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ABSTRACT. Conclusions by failure to prove the opposite are frequently used in reasoning about an incompletely specified 
world. This naturally leads to logics for default reasoning which, in general, are nonmonotonic, i.e., inlzoducing new facts can 
invalidate previously made conclusions. Accordingly, a nonmonotonic theory is called (nonmonotonically) degenerate, if adding 
new axioms does not invalidate already proved theorems. We study nonmonotonic logics based on various sets of defaults and 
present a necessary and sufficient condition for a nonmonotonic modal theory to be degenerate. In particular, this condition pro- 
vides several alternative descriptions of degenerate theories. Also we establish some closure properties of sets of defaults 
defining a nonmonotonic modal logic. 

1. Introduction 

Nonmonotonic reasoning is very natural in Artificial Intelligence. For example, when an expert system 

derives a conclusion based on incomplete knowledge, this conclusion may be invalidated in the future by the new 

facts about the external world. In Prolog, with its negation by failure semantics, the proved goals can become 

invalid after the addition of new facts to the data base. Also while dealing with probabilistic reasoning, the derived 

probabilities of different events can change completely, when new facts are added to the knowledge base. Thus if 

one uses threshold probabilities for making conclusions, the accepted truths may change as well. 

Logics which reflect nonmonotonic reasoning have been first introduced in [2], [7], [8], and [12]. More gen- 

eral approach to the question "What  is a nonmonotonic system?" can be found in [1], [3], [5], and [6]. In particu- 

lar, a detailed example of nonmonotonic reasoning can be found in [2]. Most of nonmonotonic logics are based on 

semantics and proof theory, both obtained via fixed points of some monotonic operators. The default logic of Reiter 

([12]) is based on theories which are fixed points of such an operator. The logic of McDermott and Doyle ([8]) is 

based on the intersection of all fixed points of a similar operator. The circumscription of McCarthy ([7]) is based on 

a definition of a predicate as the minimal relation satisfying some property. 

Later, McDermott in [9] introduced nonmonotonic modal logics which are based on the modal systems T, $4, 

and $5. These modal logics are more suitable for describing dynamic worlds. However, his logics are a little bit 

problematic in view of the following. First, it is unknown whether McDermott's logics based on the first order ver- 
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sions o fT  and $4 are consistent. In addition, the logic based on $5 degenerates to the monotonic one, cf. [9]. 

We shah study here nonmonotonic modal logiics, which contain a possibility operator M and a necessity 

operator L. More precisely, logics which are extensions of the modal system T. Our definition of nonmonotonics 

logics is a relativization of that appearing in [9], namely, the nonmonotonic theory is the intersection of all exten- 

sions of the default theory presented in ([12]). The main difficulty of dealing with a nonmonotonic modal logic is 

that the underlying monotonic modal logic lacks a deduction theorem (A, tp I- V implies A I- 9 D V). For this rea- 

son we cannot prove that every (monotonically) consistent theory has a consistent nonmonotonic fixed point, etc., 

cf. [9] and Proposition 4 in Section 2. Despite of this, in modal logics which are extensions of T we have a "weak 

deduction theorem" stating that A, 9 I- V implies A t- LktpDV, for some k, where L°tp is tp, and Lk+ltp is LLktp. 

Using this weak deduction theorem we can give a condition for a nonmonotonic default logic to be degenerate, i.e., 

to become monotonic. This condition is the main result of this paper, and states that a default modal logic degen- 

erates if and only if the set of defaults is, in some sense, closed under negation. In particular, it provides an alterna- 

tive proof of the degeneration of McDermott's $5. 

Another version of nonmonotonic modal logics discussed in literature is autoepistemic logic, cf. [10], [11], 

and [4]. This logic is based on the modal logic K45 and restricted to the application of default reasoning to nonmo- 

dal formulas. Since T is not a sublogic of K45, the theory developed in this paper is not applicable to autoepistemic 

logics. However, it is possible to find some similarity between autoepistemic logic and the nonmonotonic ground 

logics introduced in Section 4. 

The paper is organized as follows. In the next section we give the necessary definitions and derive some sim- 

ple properties of nonmonotonic default logics. Section 3 contains the main result of this paper, i.e., a condition for 

the degeneration of nonmonotonic modal logics. Also in that section we prove that for any nonmonotonic default 

logic the set of defaults can be taken to be closed under the operators A, V, and L. In Section 4, we present a slightly 

different version of McDermott's nonmonotonic logic that both is consistent and nondegenerate. 

2. Monotonic and nonmonotonic modal logics 

This section is organized as follows. First we give definitions of monotonic and nonmonotonic modal logics 



Nonmonotonic Default Modal Logics 75 

and derive some of their properties. Next, we discuss the nonmonotonic modal logics of McDermott ([9]), which 

constitute a particular case of nonmonotonic default modal logics. 

The language Lang of modal logic is obtained from the language of the (first order) predicate calculus by 

extending it with a modal connective L (necessarily). As usual, the dual connective M (possibly) is defined by - L - .  

A formula without free variables is called a sentence, and the set of all sentences is denoted by St. We assume that 

Lang is countable. 

In this paper we shall deal with modal logics which result from the classic predicate calculus by adding the 

rule of inference 

Necessitation (NEC): q~ I- Lq~, 

and all the instances of some subsets of the axiom schemata below. 

M1. Lq~D q~ 

M2. L ( q~ D ~) D (Lq~ D L ~t) 

M3. k/x L ~o ~ L k/xq~ 

M4. LcpDLLcp 

M5. M~o~ LM q~ 

The system T contains axiom schemata M1 and M2 only. Adding M4 to T results in $4, and adding M5 to $4 

results in $5. In this paper by modal logic we refer to any modal system that is an extension of T + M3 with addi- 

tional axioms, e.g., T + M3 itself, $4 + M3, $5 + M3, etc.. Below these systems will be simply denoted by T, $4, 

and $5, respectively. 

For a set of formulas A c L a n g ,  called ax/oms, we define the (monotonic) theory of A, denoted by Th(A), as 

Th(A) = { q ~  Lang:  A I- q~} c_ Lang.  

As usual, we write A I- q~, if there exists a sequence of formulas W1, ¥2 . . . . .  Wn = q~ such that each Wi is an 

axiom or belongs to A or is obtained from some of the formulas W1, W2 . . . .  , Wi-1 by one of the rules of inference: 

modus ponens, generalization or necessitation. Thus the relation I- and the operator Th should be subscripted by T, 

$4 or $5, respectively. However, in this paper, if not specified otherwise, the results are true for every modal logic 
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containing T, and the subscripts will be omitted. 

Let D ~ St be a set of sentences called defaults. Following [8], [9], and [12] we define a default logic by 

adding to a modal logic, roughly speaking, the following "rule of inference". 

I~-.~_ 
, q~ • D. (1) 

q~, 

This rule is read as 

"for  a default q~• D, derive q~ if-q~ is not provable". 

However, the above rule is self-referring, and therefore it is ill-defined. A possible correct definition of non- 

monotonic inference is given below. It is similar to that appearing in [9]. 

Definition 1. The nonmonotonic modal D-default theory of A c l a n g ,  denoted by NTHD(A), is the intersection of 

Lang and all the fixed points of the operator NM~, defined below. 

For a set of formulas F, NM~(F) is defined by 

NMfi(F) = Th(a u As~(F)), 

As~(F) = { (p• D :-q)~ F } -Th(A). 

A set of formulas X is called a fixed point of NM~, if NM~ (X) = X. 

wh~e 

Thus 

NTHD(A) = Lang c7 ¢"~{ X :X =NM~(X) }. 

R e m a r k  1. Since t"~O = Lang, we can define NTHD(A) as ~ { X : X = NM~(X) }. Also we trivially have 

NM~(F) = Th(A u { q~• D :-{pe F }), 

because 

Th(A u { q0 • D : -¢p e F }) = Th(A u ({ q~ • D : -q~ e F } - Th(A))) = Th(A u As~ (F)). 

Similarly to [12], a fixed point of NM~ can be considered as an acceptable set of beliefs that one may hold 

about incompletely specified changing world. I.e., a fixed point of NM~ realizes some defaults and rejects all the 

others. Alternatively, such a fixed point can be thought of as a "syntactic model" forA, or as a "minimal complete 

for D extension" of A with formulas from D. The nonmonotonic theory of A is the set of formulas which are 
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believed in all the fixed points. 

A set of axioms A is said to be nonmonotonically inconsistent (with respect to D), if NTHo(A)=Lang, i.e., 

each formula can be derived in an inconsistent theory, exactly as in the case of monotonic logics. In particular, if 

for the set of axioms A, NMao has no fixed points (models), then A is (nonmonotonically) inconsistent, because in 

this case we have NTHo(A ) = Lang. At the end of this section we present an example of a (monotonically) con- 

sistent set of axioms whose induced operator has no fixed points with respect to some set of defaults. This example 

is related to the nonmonotonic modal logics of McDermott, and to the nonmonotonic ground logics introduced in 

Section 4. 

Another possibility for a set of axioms A to be (nonmonotonically) inconsistent is indicated by Proposition 1 

below. 

Proposition 1. ([12]) Lang is a fixed point of NM~ if and only A is (monotonically) inconsistent. In this case Lang 

is the only fixed point o fNM~.  

In this paper, ff not specified otherwise, the words "consistent" and "inconsistent" refer to the monotonic 

c a s e .  

Fixed points of NM~ can be alternatively described by the following proposition. 

Proposition 2. Let F be a proper subset of Lang. Then F is a fixed point of NM~ if and only if it satisfies the fol- 

lowing two conditions. 

(i) F =Th(A u (F riD)) ,  and 

(ii) For any tpe D either F !- tp o f f  k- -tp, i.e., "F  is complete f o r D " .  

Condition (i) states that a fixed point is generated by the formulas added by the rule of nonmonotonic infer- 

ence, i.e., that this rule is the only one used. Condition (ii) states that the rule of nonmonotonic inference is 

satisfied. 

Corollary 1. ([8], [12]) Let F 1 and F 2 be fixed points o fNM~.  I f  F 1 c F 2, then F 1 =F 2. 

Corollary 2. ([12]) Let D" c D be a set of defaults. Then any consistent fixed point of NM~ w°" is also a fixed point 

of w . 
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Remark 2. Proposition 2 implies that if the set of defaults D is of finite cardinality n, then any set of axioms has at 

most 2 n fixed points. Therefore, in the propositional nonmonotonic modal logic based on a finite set of defaults, if 

the set of axioms A is finite, then the nonmonotonic theory NTHo(A ) is decidable. The decision procedure is as fol- 

lows. Using condition (ii) of Proposition 2 and the decidability of propositional modal logics T, $4, and $5, it is 

possible to find all subsets D" of D such that Th(A u D 3  is a fixed point of NM~, i.e., satisfies condition (ii) of Pro- 

position 2. Then for a formula 9 one can decide whether for every D" as above we have A u D '  I- 9, i.e., whether 9 

belongs to all fixed points of A. 

Nonmonotonic default logics can be illustratedL by the following example. In [9] McDermott introduced the 

nonmonotonic modal theory of A, denoted by TH(A), that is the intersection of Lang and all the fixed points of the 

operator NMA. 

NMA is defined by 

Thus 

where 

NMA(F) = Th(A u AsA(F)), 

AsA(F) = { M 9 : g e  St, - 9 ~  F }-Th(A) .  

TH(A) = L a n g ~  ('3{ X :X =NMA(X) }. 

The above logic reflects the following "rule of iinference" called possibilitation. 

17.79 
M 9  

By the following proposition, this rule is equivalent to default rule (1) with the set of defaults DM = { M 9 :  9 ~ St }. 

Proposition 3. We have TH(A) =NTHDM(A), whereDM= {Mg:  9 ~ St }. 

It was shown in [9] that McDcrmott's nonmonotonic based on $5 is equivalent to the (monotonic) $5 itself. 

Thus, trivially, it is consistent, i.e., the empty set of axioms is nonmonotonically consistent. Also, even though 

McDermott's nonmonotonic logics based on the propositional versions of T and $4 are consistent, of. [9], nothing is 

known about the consistency of nonmonotonic logics based on the first order versions of T and $4. However it is 

not hard to show that the first order nonmonotonic T and $4 with strong equality, i.e., M(x = y ) D L ( x  =y), are con- 
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sistent. 

In Section 4 we present a slightly modified version of McDermott's logic, called nonmonotonic ground logic. 

This logic is (nonmonotonically) consistent and possesses many of the"nonmonotonic"  properties of McDermott's 

logic. Moreover, it is nondegenerate even when the underlying modal logic is $5. 

We close this section by an example of a consistent set of axioms that has no fixed points. 

Proposition 4. Let the underlying modal logic be first order T or $4, and let ~ be a sentence not containing modal 

connectives such that 14 x F. I f  the set of defaults D is a subset of Du = { Mq~: q~ E St } and contains m-x F, then the 

set of axioms { ML w } is (nonmonotonically) inconsistent. 

3. Closure properties of sets of defaults and degeneration of nonmonotonic theories 

First we establish a closure property of the set of defaults under the positive connectives A, V, and L. This 

closure property can be considered as a motivation for Theorems 2 and 3 below. 

Definition 2. Let Dc_Lang.  We say that D is closed under connectives A,V, and L, if ¢p ,v~D implies 

q~ A W, q~ V V, Lop ~ D. We define D, the closure of D under the connectives A, V, and L, tO be the set of all formulas 

which can be obtained from formulas of D by means of the connectives A, V, and L. 

Theorem 1. For every set of defaults D we have NTHo(A) =NTH~(A). Moreover, NMAD and NM~ have the same 

~xed points. 

Theorem 1, naturally, suggests to ask what about the closure under negation. But as is shown in the sequel, if 

the set of defaults is closed under negation, then the corresponding nonmonotonic logic is monotonic. 

Next we present the main result of the paper, namely, a condition for a nonmonotonic modal logic to degen- 

erate to a monotonic one. In order to give a precise statement of this condition we observe that for any default 

q~  D and any fixed point F we have Liq~vLJ-cpE F, i, j=O, 1 . . . . .  Indeed, if F = L a n g ,  then the proposition is, 

trivially, true. Otherwise, by Proposition 2, either F I- ¢p, or F I- -¢p. In the former case, by i applications of NEC, 

F I- Licp, which, in turn, implies LicpvLJ-cpE F, because F is deductively closed. The case of F I- -¢p is treated 

similarly. 
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The set of formulas { Li(p vLJ-~p: q~ E D, i, j = 0, 1 . . . .  } will be referred to as the set of axioms imposed by D 

and will be denoted by Ax D. In this notation the above observation can be restated as follows. 

Proposition 5. We have Th(A u AXD) ~NTHo(A ). 

Now consider the properties of nonmonotonic default modal logics stated below. 

1. For every default cp e D there exists a default V e D such that A, V I- - q~, and A, Axa, -(p t- V- This property of 

D can be thought as "'the closure under negation relatively to A".  

2. NTHD(A)=Th(A u AxD), i.e. the nonmonotonic theory on A is equal to the monotonic one augmented with the 

additional axioms imposed by D. Notice that by Proposition 6, Axo is the least set of additional axioms that could 

enjoy this property. 

2'. For every A'  ~A,  NTHo (A')= Th(A 'u  Axa), i.e. the nonmonotonic theory on extensions of A is equal to the 

monotonic one augmented with the additional axioms imposed by D. 

3. For every A ' ~ A ,  NTHo(A')DNTHo(A), i.e. the nonmonotonic theories of extensions of A do not invalidate the 

assumptions (nonmonotonically) deduced from A. In other words, the operator NTHo is monotonic in A. 

3". For every A " D A ' D A ,  NTHD(A") ~ NTHo(A'),  i.e., the logic is monotonic in the extensions of A. 

Theorems 2 and 3 below show that the above properties of nonmonotonic theories are tightly connected. 

Theorem 2. For any set of defaults D and for any set of axioms A we have 

1 :~ 2" ~ 2 

3 " ~ 3 ,  

where ¢=~ denotes equivalence, and ~ denotes implication. 

In order to close the diagram given by Theorem 2 we need additional assumptions on the set of defaults and 

the underlying modal logic. 

Definition 3. We shall say that a set of formulas • ~ Lang is finitely based if there exist formulas (Pl, % . . . . .  % 

such that every formula of • can be obtained from qh, % . . . . .  q~,, by means of propositional and modal connec- 

tives. I.e., for every formula q~ • • there exits a formula q¢ in the language of the propositional modal logic over the 

propositional variables p 1, P2 . . . . .  pn such that q~ results by the substitution of q~ for Pi in ~0 t, i = 1, 2 . . . . .  n. The 
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set of formulas {tpl, tp2 . . . . .  tpn} is called a finite base for ~.  

Theorem 3. If  the underlying modal logic contains $4 and the set of defaults is-finitely based and closed under ^, 

v, and L, then property 2 implies property 1, i.e., the five properties stated above are equivalent. 

In Theorem 3, the condition imposed on the set of defaults to be closed under A, V, and L is required only for 

a technical reason. (Alternatively, in view of Theorem 1, we could talk about D in property 1.) However, it can be 

shown that the requirement of a finite base is essential. 

Next we present some of almost immediate corollaries to Theorems 2 and 3. The first one gives a proof- 

theoretic version of the corresponding result in [9]. 

Corollary 1. Let TH(A ) be the nonmonotonic theory of McDermott defined in Section 2. Then TH(A)=Th(A) if 

and only if Th(A ) contains the sentential part of M5. 

Corollary 2. Let Lang be a language of propositional modal logic of finite signature (that is the set of proposi- 

tional variables is -finite), and let the underlying modal logic contain the propositional part of $4. I f  the set of 

defaults D is closed under ^, v, and L, then all the properties 1, 2, 2', 3, and 3" are equivalent. 

Corollary 3. Let the set of defaults D be -finitely based and let the underlying modal logic contain $4. If  

Th(O) = NTHD (O), then Th(A) = NTH o (A) for every set of axioms A. 

Remark 3. It can be easily shown that LtpvL-tp I-TLitpvLi-tp, i,j=O, 1 . . . . .  Thus Ax o could be defined as 

{ Lq~v L-~}~o. 

4. Nonmonotonic ground logics 

One of the undesirable properties of the nonmonotonic logics of McDermott is that a consistent set of axioms 

may have no fixed points, i.e., be nonmonotonically inconsistent. A possible reason for this may be the lack of clear 

separation between the defaults not containing modalities, which one can consider as the facts about the real world, 

and the defaults containing modalities, which are "metaformulas" supposed to interpret knowledge, necessity, con- 

tingency, etc.. In this section we propose a slightly modified version of the nonmonotonic logics of McDermott that 

seems to be more convenient to deal with. These logics, referred to as nonmonotonic ground logics, result from the 

set of defaults De that is defined as follows. 
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DG = { Mq~: ¢p is a :sentence without modalities }. 

In view of [4, Proposition 3.6], fixed points of nonmonotonic ground logics correspond to m/n/real autoep- 

istemic extensions. However, the language of nonmonotonic ground logics is richer than that of the autoepistemic 

one, because the language of autoepistemic logic does not allow the occurrence of modal operators within the scope 

of quantifaers. In addition an S5-consistent set of axioms is also nonmonotonically consistent, cf. Proposition 8 

below, whereas in autoepistemic logics there exist consistent sets of formulas which have no autoepistemic exten- 

sion, cf. [4, Example 2.2]. 

As in the case of McDermott's logics based on T or $4, the consistent set of axioms {MLp} is inconsistent in 

nonmonotonic ground logic based on T or $4, cf. Proposition 4. But, fortunately, for T, $4 and $5 every consistent 

set of axioms without modalities is also nonmonotonically consistent. Moreover, for $5 this is true for any set of 

axioms, even if it contains "metaformulas". The former, in particular, implies that the first order nonmonotonic 

theory resulting from the empty set of axioms is consistent in nonmonotonic ground logic, even if the underlying 

modal logic is T or $4. In addition, nonmonotonic ground logic is nondegenerate in $5. The precise statements of 

the above results are given below. 

Proposition 6. Let the underlying logic contain T and be contained in $5, and let A be a consistent set of  axioms 

without modalities. Then NMaoa has a unique consistent fixed point F a = Th(A u { Mq~ ~ Do : A ht -¢p }). 

Proposition 7. Let the underlying logic contain T and be contained in $5. I f  a set of  axioms A does not contain 

modalities, and Th(A) is not complete in the predicate calculus, then there exists a consistent set of  axioms A ' D A  

without modalities, such that NTHoo (A 3 ;~ NTHDa (A). 

Proposition 8. Let the underlying modal logic be $5. l f  a set of  axioms A is consistent, then NTHDo(A) is also con- 

sistent. 

Finally we would like to note that, in view of Remark 2 in Section 2, nonmonotonic propositional ground log- 

ics over a finite signature are decidable, because their set of defaults Do is finite. 
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