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A B S T R A C T  

The presence of an "infinitely-often correct teacher" in scientific inference and language 
acquisition is motivated and studied. The treatment is abstract. 

In the practice of science, a scientist performs experiments to gather experimental 
data about some phenomenon, and then tries to construct an explanation (or the- 
ory) for the phenomenon. A model for the practice of science is an inductive inference 
machine (a scientist) learning a program (an explanation) from the graph (set of exper- 
iments) of a recursive function (phenomenon). It is argued that this model of science 
is not an adequate one as scientists, in addition to performing experiments, make use 
of some approximate explanation (based on the "state of the art") about the phe- 
nomenon under investigation. An attempt has been made to model this approximate 
explanation as an additional information in the scientific process. It is shown that 
inference power of machines is improved in the presence of an approximate explana- 
tion. The quality of this approximate information is modeled using certain "density" 
notions. It is shown that additional information about a "better" quality approximate 
explanation enhances the inference power of learning machines as scientists more than 
a "not so good" approximate explanation. 
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Inadequacies in Gold's paradigm of language learning are investigated. It is argued 
that Gold's model fails to incorporate any additional information that children get 
from their environment. Children are sometimes told about some grammatical rule 
that enumerates elements of the language. These rules are some sort of additional 
information. Also, children are being given some information about what is not in the 
language. Sometimes, they are rebuked for making incorrect utterances or are told of a 
rule that  enumerates certain non-elements of the language. An attempt has been made 
to extend Gold's model to incorporate both these kinds of additional information. It 
is shown that  either type of additional information enhances the learning power of 
formal language learning devices. 

I N T R O D U C T I O N  

A model of scientific inference which involves learning of predictive explanations for 
phenomena [Go167, BB75, CS83] may be described thus. Picture a scientist perform- 
ing all the possible experiments (in any order) on a phenomenon, noting the result of 
each experiment while simultaneously, but algorithrnically, conjecturing a succession 
of candidate explanations (programs) for predicting the results of all possible experi- 
ments. In this model, the set of all pairs of the form (experiment, corresponding result) 
associated with each phenomenon is taken to be coded by a function from .N" to .h/', 
where .hf is the set of natural numbers. A criterion of success is for the scientist eventu- 
ally to conjecture a program which he/she never gives up and which correctly predicts 
the results of all the possible experiments on the phenomenon, i.e., which correctly 
computes the function which codes the set of pairs associated with the phenomenon. 

L. Blum and M. Blum [BB75] and Case and Smith [CS83] consider variations on 
the above criterion of success in which the final program is allowed to make up to a 
mistakes, where a is a natural number. The motivation for considering anomalies in 
[CS83] comes from the fact that  physicists sometimes do employ explanations with 
anomalies. 

This is a naive model of science. A scientist has more information available than 
just the result of experiments. C.S. Peirce [Pei58], [Rei70] argues that  science is a non- 
terminating process of successive approximations. A scientist has some approximate 
explanation of the phenomenon based on the "state of the art" knowledge about that 
phenomenon. The model described above does not take in to account the presence 
of this additional information. In this paper, we make an attempt to model this 
additional information. 

An inductive inference machine (IIM) is an algorithmic device which takes as its 
input a set of data given one element at a time, and which from time to time, as 
it is receiving its input, outputs programs. [KW80], [AS83], [Cas86], and [OSW86] 
contain surveys of work on inductive inference machines. Henceforth, we will concern 
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ourselves with the problem in which an inductive inference machine is required to 
infer a program for a recursive function from its graph. This problem, as illustrated 
above, is analogous to the "naive" model of science. We describe below our approach 
to modeling additional information to a scientist. 

An inductive inference machine is presented, as additional information, with a 
program which computes a partial function that (1) agrees infinitely often with the 
function being learned; and (2) does not contradict the function being learned. In other 
words, this additional information is an infinitely often correct teacher. However, the 
second restriction that this teacher not contradict the function being learned, we feel, 
makes our approach a simplistic one. We model the quality of this infinitely often 
correct teacher by using certain "density" notions from [Roy86]. 

A notion related to "scientific" inference of functions is the inductive inference of a 
type 0 grammar for a recursively enumerable language. To model language learning in 
children, Gold introduced the seminal notion of identification [Go167]. We will use this 
paradigm as our model of language learning and refer to it as TxtEx-identification 
following [CL82]. According to this paradigm, a child (modeled as a machine) receives 
(in arbitrary order) all the well-defined strings of a language (a text for the language), 
and simultaneously, conjectures a succession of candidate grammars for the language 
being received. A criterion of success is for the child to eventually conjecture a correct 
grammar and to never change its conjecture thereafter. If, in this scenario, we replace 
the child machine by an arbitrary machine M, then we say that  the machine M 
TxtEx-identifies the language. T x t E x  is defined to be the class of sets ~ of r.e. 
languages such that  some machine TxtEx-identifies each language in £:. 

We study the effect of additional information in language learning. In this case, the 
language learning machine is provided with a grammar for a subset of the language 
being learned. It is also required that the "density" of difference between the two 
languages is no more than a certain, prespecified amount. The section on language 
learning contains an extensive discussion of the issues involved. 

Fulk [Fu185, Ful80] and Jain and Sharma [JS89a] consider other approaches to 
modeling the presence of additional information in inductive learning. We now proceed 
formally. 

N O T A T I O N S  

.N" is the set of natural numbers. 2 .+ is the set of positive integers. • denotes any finite 
natural number. Unless otherwise specified, i, j ,  k, l, m, n denote integers, d, dl, d2 etc. 
denote real numbers between 0 and 1 (inclusive). a, b and c range over (.N" U {*}). 0 
denotes the null set. card(S) denotes the cardinality of the set S. max, rain denote the 
maximum and minimum of a set respectively. C denotes subset. C denotes proper 
subset. For any two functions f l  and f2, f l  ='~ f2 means that card({x I f~(x) 
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f2(x)}) _< n. f~ =* f2 means that card({x I f l (x)  # f2(x)}) is finite. For any two 
sets $1 and $2, $1 ='~ $2 means card((S1 - $2) U ($2 - $1)) _< n. $1 =* $2 means 
card((S1 - 5'2) U ($2 - $1)) is finite. ~f  and p f  denote the domain and range of the 
function f respectively. 

L denotes a recursively enumerable subset of.Af. £ denotes a set of recursively enu- 
merable (r.e.) languages, g denotes the class of all recursively enumerable languages. 
90 denotes a standard acceptable progrannning system [Rog58], [Rog67], [MY78]. T~ 
denotes the function computed by program i in the p-system. Wi = (~T~. The set of 
all total recursive functions of one variable is denoted by T4. S, $1... denote subsets 
of T4. 2 s denotes the power set of ,S. (i, j )  stands for an arbitrary computable one to 
one encoding of all pairs of natural numbers onto .Af [Rog67]. 

P R E L I M I N A R I E S  

In this section, we briefly describe the fundamental paradigms that model language 
learning and scientific inference. 

Def in i t ion  1 [Go167] An Inductive Inference Machine (IIM) is an algorithmic ma- 
chine which takes as its input a set of data given one element at a time, and which 
from time to time, as it is receiving its input, outputs programs. 

IIMs have been used in the study of identification of programs for recursive func- 
tions as well as learning of grammars for languages [Be75] [CS83] [Che81] [Ful85] 
[Go167] [OSW86] [Wie78]. For a survey of this work see [ASS3], [OSWS6], [KW80], 
and [Cas86]. 

Def in i t ion  2 If L is a language, i is a grammar for L iff Wi = L. 

Def in i t ion  3 A text for a language L is a mapping t from Af into (Af t3 {#}) such 
that L is the set of natural numbers in the range of t. 

Intuitively, a text for a language is an enumeration of the objects in the language 
with # ' s  representing pauses in the listing of such objects. Variables a and T, with or 
without subscripts, range over finite initial segment of texts, content(or) = per - {#}.  
Ill denotes the length of the finite initial segment o. t, t' range over texts for languages. 
t~ denotes the initial segment of t with length n. a C t means a is an initial segment 
of t. content(t) = pt - {#}; intuitively it is a set of meaningful things presented in 
text t. 

M(a)  is the last output of M after receiving input a (note that a can be encoded 
as a natural number). We will assume that  M(a)  is always defined. M(t)  l =  i iff 

(7 n) [M(~)  = i]. We write M(t)  I iff (3i)[M(t) .L= i]. 
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Def in i t ion  4 [Go167] [CL82] M TxtEx%identifles L (written: L e Tx tExa (M) )  iff 
for any text t for L, M(t)  J. and WM(t) =~ L. 

Def in i t ion  5 T x t E x  a = {£ C E I (3M)[£ c_ TxtExa(M)]} .  

Essentially the concepts from Definitions 4 and 5 (a = 0 case) constitute Gold's 
influential language learning paradigm. The generalization of Gold's paradigm to the 
a > 0 case above was motivated by the fact that humans rarely learn a language 
perfectly. The a > 0 case in Definitions 4 and 5 is due to Case and Lynes [CL82]. 
Osherson and Weinstein [OW82b, OW82a] had independently introduced the a = * 
c a s e .  

In inference of programs for recursive functions by IIMs~ the input sequence 
(0, f(O)l ~ (l~ f(1))~ ... is presented to the IIM. For all recursive functions f~ fl n denotes 
the finite initial segment (((O,f(O))),((1, f(1))), . . . ,((n,f(n)))).  

Def in i t ion  6 [Go167] [BB75] [CS83] M Ex%identifies f (written f E Ex~(M)) i f f  
both M ( f )  J. and ~M(]) =~ f .  

Def in i t ion  7 Ex a = {,S C_ n I (3M)[8 c_ Ex~(M)]}. 

The motivation for considering anomalies in the final program in Definitions 6 
and 7 comes from the fact that physicists sometimes do employ explanations with 
anomalies [CS83]. The a = * case was introduced by L. Blum and M. Blum [BB75] 
and the other a > 0 cases were introduced by Case and Smith [CS83]. 

Case and Smith [CS83] introduced another infinite hierarchy of identification cri- 
terion which we describe below. "Bc" stands for behaviorally correct. Barzdin [Bar74] 
independently introduced a similar notion. We now define these new criteria, both in 
the context of scientific inference and language learning. 

Def in i t ion  8 [CS83] M Bc%identifies f (written: f E Bea(M))  iff, M fed f outputs 

over time an infinite sequence of programs po,Pl,P:,.., such that  (~ n)[~p. =~ f]. 

Def in i t ion  9 [CS83] Bc ~ = {S C n I (3M)[S C Bc~(M)]}. 

Def in i t ion  10 [CL82] M TxtBc%identifies L (written: L E TxtBc~(M))  iff, for all 
texts t for L, M outputs over time an infinite sequence of grammars go,gl,g2,.., such 

that (~ n)[Wg, =~L]. 

Def in i t ion  11 [CL82] T x t B c  ~ = {£: C C I (3M)[£ c_ TxtBc~(M)]}.  

We usually write Ex for Ex  °, T x t E x  for T x t E x  °, Bc for Bc °, and T x t B c  for 
T x t B c  °. 

Theorem 1 just below states some of the basic hierarchy results about the Ex a and 
Bc a classes. 



230 Session 6 

T h e o r e m  1 For all n E .hf, 
(a) Ex n C Ex  n+l . 
(b) Unez Exn C Ex*. 
(c) Ex* C Bc. 
(d) B e  n C B e  '~+1. 
(e) Unex B e n  C B e * .  
(f ) 7~ E Be*. 

Parts (a), (b), (d), and (e) are due to Case and Smith [CS83]. Part  (f) is due to 
Harrington [CS83]. Blum and Blum [BB75] first showed that Ex  C Ex*. Barzdin 
[Bar74] independently showed Ex  C Bc. 

Theorem 2 just below states some of the basic results in language learning. 

T h e o r e m  2 [CL82] For all i, n E .if, 
(a) T x t E x  n+l - T x t E x  n ~ 0. 
(b) T x t E x  2n+1 - T x t B c  n ~ 0. 
(c) T x t E x  2n C T x t B c  n. 
(f) [.in TxtBcn  C TxtBc* .  

A D D I T I O N A L  I N F O R M A T I O N  F O R  F U N C T I O N  I N F E R E N C E  

We define the following notions of "density" from [Roy86]. 

Def in i t ion  12 [Roy86] Density of a set A C A f  in a finite and nonempty set B 
(denoted: d(A; B)) is card(ADB)/card(B) .  

Intuitively, d(A; B) can be thought of as the probability of selecting an element of A 
when choosing an arbitrary element from B. 

Def in i t ion  13 [Roy86] Density of 
l i m n ~  inf{d(A; {z ]z _< x } ) [ x  > n}. 

a set A C Af (denoted: d(A)) is 

Def in i t ion  14 [Roy86] The asymptotic agreement between two partial functions f 
and g (denoted: a a ( f , g ) )  is d({x I f ( x ) : =  g(x)}). 

Def in i t ion  15 [Roy86] The asymptotic disagreement between two partial functions f 
and g (denoted: a d ( f , g ) )  is 1 - a a ( f , g ) .  
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We now describe our notion of additional information to an inductive inference 
machine learning a program from the graph of a recursive function. An IIM, trying 
to infer a program for a function f ,  is given as additional information, a program for 
a partial recursive function g which agrees with f to some extent. In Definition 16 
just below, we precisely define what we mean by '% partial function g agrees with f 
to some extent". 

Def in i t i on  16 Suppose d is a real number in the interval [0, 1]. A partial function p 
is said to be d-conforming with a recursive function f iff, p satisfies the following two 
conditions: 

(1) p(x) J.~ p(x) = f(x), i.e., p does not contradict f .  
(2) d({x I p(x) = f(x)})  _> d. 

Using Definition 16, we define below our new learning criterion for identification 
of a program from graph of a recursive function in the presence of an infinitely-often 
correct teacher. 

Def in i t i on  17 Suppose d is a real number in the interval [0, 1]. Suppose a E .hfu {*}. 
A machine M ApaExa-identifies a function f (written: f E ApdEx~(M)) iff when 
provided with a program for a partial function p which is d-conforming with f ,  M on 
f converges to a program i such that  qoi =~ f .  

Def in i t i on  18 Suppose d is a real number in the interval [0, 1]. Suppose a E .Afu {,}. 
ApdEx ~ = {S C n I (3M)[S c_ ApdEx~(M)]}. 

We similarly define the corresponding identification criterion for Be inference. 

D e f i n i t i o n  19 Suppose d is a real number in the interval [0, 1]. Suppose a E .Afu {*}. 
h machine M ApdBc~'-identifies a function f (written: f E ApdBe~(M)) iff when 
provided with a program for a partial function p which is d-conforming with f ,  M on 

f ,  outputs an infinite sequence of programs Pl,P2,... such that (7 n)[~op, =~ f]. 

Def in i t i on  20 Suppose d is a real number in the interval [0, 1]. Suppose a E .AfO {*}. 
ApdBe ~ = {S c T¢ I (3M)[S c hpaBe~(M)]}.  

In the above identification criteria, p - -  an approximation to f ,  is a good plausible 
additional information to a machine trying to learn a program for f from its graph. 
However, p may be a very bad approximator locally for large intervals which may be 
of importance. To overcome this situation, we use the notion of "uniform density" 
from [Roy86] to define a new identification criterion. 

Def in i t i on  21 [Roy86] The uniform density of a set A in intervals of length >_ n 
(denoted: ud~(A))is  inf({d(A; {z I x < z < y}) lx ,  y E.hf and y - x  > n}). Uniform 
density of A (denoted: ud(A)) is limn~oo udn(A). 



232 S e s s i o n  6 

Defin i t ion  22 [Roy86] The asymptotic uniform agreement between two partial func- 
tions f and g (denoted: a u a ( f , g ) )  is ud({x I f ( x )  = g(x)}). 

Def in i t ion  23 [Roy86] The Asymptotic uniform disagreement between two partial 
functions f and g (denoted: a u d ( f , g ) )  is 1 - a u a ( f , g ) .  

Using the notion of uniform density we define an improved learning criterion. 
Definition 24 just below is an analogous notion to Definition 16 for this new density 
notion. 

Def in i t ion  24 Suppose d is a real number in the interval [0, 1]. A partial function 
p is said to be d-uniform conforming with a recursive function f iff, p satisfies the 
following two conditions: 

(1) p(x) ~::-~ p(x) = f (x) ,  i.e., p does not contradict f .  
(2) ud({x I p ( x ) =  f (x)})  > d. 

Def in i t ion  25 Suppose d is a real number in the interval [0, 1]. Suppose a E .AfU {*}. 
A machine M UApdExa-identifies a function f (written: f E u A p a E x a ( M ) )  iff when 
provided with a program for a partial function p, which is d-uniform conforming with 
f ,  M on f converges to a program i such that ¢Pi =a f .  

Def in i t ion  26 U A p d E x  a = {,9 C 7~ I (3M)[8 c UApdExa(M)]} .  

We similarly define the corresponding identification criterion for Bc inference. 

Def in i t ion  27 Suppose d is a real number in the interval [0, 1]. Suppose a E .AfU {*}. 
A machine M UApdnca-identifies a function f (written: f E UApdBca (M))  iff when 
provided with a program for a partial function p, which is d-uniform conforming with f ,  

M on f ,  outputs an infinite sequence of programs pl,p2,.., such that (7  n)[~op. =~ f]. 

Def in i t ion  28 U A p d B c  ~ = {8 C_ T¢ I (3M)[S C UApdBc~(M)]}.  

In what follows, we will refer to the two types of additional information as A p  and 
U A p  type. Intuitively, U A p  type additional information is a stronger type additional 
information, and hence we would expect the corresponding criteria of identification to 
be stronger. Since any U A p  d type additional information is also an A p  d additional 
information we have the following two propositions. 

P r o p o s i t i o n  1 ('Ca E .Af tO {,})(Vd E [0,1]) [ApaEx ~ C UApdExa] .  

P r o p o s i t i o n  2 (Va E .hf U {,})(Vd E [0, 1]) [ApaBc ~ C VApaBca] .  

Following theorems deal with the trade-offs between anomalies in the conjectured 
program, additional information, and types of identification criteria. 
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T h e o r e m  3 (Vd E (0,1])(Vm E .hf) [UApdEx - A p l B c  "~ # 01. 

Theorem 3 says that  there are classes of recursive functions that can be identified with 
some positive U A p  type additional information but cannot be Bc identified with any 
predetermined number of anomalies allowed per program, and even the best possible 
Ap type additional information. In other words the best possible Ap type additional 
information and a more general criterion of inference cannot, in general, compensate 
for any U A p  type additional information. 

As a contrast, Theorem 4 below says that there are classes of recursive functions 
that can be Ex-identified with Ap type additional information but cannot be Bc- 
identified with any predetermined number of anomalies and U A p  type additional 
information if the density associated with Ap type additional information is better 
than the one associated with U A p  type additional information. 

T h e o r e m  4 (Vd2 > dl ] dl,d2 E [0, 1])(Vk E .Af) [Apd2Ex - UApdlBc  k # 01. 

Theorems 3 and 4 above together with Theorem 5 below give a complete picture 
about the relationship between different Ex and Bc identification criteria with Ap 
and U A p  type additional information. 

T h e o r e m  5 (Vi CAf) 
1) Ex i+1 - U A p l E x  I ~ 0. 
2) Bc i+1 - U A p l B c  i ~ 0. 
3) Ex* - (Ji U A p  1Exi ~ 0. 
4) Be - U A p l E x  * ~ 0. 

In summary: the results in this section give us corollaries that  imply that both 
Ap and U A p  type of additional information enhance scientific inference power of 
machines with respect to both Ex  and Bc identification criteria. Also, in general 
U A p  type of additional information results in a bigger enhancement as compared to 
a similar Ap type of additional information. 

A D D I T I O N A L  I N F O R M A T I O N  F O R  L A N G U A G E  L E A R N I N G  

Formal language learning theory was originally motivated by the study of language 
learning in children. It relied on early claims of psycholinguists that  children are 
rarely if ever informed of grammatical errors, instead they are only presented with 
strings in the language. Based on this, Gold [Go167] developed the notion of T x t E x -  
identification. However, it turns out that the class T x t E x ,  which contains sets of r.e. 
languages that can be TxtEx-identified by some language learning machine, contains 
"small" classes of languages. For instance, none of the classes of languages in the 
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Chomsky hierarchy (regular, context free, context sensitive, and r.e.) are contained in 
T x t E x .  This led Gold to two possible .conclusions. One was that  the class of natural 
languages is much "smaller" than previously thought, and the other was that children 
are being given additional information in some subtle way. Angluin [Ang80a] [Ang80b] 
and Wiehagen [Wie77] [KW80] address the first conclusion of Gold. We will concern 
ourselves, in this section, with the second conclusion of Gold. 

It is not uncommon for an elder person (a parent or teacher) to tell a child some 
small grammatical rule that enables the child to enumerate a list of elements of the 
language. Basically, this additional information (the grammatical rule) enables the 
child to know certain elements of the language before it knows it by text presentation. 
This kind of additional information can be modeled in the Gold paradigm by requiring 
that in addition to a text for the language, the language learning device be provided 
with a grammar for a subset of the language. It turns out that this kind of additional 
information indeed increases the language learning power of learning machines. We 
further model the quality of this additional information by measuring the "density 
of agreement" of the language, whose grammar is provided as additional information, 
with the one being learned. Not surprisingly, a "better quality" additional information 
enhances the learning power more than a "not so good" additional information. We 
now define this "density" notion and the new language learning criteria. 

Def in i t ion  29 The density of a language L1 in an infinite language L2 (denoted 
by d(L1;L2)) is defined as follows: Let xl < x2 < x3,.., be the elements of L2. 
d(Li;L2) = d({i ] xi E L1}). 
Similarly, uniform density of 51 in 52 (denoted: u d ( / i ;  52)) is ud({i[ xi C 51 }). 

Def in i t ion  30 Suppose d is a real number in the interval [0, 1]. A Language L' is said 
to be d-language conforming with a recursively enumerable language L iff, L' satisfies 
the following two conditions: 

(1) L'C_ L, 
(2) d (L ' ;5 )  _> d. 

Def in i t ion  31 Suppose d is a real number in the interval [0, 1]. A Language L' is 
said to be d-language uniform conforming with a recursively enumerable language L 
iff, L' satisfies the following two conditions: 

(1) 5'C_L, 
(2) ud (5 ' ;L )  > d. 

Def in i t ion  32 Let d C [0, 1] and a E (.~ru{*}). h machine M Ap~TxtEx%identifies 
a language L (written: L E ApdTx tEx" (M) )  iff when provided with a grammar for 
a language L', which is d-language conforming with L, as an additional information, 
M on any text for L converges to a grammar i such that  W~ =a L. 
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D e f i n i t i o n  33 A p d T x t E x  ~ -- (£  C £ I (3M)[~ C ApdTxtEx~(M)]} .  

We can similarly define U A p d T x t E x  ~, A p d T x t B c  a, and U A p d T x t B c  ~ criteria of 
language learning. Clearly, these criteria are analogs of the similar criteria for function 
inference. All the theorems in function inference carry over to language learning. 

Above, we were concerned with additional information that supplements the infor- 
mation a child is already receiving in the form of a text for the language. In other 
words, the additional information that we just modeled, is about what is in the lan- 
guage and not about what is not in the language. However, literature of speech 
language pathology and linguistics contains extensive refutations of the claim that 
children receive no negative data [BB64][Dal76]. Intuitively, it is clear that children 
are receiving information about the complement of the language they are trying to 
learn. If a child's utterances do not have the desired effect, it somehow works as a 
clue that  the utterance is not in the language. An elder person (a parent or a teacher) 
either rebukes the child or tells it specifically that something is not in the language. 
Better still, an elder person can provide the child with a rule that  enumerates a list 
of strings which are not members of the language. This kind of additional informa- 
tion can be modeled in the Gold's paradigm by requiring that the language learning 
device be provided with a grammar for a subset of the complement of the language 
being learned. It turns out that even this kind of additional information enhances the 
language learning power of learning devices. 

Fulk [Fu185, Ful80] investigated a different approach to additional information 
about the complement of a language. He showed that being given text for a language 
and a grammar for the complement is equivalent to being given text for it and enu- 
meration of a non-empty, finite sequence of grammars, the last of which is a grammar 
for the complement. However, we feel, a grammar for the complement of the language 
is too much additional information, and children certainly are not being given a rule 
that lists everything that  is ungrammatical. We further employ the above density no- 
tions to differentiate a "good quality" additional information about the complement 
from a "not so good quality" additional information. As in the previous case, better 
the additional information, more is the enhancement achieved in learning power of 
language learning devices. We now define this notion. 

Def in i t ion  34 Let d C [0, 1]. Let a E (Af U {*}). A machine M A C p d T x t E x  % 
identifies a language L (written: L E ACpdTx tEx~(M) )  iff when provided with a 
grammar for a language L ~, which is d-language conforming with the complement of 
L (i.e..Af - L), as an additional information, M on any text for L converges to a 
grammar i such that W~ =a L. 

D e f i n i t i o n  35 A C p d T x t E x  ~ = {~ C £ I (2M)[£ c ACpdTxtEx~(M)]} .  
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We can similarly define UACpdTxtEx  ~, ACpdTxtBc ~, and UACpdTxtBc  ~ criteria 
of language learning. 

Finally, we define a language learning criteria that incorporates additional informa- 
tion both about elements of the language (positive information) and about elements of 
the complement of the language (negative information). This kind of additional infor- 
mation is better than just providing positive additional information or just providing 
negative additional information. 

Defini t ion 36 Let d,,d2 C [0,1],a C (AfU {*}). A machine M Apd~ACpd2TxtEx % 
identifies a language L (written: L E Apd~ACpd2TxtEx~(M)) iff when provided with 
grammars for languages L1, which is all-language conforming with L, and L2, which 
is d2-language conforming with the complement of L ( i .e. .Af - L), as additional 
information, M on any text for L converges to a grammar i such that Wi =~ L. 

Defini t ion 37 ApdlACpd2TxtEx  a = {£ C g I (3M)[£ c ApdlACpd2TxtEx~(M)]). 

We can similarly define the following criteria of language learning. 
1) Ap d~ UACpd2TxtEx ", 
2) UAp d~ ACp d2 Tx tEx  a, 
3) UAp dl UACpd~TxtEx ~, 
4) Ap d~ ACp d2 TxtBc  a, 
5) Ap d~ UACpd2TxtBc ~, 
6) UAp dl ACpd2TxtBc a, 
7) UAp dl U A C p  d2 Tx tBc  a. 
All the results in function inference have a counterpart in language learning. These 

results along with the following theorems give us corollaries that imply that providing 
either positive or negative additional information enhances language acquisition power 
of formal devices with respect to both Tx tEx  and Tx tBc  identification criteria. Also, 
providing both positive and negative additional information to a language learning 
device is better than just providing one of them. 

Theorem 6 For all k E .Af, 
1) T x t E x  k+l - U A p l U A C p l T x t E x  k ~ 0, 
2) TxtBc  k+l - U A p l U A C p l T x t B c  k ~ 0, 
3) TxtEx* - [,.Jk U A p l U A C p  1Txt]Exk ~ 0, 
4) Tx tBc  - U A p l U A C p l T x t E x  * ~ 0, 
5) T x t E x  2k+1 - U A p l U A C p l T x t B c  k ~ 0, 
6) (U)Ap dl (U)ACpd2TxtEx 2k C (U)Ap dl (U)ACpd2TxtBc k, 
7) g ~ U A p l U A C p l T x t B c  *. 

Theorem 7 (Vd > 0 ) [ U A p d T x t E x -  A p l U A C p l T x t B c  * ~ 0]. 
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T h e o r e m  8 (Vd > 0 ) [ U A C p d T x t E x -  U A p l A C p l T x t B c  * ¢ 0]. 

Theorem 9 (Vdl, d21d2 > d l ) [Apd2TxtEx-  UApdlUACp~TxtBc * ~ 0]. 

T h e o r e m  10 (Vdl,d2 I d2 > d l ) [ACpd2TxtEx-  U h p ~ U h C p d i T x t B c  * ~ 0]. 

University of Rochester Technical Report No. 282 [JS89b] contains a detailed 
account of this paper. 
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