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A B S T R A C T  

A modM approach to nonmonotonic reasoning was proposed by Drew McDermott and Jon Doyle 
in 1980-82. Almost immediately some disadvantages of that approach were pointed out. Robert 
Moore (1983) proposed his atltoepistemic logic, which overcomes these difficulties. Later, some 
authors (Kurt  Konolige, Paul Morris and others) found peculiarities of different kinds in Moore's 
logic and proposed rather complicated solutions to these problems. A careful mathematical analysis 
of Moore's and McDermott's approaches shows that Moore's logic is merely a special case of 
McDermott's logic, at least formally. The problems that arose in Moore's logic may find a simple 
and uniform solution by going back to McDermott's original concept. 

I N T R O D U C T I O N  

Moore [1] introduced autoepistemic logic for formalising reasoning of an agent which may contain 
references to the agent's own knowledge (or belief). This kind of reasoning, which Moore calls 
autoepistemic, has the nonmonotonicity property: The set of "theorems" does not increase with 
the set of "axioms." (Mool"e attributes this observation to Stalnaker's work [2] which is not available 
to the author.) The language of Moore's logic is the usual propositional language augmented by the 
modal operator L. The intended interpretation of L¢ is: "the rational agent believes (or knows) ¢". 
Because of nonmonotonicity, the set of autoepistemic consequences of a given premisses cannot be 
defined as the set of sentences obtained from the premisses by applying some axioms and inference 
rules. Instead, Moore [1] introduced the following fixed point construction. 

Let A be any set of sentences in the modal propositional language. A set of sentences T is 
said to be a stable expansion of A iff 

T = {¢ :  At2 {L¢:  ¢ C T} U {-~L¢: ¢ ~ T} ~- ¢}. (1) 

The sign ~- denotes here the usual tautological consequence relation. The stable expansion of A 
may be described informally as the set of beliefs of an ideal rational agent on the basis of the 
premisses A. Two sets of formulas added in (1) to A are produced by "positive introspection" 
({L¢:  ¢ e T}) and "negative introspection" of the agent. 

Moore's work was preceded by McDermott and Doyle's work [4], who attempted to formalise 
default reasoning, another important form of non-monotonic reasoning. The informal interpreta- 
tion of L¢ in [4] is "¢ is provable." (As a primary modal operator, the dual operator M = -~L-~ is 
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used in [4]; we use L for convenience.) The basic notion of [4] is the fixed point of a set A: T is a 
fixed point of A iff 

T = { ¢ :  d t.) { ~ L ¢ :  ¢ ~ T)  F- ¢}. (2) 

Thus stable expansions differ from fixed points by the presence of the term {L¢ : ¢ C T} in the 
right-hand side of the fixed point equation. Informally, fixed points are the possible sets of non- 
monotonic consequences of A. However, McDermott  and Doyle's logic has some peculiarities. The 
most serious one is that  a set of formulas may have a consistent fixed point containing both p and 
~Lp, which contradicts the intended interpretation of L. 

McDermott  [5] fixed this defect of the definition (2) by replacing the provability F- ill the 
classicM propositional logic by the provability in some system of modal  logic (with L identified 
with the necessity operator). He considered three well-known modal systems as possible bases for 
non-monotonic logic, namely the systems T, $4 and  $5. But only the case of $5 was investigated 
in [5] in sufficient detail. It turned out that  there are too many fixed points in this case; even the 
empty set (pure non-monotonic $5) has infinitely many fixed points. Moreover, the intersection of 
all fixed points of A is just the set of all monotonic S5-consequences of A, so that  non-monotonic 
$5 collapses, in some sense, t o t h e  monotonic $5. But the non-monotonic T and $4 remained 
uninvestigated in [5], although, as we show in this paper, they have nice properties. 

Moore [1] argued that  McDermott  and Doyle's logics are logics of autoepistemic reasoning, 
rather than of default reasoning, and considered his own logic a reconstruction of McDermott  and 
Doyle's logic. 

Later, some authors pointed out some defects of Moore's logic. Such defects are of two kinds: 
first, some sets of formulas have superfluous, or "ungrounded" stable expansions (Konolige [6]); 
second, some simple theories do not have stable expansions (Morris [7]). Solutions to these problems 
have been proposed. In order to get r id  of superfluous expansions, Konotige [6] introduced the 
notions of moderately grounded and of strongly grounded extension, which are the strenghenings 
of the notion of stable expansion. On the other hand, Morris [7] introduced the notion of stable 
closure, which is a generalisation of the notion of stable expansion. 

In this paper we argue that  McDermott 's  non-monotonic modal logics may be viewed as 
aut0epistemic logics, and Moore's logic is one of them, although the most important  one. Many 
problems arising in Moore's logic may be solved within McDermott 's  logic by an appropriate choice 
of the underlying modal  system. In particular, if we take $4 as the underlying system, then the 
ungrounded extensions found by Konolige disappear; and the additional extensions introduced by 
Morris take their place. 

Accordingly, we shall call McDermott 's  non-monotonic modal logics the autoepistemic (modal) 
logics. 

The paper is organized as follows. After some preliminaries in Section 1, we prove in Section 2 
that  Moore's logic is exactly McDermott~s logic based on the modal logic known as "weak $5." In 
Section 3, the complete description of fixed points for McDermott 's  logics based on modal logics K, 
T, $4 and weak $5 is given. The proofs of propositions are collected in Appendix. The theorems 
are formulated in Appendix in more general (and more technical)form. This enables us to clarify 
the reasons for the differences between the nonmonotonic logics based on different modal logics; on 
the other hand, the reader interested only in applications to AI can avoid relatively complicated 
technical machinery. In Section 4 we apply the., general results of Section 3 to concrete situations. 
In particular, we show, that  using $4 as a basis for autoepistemic logic enables to avoid some 
difficulties appeared in Moore's logic. 
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1 P R E L I M I N A R I E S  

We consider the usual propositional modal language with the logical connectives V, A, D, -1 and with 
the modal operator L (necessity). All modal logics in question have two inference rules: modus 
ponens (¢, ¢ D ¢ / ¢ )  and necessitation (¢/L¢) .  Their axioms include all instances of propositional 
tautologies and some axiom schemata from the following list: 

K L(¢ D ¢)  D ( L ¢ D  L¢) 

T L C D ¢  

4 L¢D LL¢ 

5 -~L¢ D L-aLe. 

K is the modal logic based on the single axiom schema K. T is K together with T, $4 is T 
together with 4, $5 is $4 together with 5, K45 (also Called weak $5) is $5 without T. 

If S is a logic and PP is a set of sentences, then F Ps ¢ means that ¢ is deducible from F by 
means of the axioms and inference rules of S. If S is classical propositional logic then we omit the 
subscript S. 

By a modal logic we mean any logic in the modal propositional language which contains 
all instances of propositional tautologies, and whose inference rules are just modus ponens and 
necessitation. 
NB.  Some authors (e.g. Chellas [8], Konolige [6]) use F I - s¢  in a stronger sense: they mea.n that 
for some finite subset {A1, . . . ,  A~} of F, bs (A1 A . . .  A An) D ¢. It is important to distinguish 
our understanding of Ps from the stronger one. For instance, we ha~e p ~- Lp, and in the stronger 
sense this this is not true. Our definition follows McDermott [5]. 

A Kripke model is a triple .h4 = (M, R, V}, where M is a nonempty set (called the set of 
worlds), R is a binary relation on M, and for each a E M, V(a) is a set of propositional variables, 
which are said to be true in the worm c~. The forcing relation (.A4, a} ~ ¢ (the formula ¢ is 
true in the world a of the model M) is defined inductively as follows: (.M,o~) ~ p iff p e V(a); 
( M , a )  ~ ¢ A ¢ (¢V 0) iff ( M , a )  ~ ¢ and (or) { M , a )  ~ 0; ( M , a )  ~ -7¢ iff not {M,a )  ~ ¢; 
(M,  a) ~ L¢ iff for each fl with aR/3, (M,  fi) ~ ¢. 

We write a ~ ¢ if it is clear from the context which A.4 is meant. 
We write .A4 ~ ¢ iff for each a 6 M, (M,  a) ~ ¢. 
Any Kripke model is also called a K-model. If R is reflexive, then  the K-m0del is called a 

T-model; if R is reflexive and transitive, then M is called an S4-model; if R is universal on M (i.e., 
R = M × M), then .M is called an S5-model. If R istransitive and Euclidean (i.e., aRfi and aRT 
implies /3R7), then .M is called a K45-model. F ~ s  ¢ means that for each S-model M ,  if .M ~ F 
then M ~ ¢. It is well known that, if S is one of K, T, $4, $5 and K45, then, for each F and ¢, 
F ~ s  ¢ iff F ~-s ¢ (completeness theorems, see e.g. Chellas [8], McDermott [5]). (In monographs 
on modal logic, the completeness theorem is usually proved in a weaker form, for the empty F 
only. McDermott deduced the form we need from this weaker form. His method is applicable to 
any normal mod 
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A set T of formulas is called an S-extension of a set A iff 

T = {¢ : AL3 {-~L¢ : ¢ ~ T} ~s  ¢} 

P r o p o s i t i o n  1.1. (McDermot t  [5]). Let S, T be any normal modal logics contained in $5, and 
S C_ T. Then each S-extension o f  A is also a T-extension off A. 

T is called stable iff: (i) T is closed under  tautological  consequence, (ii) for each ¢, if ¢ E T 
then L ¢ E  T,  and (iii) for each ¢, if ¢ ¢ T then -~L¢ E T. Clearly, for each normal  logic S, each 
S-extension is a stable set. T is called an S5-set iff for some S5-model .M, T = {¢ : .h// ~ ¢}. 
Moore [9] has proved tha t  a consistent set is stable iff it is an S5-set. 

An objective formula is a formula not containing occurrences of L. 

2 M O O R E ' S  L O G I C  A N D  K 4 5  

Moore [1, p. 89] established the following connection between his logic and K45: T is a stable 
expansion of A iff 

T = { ¢ : A U { L ¢ : ¢ E T } U { - ~ L ¢ : ¢ ~ T } ~ K 4 5  ¢}. 

Konolige [6] s t rengthened this result: T is a stable expansion of A iff 

q 

T = { ¢ :  A U { L ¢ :  ¢ E To]-U {-~L¢ : ¢ E To} ~¢45 ¢},  

where To is the set of all objective formulas in T,  and T-o is the set of all objective formulas not in 
T. 

R e m a r k .  Konolige writes A t3 L A  instead of A since he uses ? in the stronger sense, see NB in 
Section 1. (3) is equivalent to Konolige's result since ?K45 ¢ D L¢  for each modalized ¢ .  

P r o p o s i t i o n  2.1.  I f  T is consistent, then T is a stable expansion of  A iff T is a K45-extension of  
A. 

So Moore 's  logic may be considered a special case of McDermot t ' s  logic. 

R e m a r k .  Proposi t ion 2.1 fails for an inconsistent T. For instance,  the theory {-~Lp} has two 
stable expansions: a consistent one, which does not contain p, and an inconsistent  one (the set of 
all formulas).  0n ly  the consistent expansion is a K45-extension. In the rest of the paper  we shall 
write "stable expansion" for "consistent stable expansion".  

3 F O R M A L  P R O P E R T I E S  O F  A U T O E P ] [ S T E M I C  M O D A L  L O G I C S  

Konolige [6, p. 355] described a construct ion which enables us to construct  a stable set WA 
containing a given set A of objective formulas, such tha t  WA is a stable expansion of A, and the 
objective formulas in WA are exactly the tautulogical  consequences of A. WA is descr ibed as an 
S5-set. We generalize this construct ion to arbi t rary A and investigate in which cases the resulting 
stable set is an S-extension, and when all S-extensions can be const ructed in this way, 
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By A L we denote the set of all subformulas of (the elements of) A that  begin with L. A- 
formulas are the formulas constructed fi'om the elements of A L and propositional variables by 
means of propositional connectives. If ~ is a set of formulas then ~ denotes {9¢ : ¢ E ~}. 

Let W be a consistent stable set containing A. Let ~ = A L f~ W ,  and ~ = A L \ q2. Obviously, 
if L¢  E W then ¢ E W, and if L ¢ E  ~ then ¢ ~ ~. Hence A U ~ U  ~ U { ¢  : L ¢  E ~} is 
consistent,contained in W and does not imply ¢ for any L ¢ E  • in the propositional calculus. This 
motivates the following definition. 

De f in i t i on  3.1. Let @ C_ A n, ~ = A L \ ~. ~ is said to be admissible for A iff A U -~@ U • U {~b : 
L ¢ E  q2} is propositionally consistent and for each L ¢ E  ~, ¢ is not a tautological consequence of 
A U ~ U • U {'¢ : n ~  E ~ } .  

Let V be any valuation assigning the t ruth  values 1 (true) and 0 (false) to propositional letters, 
and let • be any set of formulas beginning with L. Define V~(p) = Y(p) if p is a propositional 
variable, Ve(L¢) =(0 if L ¢ E  ~, 1 otherwise), and extend Vv to all formulas of modal language by 
means of the usual truth-tables. 

De f in i t i on  3.2. Let ~ be admissible for A, • = A b \ ~ . Define the (A,~)-generated Sb- 
model .hfd,e = (NA,e ,R,  UA,e} as follows. Set NA,V to be the set of all valuations V such that  
Ve(A) = 1 and for each L¢  E ~,  V~,(~/,) = 1. Set _R to be universal on .NA,@, and for V E NA,O set 
UA,v(V) = {p:  Y(p) = 1}. Denote WA,V = {¢ :  AfA,O ~ ¢}. 

NA,~ is nonempty, since A U {-~L¢ : L ¢ E  @} U • U {~b : L ¢ E  ~} is propositionally consistent. 
Consequently, the model AfA,¢ is well-defined. 

Lemma 3.1. II'~ is admissible for A and ¢ is an A-formula, then for each V E N A,~, (AfA,~, V) ~ ¢ 
= 1 .  

C o r o l l a r y  3.1. WA,e is a stable set containing A U -tOO U q U {¢ : L~, E ~}. 

C o r o l l a r y  3.2. A U -~@ U ~ U {¢ : L ¢ E  ~} is consistent with $5. 

Bach ~I, admissible for A defines a theory WA,¢ which is stable and contains A. First we shall 
try to investigate in which cases WA,e is an  S-extension of A. 

De f in i t i on  3.3. Let @ C A L,  • = A L \ ~. • is said to be S-admissible for A iff it is admissible 
for A and, in addition, for each L!b E ~,  A U ~ t-s ¢. 

T h e o r e m  3.1. Let S be any moda.l logic contained in $5, and let @ be S-admissible for A. The~ 
WA,~ is an S-extension of A. 

Does a set ~, S-admissible for A, uniquely determine the S-extension of A containing - ~  ? 
If S is $5 then this this not the case: Even the empty set (which is Sb-admissible for itself) has 
infinitely many $5-extensions. But for many other logics this is the case. 

T h e o r e m  3.2. Let S be any of K, T, $4, K45, and let ¢ be S-admissible for A. Then WA,¢ is 
the unique S-extension of A containing A U ~ , .  

N o t e  on  t h e  p roof .  The proof (see Appendix) is rather complicated and uses Kripke models 
for S. The key propm'ty of S which enables us to obtain the result is the following one. Let 
.h4 = (M, R, V} be an S-model, and let oe ~ M. Then for some R* such that  

R u x Rg(R))  c R* c x u M ) )  u R, 
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< M tA {a}, R*, V* > is an S-model for each V*, too. S5-models do not possess this property, K,T 
and $4 possess it trivially, and for K45 we can achieve it by a slight modification of the notion of 
K45-model (preserving, of course, the completeness theorem). The theorem holds for each modal 
logic possessing the above-mentioned propertyxl 

Another question is whether every S-extension is WA,V for some S-admissible for A set ~. 

T h e o r e m  3.3. Let S be K,T or $4. Then each S-extension of A equals WA,,~ for some S-admissible 

N o t e  on t h e  proof .  In addition to the property mentioned above, we need here the following 
closure property: If < M, R, U > and < N, Q, V > with M 0 N = 0 are S-models, then 

(MU N, R U ( M  x N)UQ,  UUV)  

is an S-model too. K, T and 54 possess this property trivially, but K45 does not. Again the 
theorem holds for each modal logic possessing tlhese two properties.D 

Theorem 3.3 is wrong for K45--for example, A = {Lp D p} has a stable expansion WA,O, but 
0 is not K45-admissible for A. 

Def in i t ion  3.4. Let • be admissible for A, • = A L \ ~. • is said to be propositionally admissible 
for A iff for each L ¢ E  ~, ¢ is a tautological consequence of A U - ~  U ~. 

T h e o r e m  3.4. T is a stable expansion (or K45-extension) of A iff T is WA,~ for some ~ which is 
propositionMly admissible for A. 

Theorem 3.4 can be obtained as a corollary to Theorems 1.1 and 1.2, see Appendix. In [10] 
we presented a simpler proof without any use of modal logic. 

4 A P P L I C A T I O N S  

P r o p o s i t i o n  4.1. Let S be any modal logic for which Theorem 3.2 is true, a.nd let A be any set 
of objective sentences consistent with S. Then A has WA,O as its unique S-extension. 

Proposition 4.1 for the empty A was proved in [11] (directly, not as a corollary to the general 
theorems from the previous section), 

For Moore's logic, this fact was established by Konohge [6]. Thus, for objective axioms there 
is no difference between autoepistemic K, T, $4, K45. But for arbitrary axioms all these logics are 
different. 

The following two examples are taken from [11] too, but here we explain them more simply 
using the general results of Section 2. 

E x a m p l e  4.1. Let A = {L(Lp D LLp) D p}. In $4 this formula is equivalent to p. So, by 
Proposition 4.1, A has a unique S4-extension, namely T = Wp,¢. Let A have a T-extension. Then, 
by Proposition 1.1, it must be T. Hence, by Proposition 3.2, 0 is T-admissible for A, i.e., A F-T p, 
which is wrong. So A has no T-extensions. 

E x a m p l e  4.2. B = {-~Lp D p} is known to have no stable expansions. But B F-T p, hence 0 is 
T-admissible for B, and B has a T-extension. 
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E x a m p l e  4.3.. Consider the theory C = { Lp A Lq D p A q, -~Lp D p}. Since C U { Lp, Lq} F p A q, 
0 is propositionally admissible for C, so We,0 is a stable expansion of C. It may be easily shown 
that  there is no other set propositionally admissible for C. On the other hand, {Lq} is the only set 
S4-admissible for C, so that  WC,Lq is the only $4- extension of C. Thus, C has one S4-extension 
and one stable expansion, and the two are different. 

A = {Lp D p} has two K45-extensions, namely T1 = WA,{Lp} and T2 = WA,O, but only the 
former is an S4-extension. These facts may be established using the results of Section 3. 

Konolige [6] considered two examples: 

A = {Lp p},  B = {- Lp D q, Lp D p}. 

A has two stable expansions, T1 and T2, described above. Konolige considered T~ an "anomalous" 
extension, since then "the agent's belief in P is grounded in her assumption that she believes P." 
In order to avoid this situation, Konolige introduced the notion of moderately grounded extension, 
and T2 turned out to be not moderately grounded. 

B has two extensions: S 1  : WB,{Lp} and $2 
too, but both $1 and $2 are moderately grounded. 
strongly grounded extension--a rather complicated 
ties. 

= WB,O. Konolige regards $2 as anomalous 
To eliminate $2, he introduced the concept of 
definition possessing some undesirable proper- 

We suggest another possibility. If we consider, e-g., S4-extensions instead of K45-extensions, 
then T2 and $2 fail to be extensions, but T1 and $1 remain. 

L e t  us consider, on the other hand, some examples of the lack of extensions. Morris [7] gives 
two such examples (we have simplified his notation). 

The axiom set 

C = {-~LB D A, -~LA D -~F, -~LB D F,-~F} 

is a "simplified taxonomy example". Here A should be understood as "Tweety is an abnormal 
animal", B should be understood as "Tweety is aa abnormal bird", F should be understood as 
"Tweety can fly". 

The second example is 

D = {-~Lq D p,-~Lr D -~p} 

(the "Nixon paradox"; q stands for "Nixon is a Quaker", r stands for "Nixon is a Republican", p 
stands for "Nixon is a pacifist" ). 

Morris considers it anomalous that  C and D do not have stable expansions. He introduced the 
notion of stable closure. C has one stable closure, and D has two. Using the results of Section 3, 
we conclude that  C has the unique S4-extension WC,{LA} , and D has two S4-extensions, WD,{Lq} 
and WD,{L,.}. All these extensions exactly coincide with Morris's stable closures. 

Lifschitz [personal communication] considered it unsatisfactory that  {Lp} has no stable ex- 
pansions. Again, {Lp} has the unique S4-extension, which contains Lp and p. 

Thus the use of S4-extensions instead of stable expansions allows us to avoid some "un- 
grounded" extensions and, on the other hand, to add some new extensions required in applications. 
But we do not assert that  autoepistemic $4 is always "better" than Moore's logic. We only wanted 
to demostrate that  the problems of different kind may get a uniform solution. We think that  
different aspects of autoepistemic reasoning should be reflected by different formalisations. 
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A P P E N D I X .  P R O O F S  OF P R O P O S I T I O N S  

P r o p o s i t i o n  2.1. I f  T is consistent, then T is a stable expansion of A l i fT  is a K45-extension of 
A. 

Proof .  Let T be a consistent stable expansion of A. Moore [1, p.89] proved that stable expansions 
contain all instances of all K45-axioms. Since 7' is closed under the necessitation rule, we have for 
each ¢,  

C E T i f f A U { L ¢ : ¢ E T } U { - ~ L ¢ : ¢ ~ T } k K 4 S  ¢. 

If ¢ E T, then L ¢ E  T, hence -~L¢ ~ T. But --~L~L¢ D L¢ is a theorem of K45, hence for each 
¢ E T, {--,L¢ : ¢ ¢ T} kK45 L¢. Hence T is a I(45-extension. 

Let T be a K45-extension. Let 7 ) be propositionM cMculus augmented by the necessitation 
rule. Let Ax be the set of all instances of the modal axiom schemes of K45. Then for each ¢,  

¢ E T iff A U {~L¢ : ¢ ~ T} U Ax Hp ¢. 

Hence 

¢ E Tif f  A U {-~L¢ : ¢ ~ T} U {L¢:  ¢ E T} U Ax k ¢ 

Moore [1, p. 89, the last paragraph of Section 4] proved, that this is equivalent to 

, ¢ E T i f f A U { ~ L ¢ : ¢ ~ T } U { L ¢ : ¢ E T } k ¢ ,  

which proves the proposition.a 

L e m m a  3.1. If~I, is admissible for A and ¢ is an A-formula, then for each V E NA,¢, (N'A,¢, V) ~ ¢ 
= 1. 

Proof .  By induction on the complexity of ¢. The only nontrivial case is when ¢ has the form Lr / 
in the induction step. Since Lr / E AL, we have L~ E • or L~ E kI,. 

Let V~(L~) = 0. Then L~ E • and 

A U ~ ¢ U q y U { ¢ : L C E  @}Vr]. 

Since • U • = A L, there exists a valuation W such that 

We(A)  = W , ( { ¢  : L,¢ Ei ~}) = 1 and We(T) = 0. 

This W is an element of NA,¢; hence, by the induction hypothesis, (.Af, W) ~ ~/, so that (N', V) 
-~Lr/. 

Let V¢(Lr/) = 1. Then L~ E q, hence for each W E NA, , ,  We(r/) = 1. Hence, by the 
induction hypothesis, W ~ r] for each W E N, and V ~ Lrl.a 

Coro l l a ry  3.1. WA, ~ is a stable set containing A O - ~  O • U {~b : L¢  E 9}.  

Proof .  Immediately follows from Lemma 3.1. (Recall that WA,¢ is {¢:  (AfA,¢, V) ~ ¢.)0 

Coro l l a ry  3.2. A U - ~  U • U {¢ : L ¢ E  tI,} is  consistent with $5. 

Proof .  All formulas in this set are true in the S5-model .AfA,¢. a 



Autoepistemic Modal Logics 105 

Untill the end of Appendix, we shall write Af for .N'A,V and N for -NA,o. 

T h e o r e m  3.1. Let S be any modM logic contained in $5, and let • be S-admissible for A. Then 
WA,e is an S-extension of A. 

P r o o f .  It is sufficient to prove that  for each ¢ and for B = {~L~ : for some a, (.hf, c~) ~ 77}, 

.M ~ ¢ iff A U B Ps ¢ (A1) 

The "if" part  follows from Corollary 3.1, because $5 contains S. 
Let us prove the "only if" part by induction on the maximal nesting depth of L in ¢, m(¢).  

Assume that  the "only if" part of (A1) is valid for each ¢ with m(¢) < n, and assume re(C) = n 
and Af ~ ¢. We may assume that  ¢ is in the conjunctive normal form, i.e., ¢ is ¢1 A . . .  A ¢k, and 
each ¢i has the form 

C V -~L~ V . . .  V -~L~i A L(1 V . . .  V Lira (A2) 

with rn(~b) = 0, l, m > 0 and .hf ~ ¢i. 
If for some j and for some a, (N', a) ~ -~L~j, then for some fl, (iV, fl) ~ ~j. Hence -~L~j E B 

and A O B ~-s C/- 
If for some a and for some j ,  (Af, a) ~ L~j, then.N" ~ (j .  But m(~j) < n, hence, by the 

induction hypothesis, A U B bs  ~j. Applying the necessitation rule and the propositional logic, we 
obtain the derivability of ¢i. 

The only remaining case is that  of 

.Af ~- L~i A . . .  A L~t A -~L~] A . . .  A -~L(~. 

Since .hf ~ ¢i, we conclude Y ~ ¢ fl'om (A2). By Lemma 3.1, this means that  ~b is a tautological 
consequence of A U -~q~ U • U {¢ : L ¢ E  ~}. Since • is S-admissible for A, and S contains the 
necessitation rule, we get A U -~O Ps ~. Hence A U B bs ¢i. Thus, A U B bs  ¢i in each case for 
each i, so that  A U B b ¢.D 

A frame is a pair (M,R) ,  where R is a binary relation on M. 

Def in i t i on  A1.  Let S be a modal logic, and let /C be a class of frames. We say that  S is 
characterized by K~ if, for each set of formulas F and each formula ¢, P P ¢ if and only if the 
following condition is satisfied: For each Kripke model M = (M, R, V) with (M, R} E K:, M ~- F 
implies M ~ ¢. 

We can say, for instance, that  K is characterized by the class of all flames, T is characterized 
by the class of all reflexive frames, $4 is characterized by the class of all reflexive transitive frames, 
and $5 is characterized by the class of all universal frames (i.e:, frames of the form (M, M × M}). 
K45 is characterized by the class of M1 transitive Euclidean fl'ames. 

Def in i t i on  A2.  Let ~ be a class of frames. We say that  ~ admits a quasi-amalgamation if, for 
each (M, R) E K; and for a0 ~ M, there exists a frame (M U {a0}, R*} E K; such that  

({s0} x Rg(R)) u R c R* c [{s0} × ({s0} u M)] u R. 

Such a frame is called a quasi-amalgamation of (M, It) in K~. 
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The notion of quasi-amalgamation is a generalisation of the well-known notion of amalgama- 
tion (see, for instance, Hughes and Cresswell [12]). 

The classes of all frames, of all reflexive fl'ames and of all reflexive and transitive frames admit 
a quasi-amalgamation. In each of these cases, a. quasi-amalgamation of a frame (M, R) is given by 
the expression (M U {a0},R U {a0} × ({a0} UM)).  

T h e o r e m  A1. Let IC be a class of&ames admitting a quasi-amalgamation. Let S be characterized 
by IC, and let ~ be S-admissible for A. Then WA,¢ is the only consistent S-extension of A containing 
--n~. 

Proof .  WA,¢ is an S-extension of A by Theorem 3.1, and contains - ~  by Corollary 3.1. 
Let T be any consistent S-extension of A, and let ~ C_ T. T is stable; on the other hand, 

Moore [3] proved that stable sets coincide iff they contain the same objective formulas. Thus it is 
sufficient to prove that, for each ¢ with re(C) = 0, 

¢ E S if and only if Af ~ ¢. 

Let us prove the "if" part first. If for each ix E N, (Af, a) ~ ¢, then, by Lemma 3.1, ¢ is a 
tautological consequence of A U ~ U 12 U {¢ : L¢ • 12}. Since • is S-admissible and S contains 
the necessitation rule, we have A U - ~  F-s ¢. But A U -~/l~ C_ T and T is deductively closed under 
S; hence ¢ • S. 

"Only if": Assume that ¢ • T but, for some V • NA,¢, (.hf, V) ~ 7¢. Fix these V and 
¢. Since T is consistent with S, there is a Kripke model .h4 = <M, R, W) with (M, R) • )E and 
M E T .  

Consider the Kpipke model .hd* = (M U {a0}, R*, W*), where (M U {a0}, R*> is a quasi- 
amalgamation of (M,R> in K, W*(a) = W ( a ) f o r  a • M, and W*(ao) = UA,¢(V). Let us prove 
by induction on the complexity of ¢ that, for each A-formula ¢, 

(.hd*, a0> ~ g, if and only if(Af, V) ~- g,. (A3) 

The only nontrivial step in the proof is the case when t/' has the form L~ 1 in the induction step. 
Since L~? • A L, we have L~ • !2 or L~] • ~. 

If (Af, V} ~ L~, then L~ • • by Corollary 3.1. Hence -~L~ • T, and, for some 
/3 • Rg(R),(.hd,fl~ ~ ~. Hence (.Ad*,fl) ~ r;. By Definition 2.3, a0R*/3. Thus (.Ad*,ao) ~ -~Lr;. 

If (Af, V) ~ L~, then L~ • 99. Hence, by Corollary 3.1, (Af, V> ~ 7/, and, by the induction 
hypothesis, 

(.A4*, a0) ~ ~. (Ad) 

Since AU -~,I~ C T, and ~ is admissible, we have ~ • T. Hence, for all/3 • M, (.hd*,fl) ~ ~. Then, 
from (An), (.hd*, a0> ~ LU. (h3 ) i s  proven. 

We have 
T = Ths (A  U {-~L¢ : g, ¢ T}). (dh) 

From (A3) and Corollary 3.1 we get: 
<M*, o,0> A. (d6) 

For each g, ¢ T, for some fl • Rg(R) we have (.hd*,fl) ~ ¢; hence (.M*, a0> ~ -~L,¢. Since A// ~ T, 
using (Ah) and (A6) we get .hd* ~- T. Hence (.hd*, a0> ~ ¢. But from (A3) and our assumption 
we get (.hd*, a0) ~ -1¢, contradiction.o 
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T h e o r e m  3.2. Let S be any of  K, T, $4, K45, and let • be S-admissible for A. Then WA,q~ iS 
the unique S-extension of  A contMning A U-~il~. 

Proof .  The classes of all frames, of all reflexive frames, of all reflexive transitive frames character- 
ize, respectively, the logics K, T and $4, so that we can apply Theorem A1. The class of all transitive 
Euclidean frames, which is known to characterize K45, does not admit a quasi-amalgamation. Let 
us call a frame <M, R> strongly Euclidean if it is transitive and, for each a and /3 from Rg(R) ,  
dR/3. {M U {a}, {a} × Rg(R) I  is a quasi-amalgamation of this frame, and it is strongly Euclidean 
if the initial frame is strongly Euclidean. If {M, R) is transitive and Euclidean, then for a E M 
the frame {{/3 E M : a = fl or aR/3} ,R l{ f l  E M : a = fl or dR~3}) is strongly Euclidean. From 
this fact we can easy deduce that K45 is characterized by class of all strongly Euclidean frames, 
and apply Theorem Al.o 

Def in i t ion  A3.. A class ~ of frames is said to be closediff, for all (M1, R1) E ~ and {M2, R2) E K~ 
with M] M M2 = 0, the frame {M1 U M2, R1 U (M1 x M2 ) U R2} belongs to/fi, and/fi contains, along 
with each frame, all frames isomorphic to it. 

L e m m a  A1. Let • C A L, ~ = A L \ ~. Let  .A/~ 1 = (M1, Ri ,V1} and J~/~2 = {M2,R2,V2) be 
Kripke models such thnt M1 M M2 = ~, .A4~ ~ - ~  a n d . M 2  ~ ~P for all L~b E ~.  Let M be 
(M1 U M~, R~ U (M~ x M2) U R~). Then, for each A-formula ¢ and for each a E Mi ,  

(.A/~i, ~ ) ~ ¢ if and only i f ( M , a )  ~ ¢. 

Proof .  By induction on the complexity of ¢. The only nontrivial step in the proof is the case 
when ¢ has the form L¢. 

Let (M,  a) ~ L¢. Then, for each fl E M1 with dR1/3, {.M,/3 / ~ ¢. Hence, by the induction 
hypothesis, for all such/3, (M1,/3) P-- ~b, which means that (Jr41, a) ~ ¢. 

Let {M,a )  ~: L¢. Then, for some /3 with dR~3, (M, /3)  ~= ~b. If /3 E M1, then, using 
the induction hypothesis, we get { M l , a )  ~: Lib. Let /3 E M2. If L ¢ E  ~,  then M2 ~ ~P, which 
contradicts the assumptions of the lemma. Thus, L¢  E ~. Hence M1 P- - L ¢ ,  and (M1, a) ~: L~b. 
O 

T h e o r e m  A2. Let K: be a closed class of frames, and let S be characterized by IC. Let T be any 
consistent S-extension of A. Let • = T M A L, and let q~ = A L \ ~.  Then • is S-admissible for A. 

Proof .  Since T is consistent with S, there is a model 2t42 = (M2,R2,V2)  with (M2,R2)  E 
/C, .M2 ~ T. Since A U - ~  C_ T, A U -,~ is consistent with S. 

Let L~b E ~; since T is stable, ~b E T. 
Assume, on the contrary, that 

A U -~,I~ b/s ¢. (A7) 

Then there is a model .M1 = (M~,R1,V1) with (M] ,R1)  E /C, .M1 ~ A U - ~ ,  such that, for some 
a E M 1 ,  

(M1, a) ~= ~b. (A9) 

We may assume M1 N M2 = ~. Consider the model 

J'~,/~ = (M1 U M 2 , R 1  U (M1 X M2)UR2,VIUV2 ). 
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By Lemma A1, .M ~ A; clearly, for each -aLe E T, .A4 ~ -~L¢. Since T is an S-extension of 
A, and.A4 is a m o d e l  of S, we have.A4 ~ T. Hence.A4 ~ ¢. But by (A8) and Lemma A1, 
(.A4, a) ~: ¢, contradiction. Thus (A7) is false, and • is S-admissible for A. [] 

T h e o r e m  3.3. Let S be K , T  or $4. Then each S-extension of  A equals WA, ~ for some S-admissible 

P r o o f .  The classes of all frames, of all reflexiw.~ frames and of all reflexive transitive frames all are 
closed and admit a quasi-amalgamation. The theorem follows from Theorems A2 and Al.n 

T h e o r e m  3.4. T is a stable expansion (or K45-extension) of  A iff T is WA,~, for some • which is 
propositionally admissible/'or A. 

P r o o f .  Let ~ C_ A L, let ~ be propositionally admissible for A, and let • = A L \ O. Let 
B = A U {~b : L ¢ E  ~}. We have B U - ~  k- ~b for each ¢ E ~. Hence • is S-admissible for B for 
each S contained in $5, and, in particular for K45. By Theorem 3.1 and Proposition 2.1, B has a 
stable expansion T = WB,~. Using the definition of WB,o, we conclude that  WB,~ = WA,V. Since, 
for each L ¢ E  k0, 

d U {L¢ : ~b E T} tO {-~L 2 : ¢ ~ T} t- ~b, 

T is a stable expansion of A too. 
Conversely, let T be a stable expansion of A. Let • = A L U T,  ~ = A L \ ~. Let L¢  E ~I'. 

Then ¢ is a tautological consequence of A U {Lib : ¢ E T} U {-~L¢ : ¢ ~ T}. Since ¢ E A L, ,¢ is a 
tautological consequence of A U k0 U - ~  also. Thus ~ is propositionally admissible for A. 

Consider B = A U {¢ : L~b E ~}. B C T, so that  T is a K45-extension of B, too. We have 
B L = A L and, trivially, for L ¢  E ~,  B U ~ t- ~b. Hence ~ is K45-admissible for B. Hence, by 
Theorem 3.2, T equals to WB,V. Let us recall the construction of the model .AfA,~: We see that  
WA,~ coincides with WB,~.r~ 

P r o p o s i t i o n  4.1. Let S be any modal logic lbr which Theorem 3.2 is true, and let A be any set 
of objective sentences consistent with S. Then A has WA,O as its unique S-extension. 

P r o o f .  A L = 0, so that  0 is trivially admissible for A. Apply Theorem 3.2.n 

A c k n o w l e d g m e n t s  

I am greatly indebted to Vladimir Lifschitz for the help in different ways. Discussions with Vladilnir 
were very usefull and stimulating; he sent me newest papers on nonmonotonic logic, which are 
hardly available in the USSR, especially in such a little provincial town as Pereslavl-Zalessky. 
Vladimir polished my terrible English and helped to prepare camera-ready empy of the paper by 
using TDX. 

The final version was prepared when I was; in Stanford University as a visiting scholar. I am 
thankful to Professors Patrick Suppes and John McCarthy for the invitation to visit Stanford and 
for the help in arranging my visit. 
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