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Abstract 

Recent progress towards unifying the probabilistic and preferential models semantics for non- 

monotonic reasoning has led to a remarkable observation: Any consistent system of default 

rules imposes an unambiguous and natural ordering on these rules which, to emphasize its sim- 

ple and basic character, we term "Z-ordering."  This ordering can be used with various levels 

of refinement, to prioritize conflicting arguments, to rank the degree of abnormality of states of 

the world, and to define plausible consequence relationships. This paper defines the Z-ordering, 

briefly mentions its semantical origins, and iUustrates two simple entailment relationships in- 

duced by the ordering. Two extensions are then described, maximum-entropy and conditional 

entailment, which trade in computational simplicity for semantic refinements. 

1. Description 

We begin with a set of rules R = {r : %. ~ 6,- } where % and [~r are propositional formulas over a finite 

alphabet of literals, and --o denotes a new connective to be given default interpretations later on. A truth 

valuation of the fiterals in the language will be called a model. A model M is said to verify a rule ot ~ 

i f M  ~ o t ^  [3(i.e., o~and ~ are both true in M),  and to falsify ot ~ ~ i f M  ~ A ~  13. 

Given a set R of such rules, we first define the relation of toleration. 

(*) This work was supported in part by National Science Foundation grant #IRI-86-10155 and Naval Research Laboratory grant 
#N00014-89-J-2007. 
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Definition 1: A set of  rules R ' c_ R is said to tolerate an individual rule r ,  denoted T(r I R '), if the set of  

formulas ( ~  A 13,.) ,U , ( ~ ,  ~ 13,..) is satisfiable, i.e., if there exists a model that verifies r and does not 
r e R  

falsify any of  the rules in R '. 

To facilitate the construction of the desired ordering, we now define the notion of consistency. 

Definition 2: A set R of  rules is said to be con~istent if  for every non-empty subset R ' c_ R there is at 

least one rule that is tolerated by all the others, i.e., 

VR" c R,  ~ r" ~ R ", such that T ( r '  I R '  - r ' )  (1) 

This definition, named p -consistent in [Adams 1975] and e-consistent in [Pearl 1988], assures the 

existence of  an admissible probability assignment when rules are given a probabilistic interpretation. In 

other words, if each rule t~--4 [3 is interpreted as a statement of  high conditional probability, 

P (131o0 _> 1 -e ,  consistency assures that for every e > 0 there will be a probability assignment P (to 

models of the language) that satisfies all these statements simultaneously. An identical cd te ron  of con- 

sistency also assures the existence of an admissible preference ranking on models, when each rule o~ ~ 13 

is given a preferential model interpretation, namely, 13 is true in all the most preferred models of tx [Leh- 

mann and Magidor 1988]. 

A slightly more elaborate definition of  consistency applies to databases containing mixtures of 

defeasible and nondefeasible rules [Goldszmidt and Pearl 1989a]. Note that the condition of consistency 

is stronger than that of  mere satisfiability. For example, the two rules a ~ b and a ~ ---, b are satisfiable 

(if a is false) but not consistent. Intuitively, consistency requires that in addition to satisfying the con- 

straint associated with the rule a ~ b, the truth of a should not be ruled out as an impossibility. This 

reflects the common understanding that a conditional sentence " i f  a then b "  is not fully satisfied by 

merely making a false; it requires that both a and b be true in at least one possible world, however un- 

likely. 

The condition of  consistency, Eq. (1), leads to a natural ordering of  the rules in R. Given a con- 

sistent R,  we first identify every rule that is tolerated by all the other rules of  R,  assign to each such rule 

the label 0, and remove it from R. Next, we attach a label 1 to every rule that is tolerated by all the 

remaining ones, and so on. Continuing in this way, we form an ordered partition of  

R =(Ro, R b R 2 , . . .  RK), where 
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R i = {r: T(r  I R  - R o - R  1 . . . .  Ri_i)  } (2) 

The label attached to each rule in the partition defines the Z-ranking or Z-ordering. The process 

of constructing this partition also amounts to testing the consistency of R, because it terminates with a 

full partition iff R is consistent [Goldszmidt and Pearl 1989a]. 

Theorem 1: The complexity of testing the consistency of a set of rules is O [PS (n)N2], where N is the 

number of rules, n the number of literals in R and PS (n)  the complexity of propositional satisfiability in 

the sublanguage characterizing the rules (e.g., PS (n)  = 0 (n)  for Hom expressions). 

Proof: Identifying R o takes N • PS (n)  steps, identifying R I takes (N - I R 01)PS (n) steps, and so on. 

Thus, the total time it takes to complete the labeling is 

P S ( n ) [ N + ( N - I R o l ) + ( N - I R o I - I R l l ) +  . . . ]  _< P S ( n ) [ N + ( N - 1 ) +  . . . 1  

N 2 
= PS (n)  - -  (3) 

2 

In order to define the notions of entailment and consequence it is useful to translate the ranking 

among rules into preferences among models. The reason is that we wish to proclaim a formula g to be a 

plausible consequence o f f ,  written f ~-g, only if the constraints imposed by R would force the models 

of f A g tO stand in some preference relation over those of f A ---,g. For example, the traditional pre- 

ferential criterion for g to be a rational consequence o f f  requires that all the most preferred models o f f  

satisfy g,  i.e., that all the most preferred models o f f  reside i n f  ^ g  and none resides i n f  ^ - , g  [Sho- 

ham 1987]. We shall initially limit ourselves to such preference criteria that do not require substantial 

enumeration of models, i.e., that the preference between f ^ g and f A --~g be readily tested using the 

partition defined in Eq. (2). To that purpose, we propose the following ranking on models. Using Z (r) 

to denote the label assigned to rule r,  

Z ( r ) = i  iff r • R i , (4) 

we define the rank associated with a particular model M as the lowest integer n such that all rules having 

Z (r) >_ n are satisfied by M,  

Z ( M ) = m i n { n : M ~ ( o t r D ~ r  ) Z(r)_>n } (5) 

In other words, the rank of a model is equal to 1 plus the rank of the highest-ranked rule falsified by the 

model. The rank associated with a given formula f is now defined as the lowest Z of all models satisfy- 
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i n g f ,  

Z ( f )  =mint {Z ( M ) : M  ~ f  } (6) 

Note that, once we establish the ranking of the ndes, the complexity of determining the Z value of any 

given M is O (N); we simply identify the highest Z rule that is falsified by M and add 1 to its Z .  More 

significantly, determining the Z value of an arbitrary formula f requires at most N satisfiability tests; we 

search for the lowest i such that all rules having Z (r) _> i tolerate f ~ true, i.e., 

Z ( f ) = m i n { i :  T ( f  ~ true IRi,Ri+ 1 .... )} (7) 

Eq. (5) defines a total order on models, with those receiving a lower Z interpreted as being more 

normal or more preferred. This ordering satisfies the constraints that for each rule a,. ~ 13r, 13r holds 

true in all the most-preferred models of a r , namely, the usual preferential model interpretation of default 

rules. It can be shown (see Appendix I) that the rankings defined by Eqs. (4) and (5) correspond to a spe- 

cial kind of a preferential structure; out of all rankings satisfying the rule constraints, the assignment 

defined in Eq. (5) is the only one that is minimal, in the sense of assigning to each model the lowest possi- 

ble ranking (or highest normality) permitted by the rules in R.  

2. C o n s e q u e n c e  Re la t ions  

We are now ready to define two notions of nonnmnotonic entailment. Given a knowledge base in the 

form of a consistent set R of  rules, and some factual information f ,  we wish to define the conditions 

under which f can be said to entail a conclusion g,  in the context of R.  

Definition 3 (0-entailment):  g is said to be O-entailed b y f  in the context R,  written f ~ o g ,  if the aug- 

mented set of  rules R u f ~ --1 g is inconsistent. 

Theo rem 2: 0-entailment is semi-monotonic, i.e., i f R '  ~ R then 

f ~-o g under R whenever  f ~-0 g under R ' .  

The proof is immediate, from the fact that if R" u f ~ ---, g is inconsistent, then R u f ~ --, g must be 

inconsistent as well. Semi-monotonicity reflects a strategy of  extreme caution; no consequence will ever 

be issued if it is possible to add rules to R (consistently) in such a way as to render the conclusion no 

longer valid. Thus, 0-entailment generates the maximal set of " sa fe"  conclusions that can be drawn from 

R,  and hence, was proposed in [Pearl 1989] as a conservative core that ought to be common to all non -  
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monotonic formalisms. 

0-entailment was named p-entailment by Adams [1975], e-entailment by Pearl [1988] and r -  

entailment by Lehmann and Magidor [1988]. Probabilistically, 0-entailment guarantees that conclusions 

will receive arbitrarily high probabilities (i.e., P (g I f  ) ---> 1) whenever the premises receive arbitrarily 

high probabilities (i.e., P ([3r I Otr ) "--) 1 V r ~ R ). In the preferential model interpretation, 0-entailment 

guarantees that ~:(f ^ g)  < ~:(f ^ ---~ g ) holds in all admissible ranking functions ~:, namely, in all ranking 

functions ~:(M) that satisfy the rule constraints 

~(0~r Al3,)<~C(O~r ^ ' ~  Pr) V r  ~ R (8) 

where, for every formula c~, 

~(cO = min{~:(M) : M ~ ct}. (9) 

Due to its extremely conservative nature, 0-entailment does not properly handle irrelevant 

features, e.g., from a ---) c we cannot conclude a ^ b ----) c even in cases where R makes no mention of 

b. To sanction such inferences we now define a more adventurous type of entailment. 

Definition 4: 

f ~-lg), if 

(1-entailment). A formula g is said to be 1-entailed by f ,  in the context R,  (written 

Z(f  A g ) < Z ( f  A---~g). (10) 

Namely, there exists an integer k such that the set of rules ranked higher or equal to k tolerates f --> g 

but does not tolerate f ----~ --~ g. Note that, once we have the Z-rank of all rules, deciding 1-entailment for 

a given query requires at most 2(1 +log I RI)  satisfiability tests (using a binary-search strategy). 1- 

entailment can be given a clear motivation in preferential model semantics. Instead of insisting that 

K:(f ^ g ) < ~:(f ^ ~ g ) hold in all admissible ranking functions K:, as was done in 0-entailment, we only 

require that it holds in the unique admissible ranking that is minimal, namely, the Z-ranking (see Appen- 

dix I). 

Lehmann [1989] has extended 0-entailment in a slightly different way, introducing a consequence 

relation called rational closure. Rational closure is defined in terms of a relation called more exceptional, 

where a formula c~ is said to be more exceptional than ~ if 

~ v ~!r-o--, ~ .  

Based on this relation, Lehmann then used an inductive definition to assign a degree to each formula (x in 
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the language: degree (cO = i if degree (o0 is not less than i and every [3 that is less exceptional than ct has 

degree (13) < i. Finally, a sentence ct ---> 13 was defined to be in the rational closure of  R iff 

degree (ct) < degree (ct A --113). 

Goldszmidt and Pearl [1989b] have recently shown that degree(cO is identical to Z(tz) and, 

hence, rational closure is equivalent to 1-entailment. This endows the Z-ranking with an additional 

motivation in terms of  exceptionality; Z (tx) > Z ([3) if tx is more exceptional than 13. Additionally, the 

computational procedure developed for 1-entaiiment renders membership in the rational closure decidable 

in at most 2(1 + log I R I ) satisfiability tests. 

Lehmann [1989] has also shown that the rational closure can be obtained by syntactically closing 

the relation of 0-entaiiment under a rule suggested by Makinson called rational monotony. Rational 

monotony permits us to conclude a A b ~- c from a ~- c as long as the consequence relation does not con- 

tain a ~----, b. Rational monotony is induced by any admissible ranking function, not necessarily the 

minimal one defined by system-Z (see Appendix II). Thus, 1-entailment can be thought of as an exten- 

sion of  0-entailment to acquire properties that are sound in any individual (admissible) ranking function. 

1-entailment, though more adventurous than 0-entailment, still does not go far enough, as is illus- 

trated in the next section. 

3. I l lustrat ions 

Consider the following collection of rules R : 

r 1 : "Penguins are birds" 

r 2 : "Birds fly" 

r 3 : "Penguins do not fly" 

r 4 : "Penguins live in the arctic" 

r 5 : "Birds have wings" 

r 6 : "Animals that fly are :mobile" 

p ---> b 

b ---) f 

p . . - ) ~ f  
p ---> a 

b ---> w 

f ---> m 

It can be readily verified that r 6, r 5, and r 2 are each tolerated by all the other five rules in R. For 

example, the truth assignment (p = 0, a = 0, f = 1, b = 1, w = 1, m = 1) satisfies both 
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and 

b A w A ( p  D b ) A ( b D f ) A ( p D ~ f ) A ( p  D a ) A ( f  D m )  

O A f  ^ ( p  D b ) A ( b D W ) A ( b D ~ f ) A ( p D a ) A ( f D m ) .  

ThUS, r 6, r 5 and r 2 are each assigned a label 0 indicating that these rules pertain to the most normal state 

of affairs. No other rule can be labeled 0 because, once we assignp the truth value 1, we must assign 1 to 

b and 0 to f ,  which is inconsistent with b ~ f .  The remaining three rules can now be labeled 1, because 

each of the three is tolerated by the other two. A network describing the six rules and their Z-labels is 

shown in Figure 1. 

P 1 b 

1 0 

a w 

m 

Figure 1. 

The following are examples of plausible consequences one would expect to draw from R : 

O-entailed 1-entailed not-entailed 

b Ap ~---,f ~ ~ p  p ~-W 

f t -~P  ~ f  ~-~b p A ~ a  t -b  

bk- p b -m p 
p Aa~-b ~m~-~b  

p A~w~- b 

For example, to test the validity of b ^ p ~-o --, f we add the rule r6: b ^ p ~ f to R, and realize that the 

augmented set becomes inconsistent; no rule in the set {b Ap ----> f ,p  ~ b ,p  --> "--,f } Can be tolerated 

by the other two. 
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1-entailment sanctions plausible inference patterns that are not 0-entailed, among them rule 

chaining, contraposition and the discounting of  irrelevant features. For example, we cannot conclude by 

0-entailment that birds are mobile, b ~- m, because neither b ~ m nor b ~ ~ m  would render R incon- 

sistent. However, rn is 1-entailed by b, because the rule b ~ m is tolerated by all rules in R while 

b ~ ~ m is tolerated by only those labeled 1. Thus, 

Z(b  A m ) < Z ( b  A ~ r n ) ,  

confirming Eq. (10). Similarly, if c is an irrelevant feature (i.e., not appearing in R),  we obtain 

b AC ~- l f  butnot  b ACe-of. 

On the other hand, 1-entailment does not permit us to conclude that flying objects are birds 

( f  ]- b ) or that penguins who do not live in the arctic are still birds (p A ~ a ~ b). This is because negat- 

ing these consequences will not change their Z-ratings - -  in testing f [ - lb  we have 

Z ( f  A b)  = Z ( f  A ~ b ) = 0, while in testing p A ---~ a ~-1 b we have 

Z(p  A ~ a  A b ) = Z ( p  A ~ a  A---,b) =2.  

There are cases, however, where 1-entaihnent produces conclusions whose plausibility may be 

subject to dispute. For example, (1) if we add to Figure 1 the rule c ---) f we obtain Z (c ~ f ) = 0, which 

yields c [-l -,P and c A p ['-1 ~ f .  In other words, 1-entailment ranks the new class c to be as normal as 

birds, and penguins, by virtue of  being exceptional kind of birds (relative to flying) are also treated as ex- 

ceptional c 's. Were the database to contain no information relative to birds, penguins and c ' s  would be 

treated as equal status classes and the conclusion p A C [- ---~ f would not be inferred. Thus, merely men- 

tioning a property ( f )  by which a class (p) differs from its superclass (b) automatically brands that class 

(p) exceptional relative to any neutral class (c). 

The main weakness of the system described so far is its inability to sanction property inheritance 

from classes to sub-classes. For example, neither of  the two types of  entailments can sanction the conclu- 

sion that penguins have wings (p ~ W) by virtue of  being birds (albeit exceptional birds). The reason is 

that the label 1 assigned to all rules emanating from p amounts to proclaiming penguins an exceptional 

type of  birds in all respects, barred from inheriting any bird-like properties (e.g., laying eggs, having 

beaks, etc.). This is a drawback that cannot be remedied by methods based solely on the Z-ordering of 

defaults. The fact that p ~ w is tolerated by two extra rules (p ~ b, and b ~ w) on top of those 

tolerating p ~ -,  w,  remains undetected. 

(1) This observation is due to Hector Geffner. 
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To sanction property inheritance, a more refined ordering is required which also takes into ac- 

count the n u m b e r  of rules tolerating a formula, not merely their rank orders. One such refinement is pro- 

vided by the maximum-entropy approach [Goldszmidt and Pearl 1989c] where each model is ranked by 

the sum of weights on the rules falsified by that model  Another refinement is provided by Geffner's con- 

ditional entailment [Geffner 1989], where the priority of rules induces a par t ia l  order on models. These 

two refinements will be summarized next. 

4. T h e  M a x i m u m  E n t r o p y  A p p r o a c h  

The maximum-entropy (ME) approach [Pearl 1988] is motivated by the convention that, unless men- 

tioned explicitly, properties are presumed to be independent of one another; such presumptions are nor- 

mally embedded in probability distributions that attain the maximum entropy subject to a set of con- 

straints. Given a set R of rules and a family of probability distributions that are admissible relative the 

constraints conveyed by R (i.e., P (~r ~ (Xr) >- 1 - e 'q r e R ), we can single out a distinguished distribu- 

tion P~, R having the greatest entropy - ~  P (M)log(M), and define entailment relative to this distribution 
M 

by 

f ~--Meg iff PE, R (g l f ) ~ 1 .  
E--.+O 

An infinitessimal analysis of  the ME approach yields a ranking function K on models, where 

n(M) corresponds to the lowest exponent of e in the expansion of P e, R (M) into a power series in e. 

Moreover, this ranking function can be encoded parsimoniously by assigning an integer weight wr to 

each rule r e R and letting n(M) be the sum of the weights associated with the rules falsified by M. The 

weight w r , in turn, reflects the "cos t "  we must add to each model M that falsifies rule r ,  so that the 

resulting ranking function would satisfy the constraint conveyed by r ,  namely, 

min {~(M): M ~ %  A ~r} < m i n  {to(M): M ~ %  A ~  [~r} . 

These considerations lead to a set of  I R I non-linear equations for the weights w r which, under certain 

conditions, can be solved by iterative methods. Once the rule weights are established, ME-entailment is 

determined by the usual criterion 

ff~M~ g iff m i n { ~ : ( M ) : M b f  A g } < m i n { ~ : ( M ) : M b f  A - - l g} .  

where 
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~M)= E wr 
r : M ~  ^-~, 

We see that ME-entailment requires minimization over models, a task that may take exponential 

time. In practice, however, this minimization is accomplished quite effectively in databases of  Horn ex- 

pressions, yielding a reasonable set of  inference patterns. For example, in the database of Figure 1, ME- 

entailment will sanction the desired consequences p ~ w, p ^ ---~ a ~ b and p ^ --1 a ~- b and, moreover, 

it will avoid the undersirable pattem of concluding c ^ p ~- ~ f from R u { c ~ f }. 

The weaknesses of the ME approach are two-fold. First, it does not properly handle causal rela- 

tionships and, second, it is sensitive to the format :in which the rules are expressed. This latter sensitivity 

is illustrated in the following example. From R =: {Swedes are blond, Swedes are well-mannered}, ME 

will conclude that dark-haired Swedes are still well-mannered, while no such conclusion will be drawn 

from R = {Swedes are blond and well-mannered}. This sensitivity might sometimes be useful for distin- 

guishing fine nuances in natural discourse, concluding, for example, that mannerisms and hair color are 

two independent qualities. However, it stands at variance with one of  the basic conventions of  formal 

logic, which treats a ~ b ^ c as a shorthand notation of  a ~ b and a ~ c.  

The failure to respond to causal information (see Pearl [1988, pp. 463, 519] and Hunter [1989]) 

prevents the ME approach from properly handling tasks such as the Yale shooting problem [Hanks and 

McDermott 1986], where rules of causal character are given priority over other rules. This weakness may 

perhaps be overcome by introducing causal operators into the ME formulation, similar to the way causal 

operators are incorporated within other formalisms of  nonmonotonic reasoning (e.g., Shoham [1986], 

Geffner [1989]). 

5. Conditional Entailment 

Geffner [1989] has overcome the weaknesses of 1-entailment by introducing two new refinements. First, 

rather than letting rule priorities dictate a ranking function on models, a partial order on models is in- 

duced instead. To determine the preference between two models, M and M' ,  we examine the highest 

priority rules that distinguish between the two, i.e., that are falsified by one and not by the other. If all 

such rules remain unfalsified in one of the two models, then this model is the preferred one. Formally, if 

A(M) and A(M' ) stand for the set of  rules falsified by M and M' ,  respectively, then M is preferred to M' 

(written M < M' )  iff A[M'] ~ A[M'] and for every rule r in A[M] - A [ M '  ] there exists a rule r '  in 

A[M' ] - A[M ] such that r '  has a higher priority than r (written r ~ / ) .  Using this criterion, a model M 

will always be preferred to M' if  it falsifies a proper subset of  the rules falsified by M'. Lacking this 
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feature in the Z-ordering has prevented 1-entailment from concluding p ~ w in the example of Section 3. 

The second refinement introduced by Geffner is allowing the rule-priority relation, .~, to become 

a partial order as well. This partial order is determined by the following interpretation of the rule a ---> ~; 

if o~ is all that we know, then, regardless of other rules that R may contain, we are authorized to assert 13. 

This means that r : a --> [~ should get a higher priority than any argument (a chain of rules) leading from a 

to --113 and, more generally, if a set of  rules R" c R does not tolerate r ,  then at least one rule in R" ought 

to have a lower priority than r .  In Figure 1, for example, the rule r3: p ---> ~ f  is not tolerated by the set 

{r l: p ---> b,  r2: b ~ f } ,  hence, we must have r I ~ r 3 or r 2.~ r 3. Similarly, the rule r l: p ---> b is not 

tolerated by {r 3, r3}, hence, we also have r2. ~ r 1 or r3. ~ r 1. From the asymmetry and transitivity of.~, 

these two conditions yield r 2 ~ r 3 and r 2 .~ r 1- It is clear, then, that this priority on rules will induce the 

preference M < M' ,  whenever M validates p ^ b ^ --1 f and M' validates p ^ b ^ f ; the former falsifies 

r 2, while the latter falsifies the higher priority rule r 3. In general, we say that a proposition g is condi- 

tionally entailed by f (in the context of  R ) if g holds in all the preferred models o f f  induced by every 

priority ordering admissible with R. 

Conditional entailment rectifies many of the shortcomings of 1-entailment as well as some 

weaknesses of ME-entailment. However, having been based on model minimization as well as on 

enumeration of subsets of  rules, its computational complexity might be overbearing. A proof theory for 

conditional entailment can be found in Geffner [1989]. 

C o n c l u s i o n s  

The central theme in this paper has been the realization that underlying any consistent system of default 

rules there is a natural ranking of these defaults and that this ranking can be used to induce preferences on 

models and plausible consequence relationships. We have seen that the Z-ranking emerges from both 

the probabilistic interpretation of defaults and their preferential model interpretation, and that two of its 

immediate entailment relations are decidable in O (N 2) satisfiability tests. The major weakness of these 

entailment relationships has been the blockage of property inheritance across exceptional subclasses. Two 

refinements were described, maximum-entropy and conditional entailment, which properly overcome this 

weakness at the cost of  a higher complexity. An open problem remains whether there exists a tractable 

approximation to the maximum entropy or the conditional entailment schemes which permits inheritance 

across exceptional subclasses and, at the same time, retains a proper handling of specificity-based priori- 

ty. 
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APPENDIX I: Uniqueness of The Minimal Ranking Function 

Definition: A ranking function is an assignment of non-negative integers to the models of the language. 

A ranking function n is said to be admissible relative to database R, if it satisfies 

min {~:(M): M ~ oc r ^ I~r } < min {~:(M): M ~ % A ~ I~r } (I-1) 

for every role r: ~ ~ I]r in R. 

Let W stand for the set of models considered. 

Definition: A ranking function lc is said to be minimal if every other admissible ranking ~ satisfies 

~ (M)  > ~c(M' ) for at least one model M' e W. 

Clearly, every minimal ranking has the property of "local compactness," namely, it is not possi- 

ble to lower the rank of one model while keeping the ranks of all other models constant. Every such at- 

tempt will result in violating the constraint imposed by at least one role in R. We will now show that lo- 

cal compactness is also a sufficient property for minimality, because there is in fact only one unique rank- 

ing that is locaUy compact. 

Definition: An admissible ranking function n is said to be compact if, for every M' e W, any ranking ~' 

satisfying 

~'(M)=~c(M) M aM" 

is inadmissible. 

~'(M) < ~(M) M = M '  

Theorem (uniqueness): Every consistent R has a unique compact ranking Z (M) given by Eq. (5). 

Corollary: Every consistent R has a unique minimal ranking given by the compact ranking Z (M) 

of Eq. (5). 

Proof: We will prove that the ranking function Z given in Eq. (5) is the unique compact ranking. First 

we show, by contradiction, that Z is indeed compact. Suppose it is possible to lower the rank Z (M') of 
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some model M' .  Let Z (M') = I .  From Eq. (5) we know that M" falsifies some rule r :  t~ ~ 13 of rank 

Z(r)=1 - 1 ,  namely, M" ~ t x ^ ~  13, and there exists/14 ~ o ~ ^  13 having Z ( M ) = I  - 1 .  Lowering the 

rank of  M' below I,  while keeping Z (M) = ! - 1 would clearly violate the constraint imposed by the rule 

o~ ~ [3 (see Eq. (I-1)). Thus, Z is compact. 

We now prove that Z is unique. Suppose there exists some other compact ranking function ~c, 

that differs from Z on at least one model. We shall show that if there exists an M' such that 

~(M') < Z (M') then ~ could not be admissible, while if  there exists an M' such that K:(M') > Z (M'), then 

K: could not be compact. Assume K:(M') < Z (M"), let I be the lowest ~ value for which such inequality 

holds, and let Z (M')  = J > I .  From Eq. (5), M' falsifies some rule tx ~ 13 of  rank J - 1, namely, 

M' ~ et ^ --1 ~ and every model M validating tx ̂  13 must obtain Z (M) _> J - 1. By our assumption, K:(M) 

must also assign to each such M a value not lower than J - 1 _> I .  But this is incompatible with the con- 

straint tx ~ 13 (see Eq. (I-1)). Thus, ~c is inadmissible. 

Now assume there is a non-empty set of  models for which K:(M) > Z (M), and let I be the lowest 

Z value in which ~:(M') > Z (M') holds for some model M'. We will show that ~ could not be compact, 

because it should be possible to reduce K:(M') to Z (M') while keeping constant the ~: of  all other models. 

From Z (M')  = I we know that M' does not falsify any rule o( ~ 13' whose Z rank is higher than I - 1. 

Hence, we only need to watch whether the reduction of  K: can violate rules r for which Z (r)  < I .  Howev- 

er, every such rule r :et ~ 13 has a model M ~ t~ ̂  [3 having Z (M) < I ,  and every such model was as- 

sumed to obtain a ~ rank equal to that assigned by Z. Hence, none of  these rules will be violated by 

lowering ~(M' ) to Z (M). QED. 
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APPENDIX H: Rational Monotony of Admissible Rankings 

Theorem:  The consequence relation 1-- defined by the criterion 

f ~-g iff ~:(f A g ) <  ~c(f A ~ g )  

is closed under rational monotony, for every admissible ranking function ~:. 

Proof: We need to show that for every three formulas a ,  b and c ,  if a ~- c ,  then either a 1- ~ b  or 

a A b I- C. Assume a ~- c and a ~- ---,b, namely, 

we must prove 

(i) 

(ii) 

(iii) 

~:(a ^ c ) < ~:(a ^ ~ c )  

~:(a ^ ~ b  ) _> ~(a ^ b ), 

lc(a Ab AC)< ~(a Ab A---lC). 

Rewriting (i) as 

~(a ^ c ) = m i n  {~(a ^ c  A b , ~ ( a  ^ c  A--b)} < m i n  {~c(a ^ b  A---,C), ~(a A ~ b  ^ ~ C ) }  =~C(a A ~ C )  

we need to show only that the min on the left hand side is obtained at the second term, i.e., that 

min {~(a AC A b), lc(a AC A ~ b ) }  =~:(a AC A ~ b ) .  

But this is guaranteed by (ii), because the alternative possibility: 

lc(a AC ^ b ) <  ~(a AC A ~ b )  

together with (ii), would violate (i). QED 


