
The author has been partially supported by the Chaim Weizmann Postdoctoral fellowship.

245



246 Session 3

1. Introduction

A complexity based theory of the learnable was introduced by Valiant in [1]. One of the motiva-
tions of the suggested theory was ‘“‘to shed light on the boundary between the classes of expressions
that are learnable in polynomial time and those that are not, suggesting concrete principles for designing
realistic learning systems.’” The results obtained in [1] and related works [2-4] are mainly about the
learnability of boolean formulae, using the propositional calculus for representing the learned
knowledge. These results characterize several classes of boolean functions as learnable, and several

others as not learable.

Many of the negative results, about classes of boolean formulae that cannot be learned, were
obtained with respect to specific representations of the knowledge in the learning algorithm. Examples
are the results of Natarajan, in [3], which show that the class of boolean functions that can be learned
from positive examples using the same class of functions for representing the leamed knowledge is
severely limited, and the results in [4], that characterize many families of boolean formulae as non
learnable unless RP = NP. As a specific example, consider boolean formulae in disjunctive normat
form (DNF), with a small (bounded) number of terms. It was shown in [4] that unless RP = NP,
such formulae cannot be learned if the knowledge representation is also chosen to be DNF with the
same (or even twice as many) number of terms. However, such formulae can be easily leamed if the
knowledge representation is chosen to be boolean formulae in conjunctive normal form with a bounded

size of conjuncts (k—CNF') (5].

The work presented in this paper exemplifies that some of the negative results about learnability
are to be attributed to the specific knowledge representation scheme, not necessarily implying inherent
difficulty in learning the concepts. We investigate the representation of knowledge in terms of pseudo
boolean equations. We show that concepts that can be expressed as solutions to multilinear equations
with bounded degree are learnable with one sided error from positive examples only. The family of
concepts that can be represented and learned in this way includes k—CNF, k—term—DNF (that was

shown not to be learnable by k—term—DNF in [4]), and a restricted version of Kk—DNF , that by using



Representing Knowledge in Learning Systems

the results of [3] can be identified as not learnable from positive examples, using k—DNF as the

scheme of knowledge representation.

2. Definitions

We consider n boolean variables xy, - - * ,X,, each of which can take the value O or 1. A vector
v is an assignment to each of the n variables of a value from {0,1}. A concept is a subset of the 2"
vectors, where each vector in this subset is a positive example, and all the rest are negative examples

of the concept.

The definition of learnability of a concept by a class of representations appears in [4]. We use
the same definition, but consider learnability from positive examples only. The learning process can be
viewed as follows: a concept from a known class of concepts is chosen by an oracle that also fixes a
probability distribution over its positive examples. The learner draws (positive) examples according to
the probability distribution. A learning algorithm is applied to these examples, and produces as output
an approximate representation of the concept. This representation is tested on both positive and nega-
tive examples. The positive examples for the test are chosen from the same probability distribution as
in the learning phase, but the distribution of the negative examples in the test is unknown (determined
by the oracle). The learning algorithm is required to guarantee with arbitrary high probability arbitrary
high score in the test. We observe that this implies that no mistake can be permitted in classifying
negative examples as being positive.

The following is a formal definition: A class C of concepts, each of which is of size polynomial in n, is
learnable from positive examples by a class of representations G if there exists an algorithm that for

any h > 1, for any c € C, and for any probability distribution D over the positive examples of ¢

(a) The algorithm gets as input a number of positive examples polynomial in both the adjustable

parameter i, and n. The examples are obtained by sampling from the probability distribution D .
(b) The algorithm runs in time polynomial in both & and 7.

(c) The output of the algorithm is a representation ge G such that:

(i) g@)=TRUE ===> v isa positive example of c.
(ii) with probability of at least (1 — l) Y D)< —1-
h v positive example h
g (v) = FALSE

A pseudo boolean function f is any mapping from the set of 2" vectors to the real axis. A con-
cept is represented by a set of d pseudo boolean functions f{, - - - fq f f;(v)=0 i=l,---,d

whenever v is a positive example, and —§i f;(v) # O whenever v is a negative example. In other

247



248 Session 3

words, the concept is the set of vectors that are solutions to the system of equations

fiGky - x,)=0 i=1,.--- d.

A pseudo boolean function f is consistent with a concept if f (v) = O whenever v is a positive
example. A class C of boolean formulae over n variables is represented by multilinear equations of
degree k if every ce C can be represented by a k degree multilinear equation. (In general, k is a
function of n.) For example, the boolean formula x; V (x5 A x3) can be represented by the second

degree (bilinear) multilinear equation: x1x5 + X1 X3 — 2xy ~ x5, — X3 + 2 =0,

The information of a pseudo boolean function (with respect to a concept) is defined as the set of
negative examples which it can detect, i.e.,
Information(f) = {v ; f (v) # 0}.
We observe that a concept is represented by the pseudo boolean functions {f;} if and only if the func-

tions {fy} are all consistent with the concept, and their combined information, \_jInformation(f; ), is
I

the set of all negative examples. Finally, we say that the function f can be derived from the set of

k
consistent functions f , - - - .f if Information(f ) < \Information(f;).
i=1

3. Algebraic structure of concepts expressed by pseudo boolean functions

A multilinear function in the variables xy, - * - x, with a degree k, is a function of the type:
k
My, x)=2 Y &j,...j ' Xj’..xj. Each multilinear function can be viewed as a
=0 ji<-oo <
linear combination of its monomials x; -...-x;,. We will use the variables {y;} to denote these monomi-

als. For example, 2-x,x5 + 2:x,x3 + 4x4 — 5 is a bilinear function (k=2), expressed as a linear com-

bination of the monomials {x,x; , x1X3, x4, 1}. The set of all monomials {y;} up to a degree k

k

has Y [’:] elements. The representation of a multilinear function as a linear combination of monomi-
i=0

als is called the canonical representation. Notice that any pseudo boolean function can be expressed as

a multilinear function.



Representing Knowledge in Learning Systems 249

We say that two functions are identical modulo a concept if they have the same values for all

positive examples of the concept.

Theorem 1: The set of functions modulo a concept with 7 positive examples is a vector space (over

R ) with a basis of r multilinear functions.

Proof: The set of functions is a vector space under the standard definition of addition and multiplica-
tion by scalars from B . To determine its dimension modulo the concept, let the set of positive exam-
ples be {vy, - - - ,v,}. For each positive example v; = (x’i , -+ x\) we define the following multil-

inear function:
P; = Hxa . 1‘[ (l—xB) a)
x&=l xf5=0
For example, if v; = (1,0,0,1), P; = x1-(1-x,)-(1-x3)x,.

i=

oy and we maintain that {P,, - - - ,P, } is a basis for the vector space of

1
Clearly, P;(v j) = {0
all functions modulo the given concept. We first show that it spans the set of all functions. Let
fxy, -+ - x,) be an arbitrary function, and
FO)=fG, - x)=o =1, r.
The following linear combination of {P;} is identical to f modulo the concept:

,
Mxy, - x,) = 2,0;°P; .

i=1
To see that {P;} are linearly independent modulo the concept, consider an arbitrary linear combination
that identically equals zero modulo the concept (i.e., equals zero for all positive examples):
a1P1+ +a,P, =0
Substituting the values of P;---P, for the example v; reduces the above equation to

a,-=0 D

Corollary 1.1: There is a basis of r monomials {y;} to the set of all functions modulo a con-
cept with r positive examples.



250

Session 3

Corollary 1.2;: The canonical representation of a multilinear function is uniquely determined by
the function values for all 2" examples (all the positive and negative examples).

Proof: By applying the above corollary to the concept for which all the examples are positive

examples (r=2"), the set of all 2" monomials {y;} is a basis, and the corollary follows from the
uniqueness of the representation in a basis.

3.1. A basis of pseudo boolean functions
The next two theorems will characterize the set of consistent functions as a finite dimensional

vector space. The advantage of this representation is that it is relatively easy to determine a basis to
the vector space of consistent functions. Although a basis to this vector space is not necessarily a
minimal set of consistent functions, we will show that the number of functions in a basis is polynomial
when one is concerned only with concepts that can be represented by bounded degree multilinear equa-
tions.

Theorem 2: Let F be a set of arbitrary functions of n binary variables. The set of all consistent
functions modulo a concept with 7 positive examples that can be expressed as linear combinations of

functions from F is a vector space of a finite dimension d=v-w, and 0 < d < 2" —r, where

v =dim Span(F) and w =dim Span(F) modulo the concept.

Proof: Let V = Span(F) and W = Span(F) modulo the concept . V can be viewed as
Span(F) modulo the concept with 2" positive examples. The difference between V and W is that
two different functions in V may be identical modulo the concept, and therefore, the same function in
W (that is, when they have the same values for the r positive examples). Clearly, WcV. Let
P :V = W be the projection from V into W. P is linear, onto, and its kernel is all linear combina-
tions of functions that are mapped into ‘‘0”’ in W, i.e., the required consistent functions. Therefore, the
set of consistent functions is a vector space, and because dim Im P + dim Ker P =dim V, we
have w +d = v. Since WV, d =v-w 2 0. To see that d 2" —r, let F be a set of 2"—v
independent functions, also independent of the functions in F. Let ¥ = dim Span(F Uﬁ ) and
w =dim Span(F UF ) modulo the concept . We have: ¥ =v +2"-v =2", and

w <w + 2" —v. But from Theorem 1, W = r, and therefore v — w < 2"—r O



Representing Knowledge in Learning Systems

Theorem 3: For a concept with 7 positive examples, let F = {f, - - - ,f, } be an arbitrary set of ¢
functions. Denote by B CF a basis to the vector space of the functions in F modulo the concept. We

will assume without loss of generality that B = {f, - - - .f\, }, where w = dim Span(F) modulo

w

the concept. Let f; = Za,-j fj i=w+l,---,t be the linear dependency relations modulo the
j=1

concept, then all the consistent functions that can be expressed as linear combinations of {fy, * - - .f;}

are derivable from the z—w consistent functions:
w
fi— Xafj i=w+l, - - -t )
j=1

Proof: It is enough to consider the case in which {f,, - - - ,f,} are linearly independent. In this
case, t = dim Span(F), and from Theorem 2 the set of all consistent functions that can be expressed
as linear combinations of {f, - - - ,f,} is derivable from a basis of z—w consistent functions. There-
fore, it is enough to prove that the t—w consistent functions (2) are linearly independent. Consider an

arbitrary linear combination of the functions (2) that equals zero:

t w
Y ul(fi-Xaifp) =0 3)
i=w+1 j=t
To prove the theorem we have to show that b; =0 i=w+1, - - - ,t. The left side of (3) is a linear
t
combination of functions f; i=l,---,, and can be expressed as D, o;-f; = 0, with
i=1
o; =b; i=w+l,---t. Since {f;]} are linearly independent, o; =0 i=1, - - - ¢, and there-
fore, b; =0 i=w+l, - - - t. O

Corollary 3.1: All consistent functions modulo a concept that can be expressed as multilinear func-

tions with a bounded degree are derivable from a polynomial set of consistent functions.

k
Proof: For all monomials with degree not exceeding k, the value of ¢ in Theorem 3 is ), (’:]
i=0

O

251



252 Session 3

4. An algorithm for generating a basis of consistent functions

In this section we describe an algorithm that generates the consistent functions (2). Given a set
of functions {f;}, and a set of positive examples, the algorithm generates a basis for the set of con-
sistent functions that can be expressed as linear combinations of functions from {f;}. For bounded
degree multilinear functions the algorithm is polynomial. Furthermore, in this case the consistent func-
tions (2) are multilinear functions with bounded degree in their canonical representation. Therefore,
each one of them can be computed in polynomial time.

As will be shown, the information we require to determine the consistent functions is the follow-

ing statistics:

Rpg =XfpfgD D) . @)
Vi
To get a basis for the set of consistent functions that can be expressed as linear combinations of func-
tions in the span of F = {fy, - * * .f,} we require the following matrix:
Ryy "Ry,
R=| -+ ...
Rl,l : Rt,t

This matrix is referred to as the co—occurrence matrix. It has the following properties:
a) R is symmetric since by its definition R;; = R;;.
b) If fy, - - .f; are independent modulo the concept, R is positive definite (and therefore, non-
singular).
Proof: See [6].
¢) Iffy, - .f, are linearly dependent modulo the concept, then R is singular.
Proof: Since fy, - - - ,f; are dependent, there exist coefficients @y, - - - ,a, not identically zero
such that
ayfi +---+a, ff=0 Ytpositive examples v; (5)
Multiplying the above equation by f ; ‘D (v;) and summing over all examples we get:
ayRyj+---+a-R;=0 j=1,---t O
d) Iffy, - - . are independent modulo the concept, but fy, - - - ,f; are dependent modulo the

concept, then



Representing Knowledge in Learning Systems
fi—(ayfi + - +a_fly)=0 positive examples v; ©)
and a; - - - @, can be obtained from the system of equations
a; Ry,
R-|. =] )
a1 Ry14

(In (7), R is the co—occurrence matrix of £y, - * * ,f;_1.)
Proof: Because f, - - - f,.; are independent, coefficients a; always exist in (5) such that

a, =_l. D

Using the properties of the co-occurrence matrix we describe an algorithm to generate a basis of con-
sistent functions. The algorithm runs identical phases, in which it considers a set of functions, and gen-
erates a basis to the set of all consistent functions that can be expressed by linear combinations of them.
The information used by the algorithm is the values of R,, given by Equation (4). In the algorithm, /

is a set of linearly independent functions modulo the concept, and R is their co—occurrence matrix.
Algorithm A:

Initially, / = {f,}, and R is (R,,), a matrix of size 1x1.

For each new function f,:

1-  Get the statistics Rj, = Zf}"f,':D (v;) for all functions f;el, and construct the co-occurrence

i
matrix R of the functions in I\J{f,}.
2- If R is singular, solve the system of equations (7), and output the consistent function (6); other-
wise, I <— IY(f,]).
When the functions in the algorithm are chosen as the set of monomials with bounded degree, the
number of phases is polynomial in n (because there is only a polynomial number of monomials), and

since the solution of a system of linear equations is also polynomial, the whole algorithm is polynomial.

Yet, a more efficient algorithm exists, based on the Choleskey decomposition for positive definite

253



254

Session 3

matrices. This algorithm does not require solving the whole system of equations in each iteration.

Instead, it builds a lower triangular matrix Z such that Z-ZT =R.

Algorithm A’:
Initially, I = {f,}, and Z is YR;. u and u; are auxiliary variables.
For each new function f:

get the statistics R; , for all f;el.

Forj=1,---,l[l u=
Zjj

-
U= Ry — Xy

=
If u 20, add the row uy,ug, - - - 4 to Z,ie,

Ziaj €< 4 j=1,-0 0,0 Zi[1e,10 141 € U

andadd f, to 1.

If u = 0, output the consistent function
arfrt- -4 i —fi=0

where a; - - - a7, are determined by forward and backward substitutions from
a, Ry,
zzl | . |=]| .
ay Ri 1y

We observe that for N functions, the complexity of Algorithm A’ is O (N3).

5. Learnability of multilinear functions

In this section we show that Algorithm A (or A’) of the previous section can be used to leam
consistent functions from examples in the sense of Valiant. We will construct a polynomial algorithm
such that: For any h, and for any concept for which f is a consistent function with a degree bounded

by k, and all distributions D over the positive examples, the output of the algorithm is a polynomial



Representing Knowledge in Learning Systems

number of multilinear functions G = {g } with a degree not exceeding &, such that:

(i) with probability of at least (1 — -}ll-) the functions G approximate consistent functions with an error

1
of at most —.
h

(ii) f is derivable from G .

Let L(h,s) be the smallest integer such that in L (4 ,s) Bernoulli trials, each with probability %

of success, the probability of having fewer than s successes is less than % Valiant shows in [1] that

for s21, h>1, L(h,s) <2:h-(s +log, h). As we show, the number of examples needed by our

algorithm to learn multilinear consistent functions with degree bounded by Kk s

k
Nh,nn)y=Lx,Y, [’:]) Clearly, for a bounded k, N (h,n) is polynomial in both A and n. More
i=0

precisely,

N(h.n) =0 (h-(ogh + n*).

The algorithm that learns all multilinear consistent functions up to degree k is the following:
(1)- Randomly choose N (h,n) examples. They are chosen according to their distribution D .

(2)- Compute the values of all monomials ¥ = {yj} with a degree not exceeding k, for each of the

examples chosen in (1).
N
(3)- Compute the statistics for each pair of monomials y,,y, inY: Ry, = ¥,',-
i=1

(Rpq counts the number of examples for which y, and y, both hold.)

(4)- Use Algorithm A (or A’), of the previous section with the statistics obtained in step (3) to gen-

erate the approximate consistent functions G = {g}.

Since N is polynomial, and so is the number of all monomials with a degree not exceeding k, the

above algorithm is polynomial in both # and n. (It is, however, exponential in k.)

255



256 Session 3

To see that the algorithm generates approximate consistent functions with the desired probability,
let G; be the set of multilinear functions that would have been obtained from the learning algorithm if
steps (2),(3),(4) would have been executed after the j’th example is chosen in step (1). We observe
that the number of multilinear consistent functions in G; is the number of independent monomials that
are linearly dependent on other monomials modulo the concept where the j examples chosen in (1) are
the only positive examples. Now, if a certain monomial linearly depends on others for the first j exam-
ples, it also depends on other monomials for the first j* examples, where j’ < j. Consider a series of
N Bemoulli trials in which a success is manifested as discovering that at least one of the monomials
linearly dependent on others modulo the concept after the first j examples, is linearly independent
modulo the concept after the first j+1 examples. We have a success if and only if at least one function
in G; is inconsistent with the j+1’th example, i..,

dgeG; gi)20.
Since our assumption is that f is a multilinear consistent function with a degree k, at least one of the
monomials is dependent on others for all examples. Therefore, the number of successes cannot exceed
the number of monomials of degree bounded by k. Let X; denote the probability that the next example
(the j+1°th ) does not agree with the functions in G;. X; = }'D (v) with summation over all exam-
ples for which ngG j 8(v) #0. Clearly, X; is monotone decreasing as a function of j. We have

to show that

1 1
Prob(Xy > =) £ —
rob(Xy h) p
k
and this follows because if XN>%, Xj>% j=1---N,N=L(h,3, [’;]), and we have a series of
i=0

k
N Bernoulli trials, each with probability greater than 711- and with less than Y, [’:] successes.
i=0
To see that f is derivable from G, consider a concept where the positive examples are only the

examples chosen by the learning algorithm in step (1). Since f is also a consistent function for that

concept, f is derivable from G by Theorem 3.



Representing Knowledge in Learning Systems 257

6. Learnability of boolean formulae by pseudo boolean functions

The results of the previous section imply that any family of boolean formulae that can be
represented as a set of solutions to bounded degree multilinear equations is learnable from positive
examples. The straightforward way of translating boolean expressions into multilinear functions is by
using the following relations:

% <—> 1-x ; x ANy <—>xy ; x Vy <> x+y—-x7y ®)
which transform any boolean formula into a pseudo boolean function that equals 1 for positive exam-

ples, and O for negative examples.

As a first example for the learning power of the multilinear functions we consider the case of

k—CNF formulae, that were shown to be learnable by Valiant in [1]. To leam k—CNF formulae of n
variables with error %, Valiant’s algorithm requires O (h-(logh + n**1)) examples, while our algo-

rithm requires only O (h-(logh + n*)) examples.

Theorem 4: k—CNF is learnable by a multilinear equation of degree bounded by k.

Proof: Let the k—CNF expression be ¢; Acy N -+ - Acy. Since each of the clauses contain at
most k literals, it follows from (8) that it can be expressed as a multilinear function of degree k.
Denote by M; the multilinear function that corresponds to ¢;. M; =1 if ¢; = TRUE, and M; = 0 if
¢; = FALSE. The following muliilinear equation of degree k is a representation of the k—CNF
expression:

N
YM;-N=0 a.

i=1
A k—term—-DNF formula is a DNF formula with at most K terms. It is known to be learnable

by k—CNF [5]. We give a direct proof for its learnability by multilinear functions.

Theorem 5: k—term—DNF is learnable by a multilinear equation of degree bounded by k.

Proof: Let the k—term—DNF expression be my VY myoV - - ¥V my, where m; =yl Ao /\y,'; ,

with t; = p; + n;, y} =x} j=1---p; and y}'ﬂ,i =—.x}+p‘, j=1---n;. The following is a



258 Session 3

representation by a k degree multilinear equation:

k Pi no

TI(Xx% - Xxp4 = pi) =0 O

i=1 j=1 j=1
Example: (x; AXx; Ax3) V (X; Ax,) is represented by (X + X3 — X9 — 2)(x, —x; — 1) =0.

Consider a subset of N variables out of the n variables x4, - - - .x,, and denote its elements by
Xs,» " " Xs,. A concept is represented by a boolean threshold function if there are numbers N and ¢
N

such that szi >t <==> (X1, " X,)Is a positive example. It was shown in [4] that thres-

i=1
hold functions are not learnable. The following theorem shows that a restricted version of the threshold

functions is learnable from positive examples.

Theorem 6: With the above terminology, threshold functions for which N — ¢t < k are learnable by
multilinear equations of degree k.

Proof: The threshold functions under the condition of the theorem are represented by the following

kK N
multilinear equation: [J(X x5, —¢ —j) =0 O.
j=1i=1

It should be noted that under the conditions of the theorem the threshold function can be expressed as a
k+1-DNF . Thus, they can be learned by Valiant’s algorithm, by using O (h-(logh + n**2)) exam-

ples. Learning them by multilinear equations requires only O (h-(logh + n*y) examples.

Let myVNm,V --- Vmy be a k—DNF expression, i.e., each of the monomials {m;} has at
most k literals. Natarajan showed in [3] that k—DNF expressions are not leamnable by k—DNF
expressions from positive examples. We consider a restricted version of the k—DNF expression which
can be viewed as a ‘““‘multi XOR’’ operation. More explicitly, we consider the k—DNF expression to be
true if at least one of its monomials is true, and at most m are true. We observe that the same argu-
ments used in [3] to show that the k—DNF is not learnable by k—DNF still hold for the above case

for any m21.



Representing Knowledge in Learning Systems 259

Theorem 7: The restricted version of the k—~DNF in which at most m of the monomials can be
true is learnable by a multilinear equation of degree bounded by m k.
Proof: We will consider only the case of monotone monomials. The case of non monotone monomials

can be handled in the same method as in the proof of Theorem 5. Let the expression be

myVNmyV -+ Nmy, wherem; =xi A - - - /\x,i,. The following is a representation by an m -k
m N k .

degree multilinear function: [T(X(JTx;) — ) =0 O
a=1 i=1 j=1

7. Concluding remarks

We have shown that the representation of learnable knowledge by the same class of representa-
tions as those that are to be learned may be disadvantageous, as some concepts that are not learnable in
this way are learnable by other representations. The class of pseudo boolean multilinear functions
appears to provide a good representation for learnable knowledge, enabling a unified learning algorithm
for many of the known classes of learnable concepts, as well as to others, not previously known to be

leamable.

References

1. L. G. Valiant, ‘“*‘A theory of the learnable’’, Communications of the Assoc. for Computing
Machinery 27, 11 (1984), 1134-1142,

2. A, Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth, ‘‘Classifying learnable geometric
concepts with the Vapnic-Chervonenkis dimension’, Eighteenth annual Assoc. for Computing
Machinery symposium on theory of computing, Berkely, California, May 1986.

3.  B. K. Natarajan, ‘‘On learning boolean functions’’, Proceedings of the nineteenth annual Assoc.
for Computing Machinery symposium on theory of computing, 1987, 296-304.

4, M. Kearns, M. Li, L. Pitt and L. G. Valiant, *“On the learnability of boolean formulae’,
Proceedings of the nineteenth annual Assoc. for Computing Machinery symposium on theory of
computing, 1987, 285-295.

S. M. Keamns, M. Li, L. Pitt and L. G. Valiant, ‘‘Recent results on boolean concept learning’’, Proc.
4’ th Intl. workshop on Machine Learning, 1987.

6. A. Papoulis, Probability, Random Variables, and Stochastic Processes, (second edition),
McGraw-Hill, New York, 1984,



