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Abs t rac t  

Suppose a knowledge base contains information on how the world 
generally behaves and in particular contains the information that birds, 
normally fly. Suppose that we obtain the information that Tweety is 
a bird, why should we conclude that it is plausible that Tweety flies? 
The answer to this question is unexpectedly sophisticated since the ob- 
vious substitution rule has to be rejected. Our answer to this question 
is based on an extension to predicate calculus of the ideas presented 
in [7]. Preferential consequence relations over predicate calculi are de- 
fined. In addition to the rules satisfied by those relations in the propo- 
sitional case, they satisfy two rules dealing with quantifiers. These 
rules are not enough to enable us to conclude that Tweety flies. The 
rational closure construction defined in [7] should be generalized to the 
predicate calculus case and, in the rational closure, Tweety should fly. 

1 I n t r o d u c t i o n  

Many systems tha t  exhibit nonmonotonic behavior have been described and 
studied already in the literature. The general notion of nonmonotonic rea- 
soning, though, has almost always been described only negatively, by the 
property it does not enjoy, i.e., monotony. We study here general pat terns 
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of nonmonotonic reasoning and try to isolate properties that  could help us 
map the field of nonmonotonic reasoning by reference to positive proper- 
ties. We concentrate on nonmonotonic consequence relations, defined in the 
style of Gentzen [3]. Both proof-theoretic and semantic points of view are 
developed in parallel. 

Nonmonotonic logic is the study of those ways of inferring additional 
information from given information that  do not satisfy the monotony prop- 
erty satisfied by all methods based on classical (mathematical)  logic. In 
Mathematics,  if a conclusion is warranted on the basis of certain premises, 
no additional premises will ever invalidate the conclusion. In everyday life, 
however, it seems clear that  we, human beings, draw sensible conclusions 
from what we know and that ,  on the face of new information, we often have 
to take back previous conclusions, even when the new information we gath- 
ered in no way made us want to take back our previous assumptions. For 
example, we may hold the assumption that  most birds fly, but that  penguins 
are birds that  do not fly and, learning that  Tweety is a bird, infer that  it 
flies. Learning that  Tweety is a penguin, will in no way make us change 
our mind about the fact that  most birds fly and that  penguins are birds 
that  do not fly, or about the fact that  Tweety is a bird. It should make 
us abandon our conclusion about its flying capabilities, though. It is most 
probable that  intelligent automated systems will have to do the same kind 
of (nonmonotonic) inferences. 

Many researchers have proposed systems that  perform such nonmono- 
tonic inferences. The best known are probably: negation as failure [2], cir- 
cumscription [9], the modal system of [10], default logic [12], autoepistemic 
logic [11] and inheritance systems [13]. In [6], [5], and [7] (see preliminary 
versions in [4] and [8]) the first steps towards a general framework in which 
those many examples could be compared and classified were taken. 

In [5], a number  of families of nonmonotonic consequence relations were 
defined. The underlying set of formulas was left quite unspecified, except 
for the fact that  propositional connectives were supposed to be available. 
In fact the analysis found in [5] and later in [7] is really adequate only for 
propositional languages. We shall give here preliminary thoughts  about the 
case of first order predicate calculi. 

The rational closure of a conditional knowledge base will play a fun- 
damental  role in our t reatment  of predicate calculi. This construction has 
been proposed in [7] as a reasonable description of the set of conditional 
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assertions entailed by another such set. There, the construction was defined 
only for finite knowledge bases and given a model-theoretic definition. Since 
then, this construction, for propositional languages, has been given both 
an abstract characterization and an algorithmic description. In the same 
time it has been generalized to arbitrary knowledge bases and appealing 
global properties of this construction have been shown to hold. This work 
is currently in progress. 

2 Predicate  Calculus: Why?  

The purpose of this extended abstract is to examine the extension of the 
authors '  previous work, that  dealt with propositional languages, to predicate 
calculus. One may rightly ask whether this is a worthy enterprise. We 
shall first, therefore, discuss the status of the debate: predicate calculus vs. 
propositional calculus. 

There is no doubt that ,  among mathematical  logicians and especially 
those interested in the foundations of mathematics,  predicate calculus is 
considered to be the language of choice, richer, more interesting. After all, 
predicate calculus is the universal language of mathematics and there is no 
way the full richness of mathematical  reasoning may be captured by propo- 
sitional logic. But, in this respect, the choices of mathematical  logicians 
should not bear too heavily on us. Researchers in Artificial Intelligence 
have other concerns than studying mathematical  reasoning, and all the evi- 
dence gathered during this last decade of fruitful research on nonmonotonic 
reasoning shows that  the kinds of reasoning we have to analyze or realize 
are different in some essential ways from mathematical  reasoning. 

More to the point is the observation that ,  without exception, all systems 
proposed about ten years ago for nonmonotonic reasoning, used predicate 
calculus as their basic language. All traditional examples in the field are 
couched in predicate calculus terms, even when, as in the case of the Yale 
shooting problem for example, they may obviously be translated in propo- 
sitional terms. One is therefore surprised to notice that  almost none of the 
efforts in nonmonotonic reasoning have been devoted to analyze the role of 
quantifiers and free variables in nonmonotonic reasoning. One noticeable 
exception is Adams'  [1], but his motivations are quite different. None of the 
systems proposed have rules to deal with quantifiers: one finds no introduc- 
tion or elimination rules, the quantifiers simply disappear from the formalism 
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by some magic, free variables appear syntactically but they are implicitely 
quantified universally. One of the most often used 'magic' is to consider a 
formula (or default) with free variables as a short-hand for the (possibly) 
infinite set of formulas obtained by replacing variables by ground terms. But 
this essentially means that  a formula of predicate calculus stands for a set of 
propositional formulas. Looking at the examples traditional in the field, one 
is very hard put  to find examples dealing with quantifier alternation, with 
functions, with formulas containing more than one free variable, with de- 
faults whose antecedent and consequent do not contain the same variables. 
All the problems discussed in the literature on nonmonotonic reasoning may 
as well be discussed in the framework of propositional logic, and indeed some 
recent efforts, mainly in the autoepistemic stream, have decided, with good 
reason, to move to such a propositional framework. Our position is that  
we find no absolute necessity to move to the predicate framework, that  ex- 
tending our approach to predicate calculus is not at all easy, but that  it is 
probably worthwhile trying, if only to learn more about the propositional 
case and to understand better what are exactly the problems raised by vari- 
ables, functions and quantifiers. We shall present here a preliminary report 
on the state of our efforts. 

The major  question we are addressing may simply put  in the following 
way: is Bird(x) ~ Fly(x) a proper way of saying that  birds, normally, fly? 

3 Preferent ia l  Reason ing  in Pred ica te  calculus  

Let L be a first order language, with equality. The greek letters t~, fl, and 
so on, will represent arbitrary formulas (not necessarily closed). The letters 
x, y and so on, variables. If cr and 13 are formulas, then the pair (~ ~ j3 
(read i f  c~, normally/J,  or ~ is a plausible consequence of o~) is called a 
conditional assertion (assertion in short). The formula a is the antecedent 
of the assertion, f~ is its consequent. The meaning we at tach to such an 
assertion, and against which the reader should check the logical systems we 
shall discuss is the following: if o~ is true, I am willing to (defeasibly) jump 
to the conclusion tha t /3  is true. In particular, the intuitive meaning of the 
assertion Bird(x) ~ Fly(x) is I f  x is a bird, it may be sensibly concluded that 
it flies, or, more precisely, normal birds fly. The reader should notice that  
we do not allow the application of propositional connectives or quantifiers to 
assertions. The object Vx(Bird(x) ~ Fly(x)) is not a well-formed syntactic 
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object for us. But,  (VxBird(x)) ~ (VxFly(x)) is an assertion. Consequence 
relations are sets of conditional assertions. 

We shall now briefly describe the intended pragmatics. The queries one 
wants to ask an automated knowledge base are formulas (of L) and query fl 
should be interpreted as: is ~ expected to be true? To answer such a query 
the knowledge base will apply some inference procedure to the information 
it has. This information may be divided into two different types. The first 
type of information consists of a set of conditional assertions describing the 
soft constraints (e.g. birds normally fly). This set describes what we know 
about the way the world generally behaves. This set of conditional assertions 
will be called the knowledge base, and denoted by K. The second type of 
information describes our information about the specific situation at hand 
(e.g. it is a bird). This information will be represented by a formula, a. 

Our inference procedure will work in the following way, to answer query 
~. It will try to deduce (in a way that  is to be discovered yet) the conditional 
assertion c~ ~ fl from the knowledge base K. This is a particularly elegant 
way of looking at the inference process: the inference process deduces con- 
ditional assertions from sets of conditional assertions. Clearly any system 
of nonmonotonic reasoning may be considered in this way. 

The following properties of consequence relations have been introduced 
in [5]. They constitute preferential reasoning in the propositional case. In 
the framework of predicate calculus, the notation a ~ ~ has to be under- 
stood in the restricted way: in all first order structures, all assignments that  
satisfy a also satisfy ~. 

(1) a ~ a (Ref lex iv i ty)  

(2) (Left  Logica l  Equ iva l ence )  

(3) ( R i g h t  W e a k e n i n g )  

(4) 
A 7 

( C a u t i o u s  M o n o t o n y )  

(5) a ~ / ~  , a N 7  (And)  
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(6) ~ ~ ~ ' /3 ~ ~ (Or) 
~ v / 3  I',., 1' 

Now that  we take L to be a first-order predicate calculus, we wish to 
add the following two rules. They will be discussed and justified below. 

c~ ~ / 3  (3 - i n t r )  (7) 3x~3x/3  

(8) 3x~ 6~/3, x is not free in/3 (3 - e l im)  
a~/3 

The eight rules above const i tute the system P for predicate calculus. A 
consequence relation that  satisfies them is said to be preferential. Let us 
discuss first the (3 - e l im)  rule, since this will be a short discussion. This 
rule is a special case of Monotony. Its justification is that  if one is ready 
to jump to the conclusion tha t /3 ,  which does not involve x, is true on the 
knowledge that  there is an element that  satisfies a ,  one should jump to the 
same conclusion if one learns that  x satisfies a since the new information 
about  the value of the variable x does not change in any essential way our 
conclusions about  the world (variables may take any value) as long as these 
conclusions do not involve x. 

Our argument  for accepting the rule (3 - i n t r )  is the following. If normal 
birds fly and if I obtain information to the effect that  there is at least one 
bird in the world, then it is sensible to conclude that  there is at least one 
normal bird in the world and therefore there is at least one flying individual. 
More generally, we shall see that  rule 3 says that  i f  there is an individual 
that has property A then it is plausible that there is an individual that has 
property A and is normal.for that property, i.e., there is a typical A. Notice, 
indeed, that  the following is a derived rule of P .  

(9) 
9xa  ~ 9x (~ A/3) 

It impfies that  we shall not be able to consider situations where normal 
birds fly, normal birds have .feathers, normal birds have beaks, normal birds 
are not green but  in which we have information to the effect that  there are 
birds but  any bird that  have beaks,  feathers and flies is green. Such in- 
formation is, for us, contradictory. In other  words, we consider impossible 
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situations in which there axe birds but  there is no typical bird. Such situ- 
ations have been referred to in the l i terature as the lottery paradox or the 
bird-shop paradox. For us, such situations are indeed paradoxical. Whether  
this restriction to non-paradoxical situations is bearable is mainly a prag- 
matical  question and only experience will tell. Notice, though, tha t  default 
reasoning (in the largest possible meaning) is mainly useful when the number  
of individuals is very large, i.e., when we do not expect to have an exhaus- 
tive list of all those individuals available. Otherwise, it seems we could get 
full information and then classical monotonic reasoning is called for. At 
least, we are aiming at those situations in which there is no exhaustive list 
of individuals. In such situations, we may as well accept that  there is a 
typical bird, perhaps at the cost of accepting that  phantom birds exist, in 
the sense of the quantifier 3. This quantifier would be badly chosen anyway 
to represent anything like physical existence. Should we accept other  rules 
dealing with quantifiers? Two such candidates come to mind. They  must  
be rejected. Let x be an individual variable and t a term, and c~ represents 
the result of replacing x by t in c~ and is defined only if no variable free in t 
clashes with a bound variable of c~. 

# (v) (1o) Vx3 

(11) (Substitution) 

The reasons to reject (V) are clear. Suppose we think that  birds, normally 
.fly, writ ten as Bird(x) ~ Fly(x),  and we know that  we are talking only about 
birds, writ ten as VxBird(x), we have no reason at all to conclude that  we 
are talking only about .flying things. The knowledge that  everything is a bird 
has no bearing on our assumption that  there may  be birds that  do not fly. 

The reasons to reject ( S u b s t i t u t i o n )  are much more delicate and they 
seem to involve two-place predicates in an essential way. Suppose we hold 
the default that  most pets are dogs or cats, or, equivalently, that  normal pet 
owners have dogs or cats as pets. We would like to describe this default as: 
Pet(x,  y) ~ Dog(y) V Cat(y).  Suppose also that  we know of an individual, 
John,  who likes snakes. We would like to describe this in a default that  says 
that  most of John's pets are snakes. The natural  way to do that  is obviously: 
Pet (John,  y) ~ Snake(y). If we accepted the rule of ( S u b s t i t u t i o n ) ,  we 
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would deduce from the first default: Pet(John, y) ~ Dog(y) V Cat(y). With 
the second default, using ( A n d )  and the fact that  the classes of dogs, cats 
and snakes have an empty  intersection, we would deduce: Pet(John,  y) ~ false,  
which means that  it is completely unthinkable that  John has a pet. This 
is obviously unwanted. What is revealed here is that  the system P,  in the 
propositional case, is such a powerful system that it is incompatible with 
the very powerful rule of ( S u b s t i t u t i o n ) .  If one considers what happens in 
other nonmonotonic formalisms, one sees that  the only reason ( S u b s t i t u -  
t i on )  is accepted by Reiter's Default Logic or McCarthy's  Circumscription 
is that  those formalisms are too weak by themselves (i.e., without some ad- 
ditional formalism) to choose between two different extensions: the one in 
which John's pet is a snake and the one in which it is a dog or a cat. The 
price Default Logic has to pay is very high: it cannot even conclude that  
John's pet  is a snake, a dog or a cat. Circumscription fares a bit better,  but  
cannot see, without external help, that  the second default is more specific 
than the first one and should therefore preempt it. The fact that  (Sub-  
s t i t u t i o n )  has to be rejected raises the question of how can we manage 
without it. How can we show that Tweety flies? 

The system P is powerful, as was shown in [5], but it does not en- 
able us to conclude that  Tweety flies from the information that  normal 
birds fly and that  Tweety is a bird. This is the case because preferen- 
tial reasoning is not capable of inferring the fact that Tweety is a nor- 
mal bird from the fact that  we have no reason to think that  it is ab- 
normal. This task must be delegated to the procedure of rational clo- 
sure, a first limited version of which has been defined in [7]. But,  be- 
fore we discuss technical matters,  let us describe on an informal level why 
Bird(Tweety) ~ Fly(Tweety) is derivable from, i.e., in the rational closure 
of, the knowledge base containing only Bird(z) ~ Fly(z). The property of 
( R a t i o n a l  M o n o t o n y )  described in equation (13) guarantees that ,  if we 
have Bird(z) ~ Fly(z),  we shall also have Bird(x) A z = Tweety ~ Fly(x), 
unless we have Bird(z) b~ x it Tweety. It will be the task of the rational clo- 
sure operation to make sure that ,  in the absence of added information, the 
assertion Bird(z) ~ x it Tweety does not enter the rational closure. Now, 
from Bird(z) A x = Tweety ~ Fly(z), we shall infer, by propositional prefer- 
ential reasoning that:  Bird(z) A z = Tweety ~ Fly(z) A x = Tweety. The 
intuitive rationale behind this derivation is that  completely obvious. Then 
3z (Bird(z) A x = Tweety) ~ 3x (Fly(x) A z = Tweety) follows by the rule 
(3 - int r ) .  Replacing antecedent and consequent by logically equivalent for- 
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mulas, we obtain: Bird(Tweety) ~ Fly(Tweety).  This is indeed, we think, 
an exact description of why we are right to think that  Tweety flies. In cases 
where there are some reasons to think that  Tweety  is not a normal bird 
(and preferential reasoning is quite good at discovering such situations) then 
Bird(x) ~ x ~ Tweety will be derivable (preferentially) and therefore in the 
rational closure. In such a case the assertion Bird(x) A x = Tweety  ~ Fly(x) 
will typically not enter the rational closure. 

4 Pre ferent ia l  mode l s  

We shall now briefly define preferential models (in the predicate calculus 
case), along the lines of [5], and show that  the consequence relations that  
may  be defined by those models are exactly the preferential relations. Simi- 
larly for ranked models and rational relations. The semantic restriction tha t  
corresponds to the rules (3 - i n t r )  and (3 - e l im)  are quite natural ,  though 
not so easy to manipulate.  We adapt  the definition of a preferential model 
found in [5] to predicate calculus. The following definitions are also taken 
from [5] and justified there. 

Preferential models give a model-theoretic account of the way one per- 
forms nonmonotonic inferences. The main idea is that  the agent has, in his 
mind, a partial ordering on possible states of the world. State s is less than 
state t, if, in the agent 's mind, s is preferred to or more natural than t. Now, 
the agent is willing to conclude fl from ~, if all most natural states that  
satisfy c~ also satisfy/~. 

Some technical definitions are needed. Let U be a set and -~ a strict 
partial  order on U, i.e., a binary relation that  is antireflexive and transitive. 

D e f i n i t i o n  1 Let V C U. We shall say that t E V is minimal  in V if f  there 

is no s E V ,  such that s ~ t. 

D e f i n i t i o n  2 Let V C_ U. We shall say that V is smooth i f fY t  E V,  either 
3s minimal  in V,  such that s ~ t or t is itself minimal  in V .  

We may  now define the family of models we are interested in. The states will 
be labeled with worlds. A world should give a t ru th  value to each formula, 
even formulas that  are not closed, and therefore will be defined as a pair 
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(M, f )  where M is a first order s t ructure and f assigns an element of the 
domain of M to each variable. 

D e f i n i t i o n  3 A preferential model W is a triple ( 5', l, .~) where S is a set, 
the elements of  which will be called states, l : S ~ H assigns a world to 
each state and -~ is a strict partial order on S satisfying the following two 
conditions. The first one, the smoothness condition is: Vo~ E L, the set o f  

states ~ dee {s I s  G S, s ~  c~} is smooth, where ~ is defined as s ~  o~ (read 
s sa t i s f i e s  i f f  l(s) I = The  s e c o n d  one E is: 

1. i f  a state s, labeled with (M,  f ) ,  is minimal  in 3 ~ ,  then there exists 
a state t that is minimal  in ~ and that is labeled with (M,  i f )  where f l  
differs f rom f at the most  in the element it assigns to x 

2. i f  a state t is minimal  in ~ and labeled with (M,  f ) ,  then there is a 
state s, labeled with ( i ,  f ' ) ,  where f '  differs f rom f at the most  in the 
element it assigns to x, that is minimal  in 3xo~. 

The model W will be said to be finite i f  S is finite. 

The smoothness condition is only a technical condition needed to deal 
with infinite sets of formulas, it is always satisfied in any finite preferen- 
t im model, and in any model in which ~ is well-founded (i.e., no infinite 
descending chains). 

We shall now describe the consequence relation defined by a model. 

D e f i n i t i o n  4 Suppose a model W = (S, l, ~) and a,  fl E L are given. The 
consequence relation defined by W will be denoted by ~ w  and is defined 
by: ~ ~ w  t3 i f f  for  any s minimal  in 6, s ~ ft. 

If a ~ w / 3  we shall say that  the model W satisfies the conditional asser- 
tion a ~ / 3 ,  or that  W is a model of a ~ /3 .  

It is easy to see that  any preferential model that  satisfies our additional 
condition (E) defines a preferential consequence relation that  satisfies the 
rules (3 - i n t r )  and (3 - e l im) .  

The representat ion theorem is the following. 

T h e o r e m  1 Let ~ be a preferential relation. There is a preferential model 
that defines ~ . 
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P r o o f :  The proof parallels the corresponding proof of [5], only the main 
steps will be sketched. The only difference is that  we restrict our attention 
to a subset of the possible worlds. Let D be an infinite large enough set of 
constants not included in L. We shall consider first order structures on the 
extended language L t3 D. 

D e f i n i t i o n  5 A first order structure M, on the extended language, is said to 
be satisfactory iff, given any formula o~ (in the original language) of the form 
3x/3 and any assignment f of elements of the domain of M to the variables, 
for which the world w = (M, f )  is normal for o~, there is a constant d E D 
such that the world (M, f d) (again we should have written dM instead of 
d) is normal for/3. A world (M, f )  will be termed satisfactory iff M is 
satisfactory. 

The reader may check that,  changing world to satisfactory world leaves 
the completeness proofs of [5] and [8] correct if only one can prove the 
following lemma 1. On the other hand, if a canonical model is built with 
satisfactory worlds only, then it satisfies (E), if we can prove lemma 2. 

L e m m a  1 I f  a ~ /3, then there exists a satisfactory world, that is normal 
for a and does not satisfy/3. 

P r o o f :  Let A de=f {_,/3} U{7 1 ct ~ 7}. Clearly A is satisfiable (see [5]). Let 
To be the logical closure of A (over the original language). We shall build an 
ascending sequence of consistent logically closed sets: Ti on larger and larger 
languages Li. The languages Li will contain the original language L and a 
finite subset of D. We are going to enumerate all pairs consisting of a formula 
a of the form 3xfl (in the original language) and an assignment of elements 
of D n L~ to some of the free variables of a.  Suppose we have defined T~ and 
Li and are now dealing with a = 3x/3 and g that  assigns an element of D n L i  
to some of the free variables of a.  If 7 is a formula (over L) we shall denote 
by 7g the formula obtained by replacing those free variables of 7 that  have 
an image under g by their image. If there exists a formula 7 (in the language 
Li) such that  a ~ 7 and 7g ~ Ti then choose any one of those 7's and take 
Ti+l to be the logical closure (over Li) of Ti U {-'Tg) and Li+l to be Li. The 
set Ti+l is dearly consistent. Otherwise, all such 7a are in Ti. Let then d be 
an element of D not in Li. We shall take Li+l to be Li U {d) and Ti+l to be 

the logical closure of the set Ai = Ti t3 { (yx d) I/3 ~ ~). It is left to show that  
g 



68 Session 3 

the set Ai is consistent. Suppose not. Then there is a finite subset of Ai that  
is inconsistent and, since b" satisfies A n d ,  there is some r I such tha t /3  N 
and Ti ~ -~(yz d)a. From /3 ~ r/, by (3 - in t r )  and ( R i g h t  Weakening) 

(since x is not free in r/~d), we have a ~ rlz d. By hypothesis, then, (r/xd)a 

must  be in the set Ti. A contradiction to the fact that  Ti is consistent. It is 
clear that ,  by dovetailing, one can arrange for the enumeration to contain 
all pairs of existential formulas and partial assignments into D. The set 

Too d=ef U~0 Ti is clearly consistent. Any world w that  is a model for this set 
is dearly normal for a and does not satisfy/3. Let us check it is satisfactory. 
Let M be the first order structure of w. Suppose a = 3x/3 is a formula of L 
and f is an assignment of elements of D to the variables for which (M, f )  
is normal for c~. The pair consisting of a and the assignment f restricted to 
the free variables of a has appeared somewhere in the enumeration. At this 
point  we certainly did not take the first possibility, otherwise there would 
be a 7 such that  a ~ '7 and -1'7I E Too, which implies that  (M, f )  does not 
satisfy 7 and is not normal for a. Therefore, at this point,  we chose the 
second possibility and the new d introduced in the language at this point 

is such that  for every "7 such that  fl ~ 7, w satisfies (7~ d) y, i.e., (M, fx d) is 

normal for/3. | 

Lemma 2 I f  a world w (M, f )  is satisfactory then, given any formula of 
the form 3xa for which w is normal, there is an element e in the domain 
of M such that the world (M, fz e) is satisfactory and satisfies all formulas/3 
such that a ~ /3. 

P r o o f :  Take e to be dM for the d whose existence is asserted by definition 5. 
! 

5 Renaming  

In the system presented so far the rule 

(12) a(x)~/3(x) (Renaming) 
a(y) 

when y is not a free variable of a or/3, is not a derived rule. One may ar- 
gue pro and con invariance under renaming of variables. The corresponding 
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semantic restriction is not difficult Co describe and the characterization theo- 
rem is not difficult either. The question of invariance under renaming seems 
to be completely orthogonal to the quest for rules dealing with quantifiers. 

6 R a t i o n a l  c l o sure  

As we have argued above, the system of preferential reasoning in predicate 
calculus has one main weakness related to predicate calculus (it has other 
weaknesses that  relate to propositional calculus too): Tweety does not fly. 
It is therefore necessary to build an additional layer of reasoning on top of 
preferential reasoning. The rational closure of a conditional knowledge base, 
has been proposed in [7] as a reasonable description of the set of conditional 
assertions entailed by another such set. There, this closure operation was de- 
fined in model-theoretic terms and for finite knowledge bases only. We have 
now a definition of rational closure that  is both abstract and general. The 
idea, that  we cannot develop here, is that  the rational closure of a knowl- 
edge base, if it exists, is its preferred rational extension. Rational means 
that  the consequence relation satisfies the following additional rule of (Ra-  
t i ona l  Monotony) .  A representation theorem for rational relations and 
ranked models (satisfying the condition (E)) is obtained without too much 
trouble, following the lines of the corresponding result in the propositional 
case. 

(13) (Rational Monotony)  

Preferred means least in the following ordering. In the next definition, 
and in the sequel, c~ < fl for K means that  c~ V f~ ~ - ~  is in K. 

Definition 6 Let Ko and K1 be two rational consequence relations. We 
shall say that Ko is preferable to K1 and write Ko -< K1 iff: 

1. there exists an assertion c~ ~ /3 in K1 - Ko such that for all "7 such 
that "7 < ol for Ko, and for all 6 such that "7 ~ 6is in Ko, we also have 
"7 ~ ~ in K1 

2. For any 7, ~i i f  "7 ~ 6 is in K o -  K1 there is an assertion p ~  r I in 
K1 - Ko such that p < "7 for K1. 
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The intuitive explanation behind definition 6 is the following. Suppose 
two agents, who agree on a common knowledge base, are discussing the 
respective merits of two rational relations K0 and K1. A typical attack 
would be: your relation contains an assertion a ~ ~ that mine does not 
(and therefore contains unsupported assertions). A possible defense against 
such an attack could be: yes, but your relation contains an assertion 7 ~ 
that mine does not, and you yourself think that 7 describes a situation much 
more usual than the one described by a. Such a defense much be accepted 
as valid. Definition 6 exactly says that the proponent of K0 has an attack 
that the proponent of K1 cannot defend against (this is part 1) but that  he 
(i.e., the proponent of K0) may find a defense against any attack from the 
proponent of K1 (this is part 2 of the definition). 

The relation ~ among rational relations is, as expected, a strict partial 
order. We conjecture the following (for predicate calculus): 

C o n j e c t u r e  1 I f  K is a .finite knowledge base, it has a rational closure 

The corresponding result for propositional calculus has been proved. We 
also hope to provide an algorithmic characterization of the rational closure 
of a finite knowledge base over predicate calculus, similar to the one pro- 
posed for the propositional case. This characterization leads, again in the 
propositional case, to an efficient algorithm computing the rational closure 
of a finite knowledge base. 

7 D i s c u s s i o n  and c on c lu s ion  

We have not shown yet that Tweety .flies may be deduced from, i.e., is in 
the rational closure, K,  of the knowledge base K that contains the single 
assertion Bird(x) b' Fly(x). From the discussion at the end of section 3, we 
know it is enough to show that the assertion Bird(x) ~ x ~ Tweety is not 
the rational closure of K (by our conjecture such a closure exists). To show 
this, remark that the one-state model in which x = Tweety, Bird(Tweety) 
and Fly(Tweety) hold defines a rational relation R (since it is ranked) 
that extends K. But it does not contain Bird(x) ~ x ~ Tweety. By deft- 
nition 6, then, there must be an assertion c~ ~ j3 in R - K,  such that,  in R, 

< Bird(x). But this is impossible, since Bird(x) is satisfied at the lowest 
level in the model. 
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