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ABSTRACT 

Quantification over propositions is a necessary component of any theory of attitudes capable of providing a 

semantics of attitude ascriptions and a sophisticated system of reasoning about attitudes. There appear to be 

two general approaches to propositional quantification. One is developed within a first order quantificational 

language, the other in the language of  higher order logic. The first order theory is described in Asher & 

Kamp (1986), Asher (1988), Asher and Kamp (1989). This paper concentrates on propositional 

quantification in a higher order framework, the simple theory of types. I propose a method of resolving 

difficulties noticed by Prior and Thomason with propositional quantification. The method borrows from 

Kripke's (1975) defintition of truth and results in a partial logic, which I call the simple theory ofpartial 

types (SPT). SPT offers a tractable, complete logic (with respect to general models) that includes 

propositional quantification, accomodates a semantics of the attitudes that avoids logical omniscience, and 

allows for some self-reference. 

1 .Introduct ion 

Consider the following examples in which there is apparent quantification over propositions. 1 

(1.a) Everything Mary believes is true. 

(1.b) Every fact you discover may be relevant. 

(1 .c) Nothing you have said convinces me. 

The question I would like to pose here is a familiar one from analytic philosophy since the tum of 

the century: 2 what is the logical form underlying this apparent reference and quantification over abstract 

1I would like to thank Rich Thomason for comments on an earlier version of this paper read at the Logic and Linguistics Meetings 
in Tuscon AZ 1989. 
2See for instance Russell's (1903) arguments in The Pn'nciples of Mathematics. The concern with abstract entities and their logic 
remained a concern throughout Russell's life. 
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entities? Two general theories emerge, one a first order theory, the other a higher order theory of  

quantification. 1 The difficult task for such theories is to develop a coherent theory of quantification over 

abstract objects that are suitably descriminated to be objects of  attitudes. The task is difficult because many 

attempts to do so have led to paradoxes concerning abstract entities. These paradoxes have bedeviled 

philosophers and logicians since ancient times. 

There are two generally recognized families of  paradoxes. One contains paradoxes having to do 

with sentences and direct quotation contexts like the Liar. Then there are paradoxes of application like the 

property version of Russell's paradox and the family of associated set theoretic paradoxes (Burali-Forti, 

Russell, etc). Arthur Prior (1961) and more recently Rich Thomason (1982) have argued that there is a third 

family of paradoxes, the so called "paradoxes of indirect discourse," which have to do with the nature of 

propositions or other abstract entities. The category of paradoxes of indirect discourse is potentially very 

varied. The defining characteristic of a paradox of indirect discourse is that it does not directly involve a 

quotational context. 2 Here is an example of such a paradox originally due to Jean Buridan, embellished by 

Prior and Thomason: Suppose Prior is thinking to himself, 

(2) Either everything that I am thinking at the present moment or everytMng that Tarski will think in 

the next instant, but not both, is false. 

Suppose that at the present moment Prior thinks nothing else and at the next moment Tarski thinks that 

snow is white and nothing else. I'll call this the Prl"orsituation. By reasoning that is valid in the simple 

theory of types, we conclude that Tarski was not able to think that snow is white, a bizarre and unwanted 

consequence of  a logic for belief. 

The two theories of quantification dictate two approaches to such intentional paradoxes. Beginning 

with a representationalist's view of attitudes and abstract entities, one can arrive at a natural formulation in a 

first order language of what Prior is thinking to himself. This is a congenial perspective to someone 

committed to a representational theory of attitudes. By exploiting the inductive or semi-inductive techniques 

used by Kripke (1975), Herzberger (1982) and Gupta (1982) to define truth, one can build a families of 

models and develop a variety of logics for knowledge and belief. 3 Such a framework assimilates a treatment 

1Many people have been suggesting a first order theory of abstract entities in the past few years-- for instance Bealer (1982), Tumer 
(1987), (1989), Aczel (1989). Higher order theories have found advocates like Russell (1901) (1911), Ramsey (1926), Prior 
(1960) e.g., and others like Fine, Cocchiarella, and Thomason (1980.b), and Menzel. I will use Turner and Thomason as my main 
sources here, but that is not because I have made a detailed survey of all the proposals. 
2 Other ways of constructing paradoxes of indirect discourse do not depend on direct discourse at all. There are paradoxes of 
intention (similar to Newcomb's Problem and explored recently by Gaifman) that resemble at least semantic paradoxes. Gaifman's 
puzzle gives a prima facie plausible example of a very odd, but desirable goal. By having the intention to reach the goal, you in 
effect have the intention of not getting it, because you know that if you have the intention to reach the goal you won't reach it. 
Conversely, by having the intention not to reach the goal, you have the intention of reaching it. This supposition results in a 
diagonal intention of achieving cp iff you don't intend to achieve ~0. This diagonalized intention appears to yield similar difficulties 
for the logic of intention. Yet it has nothing to do with dkect quotation at least on the face of it; they appear to be properly classified 
as paradoxes of indirect discourse. 
3Hans Kamp have investigated a proposal along these lines in Asher & Kamp (1986), Asher(1988), Asher & Kamp (1989). 
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of the Prior situation to a treatment of various paradoxes of direct discourse. But that approach also has 

certain drawbacks. A theorem of Asher & Kamp (1989) shows that the full logic of reasoning about belief 

or knowledge in such a framework is not axiomatizable. Moreover, it remains unclear how to weaken 

systems in that framework without making certain stipulations on the models that in effect role out semantic 

self-reference ( see theorem 14 of Asher and Kamp (1989)). 

Somewhat surprisingly, a modification of the higher order approach to propositional quantification 

yields an axiomatizable theory (when we consider general structures) while nevertheless permitting 

significant possibilities for self-reference. But to get a viable theory of propositional quantification I must 

give a satisfactory solution to the problem posed by the Prior situation and another general difficulty 

afflicting higher order theories of propositional quantification. This general difficulty, noticed originally by 

Russell (1903), is that the simple theory of types is too liberal in what it countenances as propositions and 

propositional functions, and this forces unintuitive consequences upon the theory. For example, we are 

forced to say as a truth of logic that there are two propositional functions p and q such that an agent must 

believe that p = q even though p and q are not coextensive. The core of my proposal is an inductive 

definition for the propositional quantifiers. This appears to solve both the paradox of the Prior situation and 

Russell's difficulty. 

2. The Language of  Higher  Order Propositional Quantification and the Intentional, Simple 

T h e o r y  o f  Types 

The first order framework here entails that variables of quantification only occur in argument positions to 

relational symbols; there are no variables occuring in predicate positions. In particular variables do not occur 

in 0-place predicate positions-- i.e., in the positions of sentences or formulas. So propositions are quantified 

over in such a theory, only insofar as they are arguments to properties. 

We could, however, quantify also over relations and properties, considering propositions to be 0- 

place properties. Quantification over predicate positions is the syntactic criterion for a higher order logic. 

The expressive power of higher order logic is quite attractive when thinking about mathematical theories. 1 

There is also evidence in natural language of at least an indirect sort that we do directly quantify over higher 

order objects, and not just their first order correlates that some have assumed to be the denotions of 

sentential and verbal nominals. But I won't go into that here. 

1 When we think of a theory like standard set theory or arithmetic we think of a certain canonical structure. We f'md the Lowenheim 
Skolem Tarski theorems surprising, even paradoxical when applied to theories of these structures (as we think of them naively) 
Higher order logic can describe these structures up to isomorphism, and the Lowenheim Skolem Tarski theorems don't hold for 
higher order theories. For a very good defense of the view that second order logic underlies mathematical practice see Shapiro 
(1985). 
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This train of thought leads to a different theory of  propositional quantification, the one that 

Thomason and Prior had in mind. 1 Syntactically, propositional variables and constants are 0-place property 

variables and constants. The language of propositional quantification, L=, is thus a second order language. 

However, I shall consider a natural extension, L ~  the language of  the theory of  simple types. 2 Formulas 

are constructed in the usual manner from the truth functional connectives and quantifiers. Loo is a language 

containing individual and temporal constants and variables for all finite types formed from the basic 

primitive types-- P (the set of  propositions), E (the set of individuals) and T (the set of  truth values {0, 1 }). 

Formulas are defined for each type using X-abstraction and ffunctional application. So for instance, if ~ is a 

formula of  type x and x is a variable of  type x', then £x~ is a formula of type x ~ x', and if ~ is of type g - '~' 

and 13 is of  type x, then ~(13) is of  type g'. 

Leo has extensional and intentional versions of the connectives and quantifiers. V, 3, cc&, v, ~ ,  

will be the truth functional operators and quantifiers, while 1II, E, n ,  u ,  ~ and --- will be the intensional 

correlates. Extensional identity, =, also has an intentional correlate, =. I shall also assume that in the 

language there is also a function constant v from propositions to their truth values as in Thomason (1980) 

(manuscript). Note that Vp is not considered to be a proposition! 

We insure a homomorphism between extensional and intensional correlates if we take the following 

as axioms: 

(HOM) 

foraUp,  q: 

for all ~: 

for all p: 

for all t, t': 

v [ p O q ] = V p & V  q V [ p U q ] = V p v  q V [ p = , . q ] = V p - , V q  

v[ = VxXV v[ xX El = 3xXV 

v[ -..p] = ._.,v p 

v [t = t'] = v [t = t'] 

To get a complete freedom in choosing one's intentional logic for the attitudes, it is better to give for each 

usual extensional quantifier and connective an intentional operator. But for the statement of  various truth 

definitions, it is very tiresome to read recursive clauses for each quantifier and connective; so in what 

follows I shall illustrate the various definitions by just exploiting the connectives, quantifiers and operators 

in the first column of the above table. The rest of  the cases are always entirely obvious, and the interested 

reader may easily fill them in. 

Once variables range over sentence denotations, it no longer make sense to take these to be truth 

values a la Frege, Camap and Montague, if we wish to justice to propositional attitudes and other intensional 

1There are arguments for getting rid of the types in doing natural language semantics. But I want to sidestep those here, as they 
usually revolve around a treatment of properties (with one or more argument places!) and this would lead us too far afield here. 
2It is interesting to note that some difficulties such as those in the last section of the paper arise in full type theory but not simple 
quantification over propositions and properties in intentional logic. This seems to cast doubt on the equivalence in intentional logic 
between second order and full type theory. This equivalence is a fact of extensional, higher order logic. 
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contexts. Rather, we must take the denotations of sentences to be propositions. A sentence will be tree iff 

the proposition it denotes is true. Thus, (1.a) expresses the proposition, 

(3) rip (believe(mary, p) ~ p). 

(3) is a formula of Lo~; in Leo'believe' is a second order predicate of individuals and propositions. By the 

correspondence rules in (HOM) (7) and hence (1.a) are true just in case, 

Vp (Vbelieve(mary, p) ~ Vp), where p ranges over the domain of  propositions. 

A standard intentional model with times of Lo consists of  a quadruple <E, ~, f ,  F>. E is an 

inductively defined set of  domains of various types, with non-empty sets Eo, Ep, El and ET (of individuals, 

propositions, times and truth values respectively) as the basic types of  objects. Other types are constructed 

from basic types as fimcfions from types to types. In a standard model, if z l . . . .  zn are types, then the set 

of all objects of  type < "tl . . . . .  zn>, E(< 'l~ 1 . . . . .  ~ n > ) ,  = ~o0(E(~ i )  X E(%2) X. . .  X E(%n) ). The 

interpretation of  expressions of the other types are the functions constructible from these basic types. I 

shall also assume that types are closed under functional application. 

(FA) 

If v is of type z ~ "d and ~ of type % then v(~) ~ E~, 

~ assigns an (intentional) interpretation to each expression of type z; the interpretation is some element of 

E(z). The interpretation function of an intentional model respects ~ abstraction and application in its 

assignments. That is, we have for any term o~ of type z and any term kx [3 of type z ~ z', 

(ABS) 

Our theory is intentional; so the objects assigned to predicates of a language by ~] are properties and 

relations, not sets. Since sets are useful in the truth definition, however, intentional models have a function 

f that assigns to each object in a type a certain extension. Let [] be the extension of  ~ and f to include the 

assignment of denotations to complex tenns of the form Vcp. Then 5ris a function from P X I into T = {0, 

1 } such that: 

i. Ft (G(a l , . .  an)) = 1 iff<~al~ . . . .  ~an~> ~ f(~[G~) 

ii. ~ (p f"l q) = 1 iff Ft (P) = ~ (q) = 1 

iii. Ft (~q)  = 1- ~ (q) 

iv. ~ (Fix z ~) = 1 iff ~ (~(a)) = 1 for all objects a of  type 

v. ~ (o~ = [3) = 1 iff [a] t = [13]t 

(similarly for the other operators) 

If [~] is a proposition, vq~ is a singular term denoting in M the truth value of [[q~] in M. It requires a special 

interpretation. Further these singular terms may combine with truth functional operators and quantifiers, 
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which will have the usual recursive, semantic clauses. Let us write [A]t, M = 1 if A denotes in M truth at 

t; [A]t, M = 0 otherwise. 

a. I f A  is of  the form vcp where ~¢P]fl4" is a proposition, then [A]t, M = ~JE(CP) 

b. If A is of  the form B & C, then [A]t, M = 1 iff [A]t, M = 1 and [A]t, M = 1. 

c. If A is of  the form ---,B, then [A]t, M = 1 iff [A]t, M = 0. 

d. I f A  is of  the form Vx 'r ~, [A]t, M = 1 iff [~(a/x)]t, M = 1 for all a of  type 'r. 

e. I f A  is of  the form v[o~ = 13], [A]t,M = ~ (oc = 13). 

f. I f A  is of  the form at(Vcp, t), [A]t, M = ~(cp). 

(similarly for the other operators) 

Let To be the theory consisting of the axioms of  quantification generalized to higher types, the usual axioms 

for identity, and the rule of 13 conversion, closed under the rule modus ponens. Given my definition of 

intentional models, every intentional model M for Lo~ verifies (HOM) as well as the usual rules of predicate 

logic and [3-conversion in To. The models for Los impose a structure on P. 1 p is closed under the operations 

A, ~ ,  U and ~ ;  H, Z must be functions from PF ~ P, where PF is the set of  propositional functions {f I f: 

E U P ~ P}. I will take P to be an algebra whose atoms are given by the atomic sentences of Lo. 

Let's now formulate the intentional paradoxes or paradoxes of indirect discourse within this theory. 

I'll assume some standard addition of  constants for times and set of  times in the models for Lo~. The 

proposition denoted by (2) is easily expressed in Lco, and it is true just in case (4) holds. 

(4) (Vp (VB(prior, p, to) ~ ~at(Vp to) v Vp (VB(tarski, p, t~) --- --,at(Vp, to))) & 

(3p (VB(tarski, p, to ) & at(Vp, to))v 3p ( VB(prior, p, tO & at(Vp, to))) 

Prior's informal argument now can be stated as follows: 

Proposition 1: There is no intentional model for Lo M such that Prior thinks (4) at to in M, 

Tarski thinks that snow is white at t~in M and 'snow is white' is true at t~ in ect'. 

The paradox of the Prior situation differs from the semantic paradoxes like the Liar and paradoxes of  

application and comprehension like Russell's predicative paradox. There is no question of inconsistency in 

the theory To or HOM; and the simple intentional theory of  types is after all a highly restricted framework 

(in comparison, for instance, to ZF). Nevertheless, Prior's thought experiment yields entirely unsatisfactory 

results. 

3. A Semi-Inductive Definition of Propositional Quantification 

1A couple of  facts about v are immediate once we realize it is a function constant from propositions into truth values. First of all, v 
does not iterate; so v v cp isn't well-defined. Thus any identity statement like p = v [~p] is false in every model! So if we formalize 
the Liar as such an identity, the Liar is just  necessarily false. We might also symbolize the Liar as v p ~ ~ v  p. But  this sentence 
too is false in every model; it is a simple contradiction. Thus, the liar does not pose any problems in this higher order logic. Higher 
order logic says that the liar is false in every model. Note also that the strong liar, which says that the Liar is false, is logically true 
in this theory! 
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The reason why this theory of propositional quantification gets into difficulties is not hard to 

discover, if we contrast the higher order theory of propositions with the more familiar first order theory of  

propositional quantification. As the translations for (1.a) and (2) in higher order logic make evident, the 

truth predicate has disappeared into the theory of propositional quantification. The higher order theory of 

quantification (as Ramsey and Prior might naturally have suggested) yields a "pro-sentential theory of truth," 

on which the truth predicate in English is just an anaphor, or perhaps even more simply a dummy or 

redundant predicate needed because of the limitations of natural language syntax. The theory of 

quantification has in effect swallowed up the truth predicate. To fix the sort of  difficulties that Pdorean 

thought experiments like (2) give rise to, then, the natural suggestion is to do for quantification what Kripke 

and Gupta-Herzberger have clone for predicates like truth. Just as truth is defined inductively or semi- 

inductively mirroring the restrictions of the Tarskian hierarchy, so too is quantification to be similarly 

bounded by types until the construction is finished. My proposal complicates the connection between 

propositions and their truth values in intentional models by using either semi-inductive or inductive 

definitions for the domains of quantification. 

Let me make the suggestion a bit more precise by looking at the semi-inductive case first. Let Mo 

be a standard intentional model for type-theory. I distinguish a subset o fPM,  Po, which contains just those 

propositions not containing propositional variables. We now define a revision sequence of models M'QH ct as 

follows. Let ~M'QHtX = <]~, ~], f ,  ~:t>. We now define a recursion for ~ on the ordinals. 9 ° = ~Po U 

(P-Po X {0}). All the definitions for Fand the assignment of truth values to terms of the form vtp largely 

the same as before with the exception of the quantified clauses: 

i. Ft ~(G(a~,.. an)) = 1 iff<~a~] . . . .  gan]> e f(~G]) 

ii. ~ ~(p A q) = 1 iff ~ ~(p) = ~ ~(q) = 1 

iii. ~ ~ (~q)  = 1-  ~ ~(q) 

iv. ~ a+l( lrlx'c 4) = I iff 9i '~(~(a)) = 1 for all a of  type m ~ P. 

v. Ft ~(a = {3) = 1 iff [a]M ~ = [~]M ~ 

vi. If A is of the form vq~ where ~q~M is a proposition, then [A] M ~ = ~ a(q~) 

vii. I fA  isof the  fo rmB & C ,  then[A] t ,M~,=l i f f [B] t ,M~=land[C] t ,M~=l .  

viii. If A is of the form ~B, then [A]t, M a = 1 iff [B]t, M ~ = 0. 

ix. I f A  i so f the form Vx'r~,[A]t,M ~ = l iff[~(aX/x)]&,= l foral la 'rx¢P.  

x. If A is of  the form v [a  = 13], [A]t, M ~, = ~ ~(a = 13). 

(similarly for the other operators and non-propositional quantifiers) 

The clauses for the propositional quantifiers must be defined relative to previous models in the sequence. 

We need a pair of  clauses for successor and limit ordinal cases. 
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xi.a. .~ ct+l([IxP ~) = 1 i f f .~  =(~(tP)) = 1 for all tP. 

xii.a If A is of  the form Vx P ~, [A]t, M a +  1 = 1 iff [~(tP/x)]t, M ~ = 1 for all t P. 

xi.b. Ft ~(I IXP ~) = 1 i f f3~ Va  (13_< o~ < X --- ~ a(FIx P¢p) = l). 

xii.b I f A  is of the  form VxV ~, [A]t, M~ = 1 iff313 Va  (13_< a < ~ - -  [A]t, MC~ = 1. 

(similarly for ExP) 

The first stage of  our model revision procedure now may have a quantificational incoherence in there. For 

instance, a quantificational proposition of the form rcxPcp will be false in M o even though all it's instances 

may be true. But this incoherence is erased once the revision procedure gets started. We can still show that 

every model MaQH in the revision sequence defined verifies (HOM). 

Our model revision procedure now yields eventually a higher order semistable model, as all 

sentences with a string of propositional quantifiers of  a given depth that will stabilize eventually do so. M 5 

is a higher order semistable model just in case 8 is a perfect stabilization ordinal for M with respect to the 

revision sequence above and F. 1 Let M3'be such a model. Prior's belief, (4), is false at MT, ifTarski's 

belief is true. Moreover, the truth of Tarski's belief, if it is a simple proposition, does not depend upon 

Prior's thinking (4) or not thinking (4). So far so good. But a rather surprising result is in store for us: 

Proposition 2: There is no semi-inductive model such that such that (i) Prior thinks (4) at to in M 

and nothing else, (ii) Tarski thinks that snow is white at tain M and nothing else, (iii) 'snow is 

white' is tree at t~ in M, and (iv) M is a model of  To. 

The proof proceeds by an examination of cases. We observe that on such a theory (4) also has a 2 cycle 

interpretation. Any M o cannot be a model of To, because the To theorem ~(cP) ~ 3xP~(xP) is false at M °, 

where cP is a propositional tenn. Successor states M Y  +1 either fail to verify VxP ~(xP) -- ~(cP/xP), where 

is either the subformula 

VB(prior, p, to) -- --,at(Vp to) 

or 

VB(tarski, p, t 0  ~ ~at(Vp, to) 

of  (4); or they share the following difficulty with limit stages M x. M ~ b (4) iff M ~ b VxP (VB(a, xP, to) --, 

~ v  xP) iff3[3 Vy(13_< y <  ~. --, MY~ VxP (VB(a, xP, to) ~ --,Vxp). So M ~ ~ -,(4). But then by ordinary 

quantificational logic, M ~- b ---,(4) iff M ~ ~ 3xP (VB(a, xP, to) & v xP). But by the constraint (i), M ~- b 9(4) iff 

M ~ ~ (4). 

1Call Y a perfect stabilization orc6nal For M with respect to the revision scheme and Fjust in case every proposition that comes to 
have a stable truth value assignment from Fin the revision scheme does so before or at T and further ~ry(q~) = 1 in iff 313_< ~ 5t~(~p) 
= 1 for all a_> 13. 
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4. An Inductive Def ini t ion of  Propositional Quantification 

A more satisfactory construction is available with an inductive definition like the one used by Kripke (1975). 

Let M be any standard intentional model for Leo satisfying (FA) and (ABS). Recall that the distinguished 

subset of PM, Po, contains just those propositions not containing propositional variables. An inductive 

revision sequence is defined by setting 270 = ~Po and the base partial model MQK 0 = <I~, ~D, f ,  yo>, 

MQK cc = <l~, ~], f ,  5ax>, and then requiring the following constraint on F(which I call the partial model 

constraint PMC): 

(PMC) 

1. 9 ~ and []M ~' are closed under the usual semantical rules for a strong Kleene interpretation of the 

truth functional connectives and non-propositional quantifiers. 

2. All MQK ~ verify identity statements of the form 6 = 6, where ~3 is any term. Otherwise, 

MQK ~ I~ 6 = 6' iff [13] = [6'] and both [6] and [~Y] are defined in MQK ~ 

MQK ~ 6 = ~' iff [6] # [6'] and both [6] and [6'] are defined in MQK ~ 

3. For propositional quantifiers (Again I illustrate only for 1Hx P, the case for Zx P is entirely 

analogous) 

A. With regard to the successor case: 

i.a. 9a+l(rlx a 4) = 1 if F'~(~(tP)) = 1 for all t P 

i.b. F x+l(Hx P 4) = 0 if ya(~(tp)) = 0 for some t P. 

i.e. yct+l(HxP 4) undefined otherwise. 

ii. If A is of  the form Vx P 4, 

a.[A]Mtx+l = 1 if [~(tP/x)]M c~ = 1 for all t P. 

b. [A]Mct+l = 0 if [~(tP/x)]M ~ = 1 for some t P 

c. [A] M(x+l = undefined otherwise. 

B. The limit case may defined quite simply. 

a. F k = U 6 <  ~ # 

b. []ML = 1,3 6 < ~, []MI3 

The QK sequence of models builds up inductively the values of the partial function Foc and the extensional 

definition [] for each oc. In MQK 0 no propositionally quantified statements are given truth values. ~Po, 

however, does assign every atom in the propositional algebra a truth value. After the first application of the 

inductive definition MQK 1 now verifies many propositions that quantify over propositions-- e.g. 3p p. But 

notice that (4) will not get a value in MQK. 1 In fact (4) will not get a value throughout the QK sequence. I 

will call the models in the QK sequence standard partial models for Lo. 
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Standard pa~ial models are not models of (HOM) as it stands. But they are models for a closely 

related theory. We must make two changes to (HOM). First, we must define correspondences for each pair 

of  intensional and extensional connectives, and second we must replace the identities in (HOM) with the 

corresponding rule equivalences (e.g, replace v [p N q] = v p & v q with 

v [pnq]  

V p & V q  

and so on. The rule equivalences in (HOM') form a weaker theory from (HOM) to be sure. We only have 

a partial homomorphism from propositions to truth values respecting the propositional and truth functional 

connectives and quantifiers. But we can still prove the following with it. Define a Lo0 formula 9' in v 

normal form such that v occurs only in front of  atomic formulas. The rules in (HOM') allow us to prove 

Proposition 3: Let 9 be a formula of Lto. Then given (HOM'), there is a formula 9' in v_ normal 

form such that 9 F 9'- 

Because the QK sequence of models is inductively defined and there is a fixed set of  propositions, 

one can show by the standard argument that the sequence reaches a fixed point. Ill call any 9i4"QKT model 

that is a fixed point of  the defmition a standard fixed point model for L o. Let R1 be the following set of  rules 

(corresponding to the strong Kleene interpretation of the connectives and quantifiers): 

1. The usual introduction and elimination rules for 3 V & and v. 

2. The equivalences 

, ,A ~(A & B) ~ (A v B) 

A ~ A  v -~B ~ A  & ~B 

3. The rule ~ & ~ I- 9 

4. Suppose 9(~) is a positive context (x F is a constituent that is not under the scope of  any negations 

or relation symbols in prenex disjunctive form). Then if xF1 I- ~2, 9(xF1) I- 9(~2). 

5. The axioms 

a . ~ = ~  

b. ~x~A(~) = A(~/x) 

6. If a and a'  are of type x ~ z' and [3, 6' of  type x', then a = a'  & [3 = [Y I- tx(~) = a'([3') 

7. Vu ~,x 9(u) = ~x 9'(u) I" ~,x 9 = ~x 9'. 

8. The rules in (HOM') 

Proposit ion 4: if  ffC/'QK a is a fixed point of  the QK sequence, then if 9 I- W is a rule of  R1, then if 

PC/'QK a I~ 9, then PC/'QK a I ~ Xl/. 

To illustrate, let us take one of  the quantifier roles, the universal exploitation rule Vx 9 I- 9 (fix). Suppose 

~//QK a I • Vx 9. If x is of  other than propositional type, then by the constraints on Fgiven by the strong 
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Kleene interpretation of the troth tractional connectives and non-propositional quantifiers, ~M'QK 'x ~ 9(t/x) 

for any suitable term t. Now suppose that x is of  propositional type. By the construction of the sequence 

QK Vx 9 will be true only if all its instances are verified at some previous stage, if ¢t is a successor or limit 

ordinal. In either case, since the construction is inductive, this assures that MQK ~ I" 9(t/x). 

Let I-R, be the derivation relation defined by the rules in R~. A standard argument will now prove 

the soundness of R~ at fixed points of model sequences QK. Let I- be the consequence relation defined over 

the class of fixed point models of QK model sequences. Then, 

Proposition 5: For a set of sentences F, if F I-Rt 9, then F I- 9. 

It appears that if we loosen the notion of a standard partial model for Leo to get general partial 

models Leo, we may also be able to prove a completness result about R~. A general model for Leo from 

Henkin (1950) is a model in which the domains of propositions, truth values, and individuals are as before 

and where if'c 1 . . . .  xn are types, then the interpretation of a type < x 1 . . . . .  Xn> is a subset of go (~x~ ] X ~z2 n 

X . . .  X~zn] ); in a standard model ~< z~ . . . . .  x,>] = go(~x~B X ~x2~ X . . .  X~xBB ). Let II-G be the consequence 

relation defined over general, fixed point models-- those fixed points that come from the jump operation 

being applied to general models. 

Proposition 6: For a set of sentences F, if F l-G 9, then F I'R, 9. 

An outline of the proof is given in the appendix. Proposition 6 establishes a logic for partial fixed 

point models of propositional quantification, a logic which I'll call partial, simple theory o f  types (SPT). But 

it does so by using general models. If we define first and order logic by means of the model theoretic 

properties of their standard models rather than by their syntax, the use of general models for SPT essentially 

convert higher order logic to first order logic. But in this SPT is no different from the standard simple 

theory of types (ST); with respect to standard partial intentional models SPT is sound just as with respect to 

standard intentional models, (ST) is sound. By the completeness proof, logical consequence for SPT 

relative to the class of general partial models is E l definable, just as (ST) is Z 1 definable relative to general 

models; with respect to standard models, consequence in SPT (and in ST) is not axiomatizable. 1 

5. Russell's Problem with the Theory of Types 

Thomason's paper discusses another problem for the simple theory of types, mentioned in an appendix to 

Russell's Principles o f  Mathematics. It motivates Thomason's proposal for dealing with the intentional 

paradoxes, which uses a free logic for the propositional quantifiers. My proposal solves this difficulty too, 

though in a manner different from Thomason's proposal. 

The difficulty, due originally to Russell (1903), is that the simple theory of  types is too liberal in 

what it countenances as propositions and propositional functions. For example in Leo the term 

1The proof of this claim would follow the lines of that given by Van Bentham and Doets (1984). 
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(5) ~.xP 3f<P,P > (VFf = x & --,Vfx) 

denotes a property of propositions, t for any given F. Let's call the property of  propositions in (5) w. Then 

assuming Vw(Fw) v --, Vw(Fw), we get the following disturbing result. 2 

(6) 3f<P,P>3g<P ,p> (V[Ff = Fg] & ---,VxP (Vfx ~ Vgx)) 

Since (6) holds for arbitrary F (underlying it is a simple cardinality argument), 3 it holds for the particular 

definition of  F in (7) 

(7) F = ~.g<P,P> VxP (Vgx ~ Vx) 

By the principles of  identity (6) and (7) have worrisome consequences for the theory of  attitudes fomaulated 

within the simple theory of  types. One such consequence is (8): 

(8) 3f<P,P>3g<P,P > (OVx ° [] ( VBel(x, Ff )  ~ VBel(x, Fg)) & ~VxP (Vfx ~ Vgx)) 

Thomason (1982) points out correctly that by limiting what expressions denote higher order objects 

in the models and by employing a free logic, one can avoid this difficulty. Thomason's proposal won't work 

in the partial logic for propositional quantifiers as I have defined it. It is a valid principle of the partial logic 

SPT that 

(9) 3p V[p = ¢p] 

This partial logic for the theory of types is no different from the classical theory of types in this respect. But 

Thomason's proposal also leads, as he points out, to unintuitive consequences when dealing with the 

Intentional Paradoxes: it implies among other things that the existence of propositions is a context 

dependent, speaker relative matter. This collides with our intuitions about propositions. (9) also appears to 

1The superscripts in the formulas (5)-(8) are there to make clear the types of variables involved. 
2The proof is as follows: 
Dropping carrots we have 

1) w(Fw) v ~ w(Fw) 
Now suppose that 

2) w(Fw) 
and that 

3) VgVh i f (g)  = F(h) ~ Vy(g(y) - -  h(y))) 
Then by 2) and the definition of w, 

4) 3f(F(f) = F(w) & ~f(F(w))) 
So for some fo 
4) F(f0) = F(w) & ~f0(F(w)) 

By (3) and (5), 
6) Vy(fo(y) - -  w(y)) 

By (2) and (6), 
7) f0(F(w)) 

which is a contradiction. So now suppose 
8) ~ w(Fw) 

By the definition of w again, and 8) 
9) Vf(F(f) = F ( w ) o  f(F(w))) 

So by the laws of identity, 
10) w(F(w)) 

Again this is a contradiction. Note that this proof is valid in To. 

3If one thinks of how propositional functions might operate compositionally with propositions in a standard model, cardinality 
arguments would dictate that the function from a tuple consisting of a propositional function and its arguments to propositions could 
not be 1-1; (6) then is simply a special case of a much more general argument. 
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be a needed principle in the analysis of propositional anaphora in natural language. Even though 

propositions are paradoxical or non-sensical, we may refer to them anaphorically. Imagine the following 

dialogue: 

(10) Cretan: Everything I say is false. 

Socrates: I don't believe that. 

According to the free logic proposal, the Cretan did not manage to express a proposition in the circumstance 

in which the first sentence of (10) is the only sentence he manages to utter. But then it appears that Socrates 

doesn't manage to have a belief-- or express a belief-- about what the Cretan said. The analysis of  anaphoraa 

in (10) is a semantic mystery, unless we assume there is some proposition the Cretan expresses. 

Russell's argument culminating with (6) is not valid in SPT for the simple reason that it relies on the 

excluded middle. So that motivation for introducing type-free logic for higher order quantification dissolves. 

It's also not clear, however, that (8) is such a bizarre consequence for a theory of  simple types to 

countenance. The real difficulty hinges on what one takes to be the criterion of  identity for types. Our 

models say little about what identity of types should amount to. One could have criteria of type identity 

such that ~(13) = V(13') but 13 ~: 13'. 1 This goes against a certain natural criterion of  identity for intentional 

objects that one might call a structural criterion of identity for types (SIT): 

(SIT) Let 13 and 13' be of type x and let ~, ~'  be of  type x --, '~'. Then ~(13) = ~(~') implies ~ = ~' & 

13 = 13'. 

(SIT) together with the principle of indiscemibility of  identicals contradicts (6). Thus (SIT) + the principle 

of indiscemibility of  identicals is inconsistent with the simple theory of  types (ST). There are at least trivial 

models of  (SPT), in which (SIT) + the principle of  indiscemibility of  identicals are never refuted and are 

verified in the trivial cases of where o~(13) = o~(13) (which must be true according to the constraints on Fin  

models for SPT). 

Russell's problem suggests a comparison of PT with Russell's own solution-- the Ramified Theory 

of Types (RT). In all versions of  (RT), there is a function from propositions to to that recursively assigns 

orders. In some versions, 2 it is defined as follows: 

Ord: Ep ~ to such that: 

If tp e Po (a designated subset of  Ep), then Ord(tp) = 1. 

If tp = o~ = 13 then Ord(tp) = Max { Ord(o0, Ord(13) } + 1. 

If tp = ---~, then Ord(tp)_< Ord(~). 

If * is a boolean two place connective and tp = o~'13, then Ord(q~)_< Max{Ord(o0, Ord(13)}. 

1Aczel (1989) warns that the application relation should not be taken to be structure creating for such reasons. That is, he wants to 
deny that o~(~) = tx'(13' ) ~ t~ = ¢t' & ~ = ~', our principle (SIT). 
21 folow Thomason (1989) and Church (1976) here. 
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If Q is a quantifier and tp = QS~, then Ord(tp) = Max{Ord(8) for 8~ Dom(Q) in xg} + 1, 

where if tp is of  the form Q8 (4, 0),Dom(Q) in ~ is just the set of  objects satisfying 4- 

Dom(Q) in ~ is just Etype(8 ) otherwise. 

We have in effect constructed models for certain versions of RT. But the orders of our theory are given by 

the semantics; they are artefacts of  the models, and not part of  the syntax and formation rules of the language 

of PT (this is different for RT). For formulas of  PT, then, Oral must be a partial function, because there are 

many propositions in our setup that cannot be assigned an order-- Prior's proposition for instance. The 

definition of order above then suggests the following correlation between order and stages of revision in our 

model theoretic framework. 

Proposition 7: Suppose 9 is a proposition for which Oral is defined. Then 9vf n I • vg* iff Ord(9) 

_< n, where vg* is vtx = vl~, if tp is tx = [3 and vtp* = v 9 otherwise. 

The proof of proposition 7 is by induction on n. 

To sum up then, there appear to be two solutions to the paradoxes of indirect discourse. One 

familiar route uses a first order theory of quantification and a troth predicate. The other uses higher order 

logic, in particular the intentional version presupposed by Russellians and spelled out in Thomason (1980.b) 

and a Pro-sentential theory of  truth. By giving an inductive definition of propositional quantification, we 

avoid the difficulties associated with other solutions to the intentional paradoxes conceming in higher order 

logic. The partiality of SPT is located within what truth values propositions take on, not, as in Thomason's 

proposal, the existence of propositions. Surprisingly, only an inductive definition not a semi-inductive 

definition will do the trick. 

The pro-sentential theory of truth incorporated into higher order propositional quantification appears 

to mitigate Liar-like paradoxes. We have no restrictions on the logic of predicates of propositions. This is 

responsible for the completeness proof for SPT. No such completeness proof is available to the first order 

theory in general. 1 Somewhat surprisingly, the system with the higher order syntax-- partial type theory-- 

thus turns out to have a more tractable notion of validity than that of the first order theory of propositions on 

which a truth predicate is used. The set of  valid sentences in all metastable models or semi-stable models, 2 

for instance, is clearly not r.e for interesting classes of models. 

I have said little so far about logics of knowledge and belief in this theory. But it seems we may 

accomodate within this framework most reasonable logics for knowledge and belief in a relatively 

straightforward way.  Now suppose our semantics for attitude predicates is such that for every agent we 

assign a belief state, a collection of propositions. We may subject this state to various closure conditions. 

For instance we may require of every belief state S that if the proposition p e S, then B(p) e S. We may 

1For a case where we can prove completeness, see theorem 14 of Asher and Kamp (1989). 
2For definitions of these model classes, See Asher and Kamp (1986), Asher and Kamp (1989). 
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thus encode by means of these closure conditions the usual doxasfic reasoning principles and validate roles 

which correspond, say, to the logic presented in Thomason (1980.a). 1 SPT, however, permits a variety of  

logics for the attitudes which go far beyond what a possible worlds framework yields. The reason for this 

is simple. If our semantics for attitudes ascribes to an agent a set of  propositions, then we may choose from 

a variety of closure conditions that cannot be expressed in a possible worlds semantics. In particular we 

may assume very weak closure conditions-- such as those detailed in Asher (1986). Nothing forces us in 

SPT to require a closure condition on S that exploits logical equivalence. In SPT it is consistent to assume 

that two propositions may be necessarily even logically equivalent without being identical. So SPT does not 

validate B(p) and I- p ,~. q ,,~ B(q), an inference form that is valid in most possible worlds semantics of 

attitudes. Thus, SPT easily avoids problems about logical omniscience. 

The guarantees we have in Lo  that eliminate possibilities of expressing a proposition corresponding 

to the Liar sentence (see footnote 20) do not stop us from attempting similar definitions, say, with a 

knowledge or belief predicate. Let 'B' be a two place predicate representing the relation of belief between 

individuals and propositions. Suppose we stipulate in the semantics for a propositional constant c, ~c] = -,  

B(a, c). Alternatively, it seems as though we could imagine a theory in our language in which: 

(11) p = ---B(a, p) 

By our constraints on Fi t  follows that in every model in which (11) is true, 

(12) Vp H- ~VB(a, p) 

Now suppose our semantics for attitude predicates is such that for every agent we assign a belief  state, a 

collection of propositions which is subject to closure conditions validating the logic presented in Thomason 

(1980). We can still have such identities between propositions as in (11). But p will never get assigned a 

truth value, and so it will be undetermined whether a believes p. We must be careful not introduce any 

"essentially ungrounded" propositions with such predicates as knowledge and belief into our domain; if we 

do so completeness will vanish (we can no longer construct the models) and the higher order theory of 

propositions becomes an uninteresting variant of the first order theory, as far as I can tell at present. 2 Well, 

we can't have everything. SPT is one option for treating propositional quantification that has some 

attractions. It yields a theory of  propositions with a tractable logic and that countenances some self- 

referential propositions, while avoiding problems of  logical omniscience with the semantics of the attitudes. 

1Here would be the relevant closure principles for the $4 logic of Thomason (1980.a): 
p ~ q ,  pc  S-*q~  S 
pc  S-.*Bpc S 
pc  S andpl-q-*q~ S. 
Bpc S ~ p c  S. 

2Thus for instance we cannot introduce an expression relation between sentences and propositions. See Parsons (1974), Asher & 
Kamp (1986) for a discussion. Nevertheless, one can still in this setup have beliefs about mathematics. 
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Appendix :  P r o o f  o f  Propos i t ion  6 

The outline of the proof relies on an adaptation of the Henkin method to partial models proposed by 
Kamp (1984). What I shall do is show that if not F ['R~ tp then there is a partial model that verifies F but 
does not verify tp. So suppose not F l- tp. Define (p to be a positive formula just in case all negation signs in 
t 9 occur only on atomic formulae. We may show that for every tp there is a positive 9' that is R-equivalent to 
it (i.e. (p I- (p)., 

Using an enumeration of  all positive formulae of  Lo), we build up two maximal sets ~ and Z from 
F and { 9} respectively as foUows. I assume that infinitely many constants of  each type do not occur in the 
enumeration of the positive formulae. 

1. ~o = F; IEo = {(p} 
2.a. if not (~n U {~n+l } I" lEn) and ~gn+l is not existential, then fin+ 1 = fin U {~gn+l }; Zn+l = lEn 

b. if not (~n U {~n+l } I- lEn) and ~n+l = ~v~, then D-n+l = ~n U {~gn+l, ~(cj/v)} where cj is the 
first individual constant not appearing in fin kA lEn U {~n+l } ; En+l = lEr~ 

C. if f~n U {~n+l } I" Z,  and ~gn+l is not universal, then f~n+l = ~n; lEn+l = En U {~n+l } 
d. if An U {~n+l} I- En and ~gn+l = 'v'v~, then D-n+l = tan ; Zn+l = lEn U {Vn+l, ~(q/v)} where q 

is the first individual constant not appearing in On U En U {~gn+l } 
3. ~ = W n e  ~ "On; Z = U n e  ~ Z n  

The next step is to show 

Lemma  6.1: not f~ I- Z 
This is proved by an induction on ~n and Zn. 

I now construct a base partial intentional model M = <_E_, ~], f ,  2 >  from these sets. First I 
inductively define the type structure E. Let EoM = { [c0]~: c is an individual constant occurring in ~ U E}, 
where[c]~ = {d : f~ I- d = c}, and let Ep M = { [~]~: ~ is a sentence occuring in f2 U E}. I define E T as the 
set of  truth values using the sentences and their negates in ~.  "1" = {~: ~ • ~}; _L = {V: ---~ • f~}. Now 
assume that E x and E, c, are already defined as equivalence classes [o~]f~ and [~]~ respectively. We define Ex 
--z' to be { [~]f~: ~ is of  the form ~.x z 'y and "1' occurs in f~ U Z}. We further define for each [~]~ in E,~ --,x' 
to be a function such that [~]~([a]~ = ['/(xX/a)]f~ for any element [a]~ of Ex. We can easily check this 
definition by exploiting (6) and (7) of  R~ and noting that for any tXl, tx2 e [tx]f~ and kx'tfi, ~x'1'2 in [~]f~, 
~x't'l(tX0 = Xx'/,z(a2). Further, if [ ~ ] ~  = [~2]f~, it follows that ~1 and ~2 agree on all arguments. So Vu 
~.x'/q(x)(u) = ~,x'1'2 (x)(u). By (7) we may conclude ~1 "~ ~2. The set of  all types E_ for M are those 
constructed from the basic types by this procedure, and it obeys (FA). 

The second step in defining the model is to specify the interpretation function. Define ~ as 
follows. If tp is a term of type z, then ~(p] = [tp]~ • Ez. Because of my definition of the type structure and 
because of (5.b), ~] obeys (ABS). 

The third step is to specify extensions for intentional objects. Define f such that for [13]f~ • E<z~, 
.... Tn > f ( x )  = {<[0~1]~ ~ . . . . .  [0~n]~): ~(0~ 1 . . . .  O~n) • ~ } .  

The final step is to assign truth values to propositions. Define y° M to be a function from EPo to 
ET such that: if(p is of  the form R([~ . . . .  l~n), then F M ( R ( ~  . . . .  [~,)) = 1 iff R([~ . . . .  [~n) • f2 and 
FM(R([~i . . . .  [~n)) = 0 iff R(I~i . . . .  [~n) • E.. Given my definition o f f ,  yo is correctly defined. 

Now extend 9t0M to a partial fimction V '~ from Ep to ET using the inductive revision procedure 
defined in (PMC). Let M s = <E, P, ~, f ,  9ta> be the fixed point of  that revision process. 

Lemma 6.2: M s is a partial model that verifies all o f ~  and fails to verify E. Hence M s verifies F 
and fails to verify (p. 

We prove this by induction on the complexity of 0 • ~ U E. Suppose that 0 is atomic of the form R ( ~ , . .  
• I~n) The construction of 9 0 insures that M ~ O if 0 • f~ and not M t ~ O if O • Z. Suppose 0 = ~ and 
that O ~ f~. By the construction of ~ ,  V ~ ~ and ~ must be atomic. But then ~ • E and so again by the 
definition of yo, M/~ ~ and so M b O. An entirely parallel argument holds if 0 • Z. The truth functional 
cases and ordinary quantificational cases are straightforward. Suppose 0 = ~xa([3) • ~ .  By (5.b) in R1, o( 
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= o~([3/x) e ~ ,  and by the inductive hypothesis 94 I" cz' if ct' e ~.  So 94 ~ ct'. Since 94 obeys (FA) and 
(ABS) as seen above, 94 I • O. A similar argument holds for the case 0 ~ E. 
The only non-straightforward step involves quantified statements of the form 3pV and Vp ~ where p is a 
propositional quantifier. Let 0 = 3pXg and suppose 0 e ~.  By the construction of ~ ,  if 3pig ~ ~ ,  then 
~(cPj/p) E ~.  By the inductive hypothesis 94~ V ~g(cPj/p) and so 94~ b 3pv,  since 94~ is a fixed point. 
Now suppose that 0 e E. O e E only if it implies q~ or is itself q~. So by the construction procedure of E 
and f~, every instance ~g(cPJp) of V must be in E, since v(cP/p) l- 3pig. But 94'~ I • 3pig iff for some 
proposition cPj, 94~ I* ~g(cP.~p), since 94'~ is a fixed point. Then by the inductive hypothesis it is not the 
case that 94~ I • qt(cP]p) for any instance v(cPJp) of ~, and so not 94'~ I • 3p~. The arguments where 0 = 
~'pV are analogous to those for the existential case. Suppose 0 e f~. We must show 94~ I ~ 'v'p ~g. By the 
construction procedure and the fact that 'v'p~ l- ~g(cPJp), every instance v(cPj/p) e ~ ,  and by the inductive 
hypothesis 94~ I • v(cPJp). So 94~ I • Vp ~. Now assume that q~ e E. By the construction of E, an instance 
~(cPJp) e E. By the inductive hypothesis then, not 94~ V ~g(cPJp). But this suffices to show that t is not 
the case that 94~1 • O. 

From Lemma 6.2, it now immediately follows that we have a model of f~ that fails to verify ~p, and 
the proof of proposition 6 is done. 
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