
Nondetermin i s t i c  Act ion  and Dominance:  

Foundat ions  for P lanning  and Qual i tat ive  Dec is ion  

Richmond H. Thomason 

Intelligent Systems P r o g r a m  
University of  P i t t s b u r g h  
P i t t s b u r g h ,  P A  15260 
U . S . A .  

thomason@isp.pitt.edu 

John F. Horty 

Philosophy Department and U M I A C S  
University of Maryland 
College P a r k ,  M D  20742 
U . S . A .  

h o r t y @ u m i a c s . u m d . e d u  

1. Introduction 

A common sense dominance argument  (1) divides possible outcomes into two or more exhaus- 
tive, exclusive cases, (2) points out that  in each of these alternatives it is bet ter  to perform 
some action than  not to perform it, and (3) concludes that  this action is best unconditionally.  

Al though such arguments  are often used, and are convincing when they are used, they 
are invalid. A classic i l lustration of the invalidity is the argument  for cold-war d isarmament .  1 

The informal argument: Either  there will be a nuclear war or there won't .  If there  won' t  be 
a nuclear war, it is bet ter  for us to disarm because a rmament  would be expensive and 
pointless. If there  will be a nuclear war, we will be dead whether  or not we arm, so we 
are be t te r  off saving money in the short te rm by disarming. So we should disarm. 

The argument  can be formalized using a payoff matr ix  like the following one. 

The payoff matrix: 
Disarm Arm 

War -50 -100 
Peace 50 0 

The fallacy, of course, depends on the assumption that  the action of choosing whether  
to a rm or disarm will have no effect on whether  there is war or not. As Jeffrey goes on to 
show, if the probabili ty matr ix is 

.1 .8 

.9 .2 

then arming has the greater expected utility. 
In the context of a quali tat ive approach to decision theory, dominance arguments  will play 

a central  role, since we can no longer rely on numerical  assignments of utilities to actions. 

1We have taken the example, and the payoff matrix, from [Jeffrey 1983, pp. 8-12]. 
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It therefore becomes crucial to distinguish valid from invalid dominance arguments without 
resorting to numerical probabilities. 

A form of independence that depends on counterfactual conditionals can be used here: 
in this qualitative sense, a condition B is independent of an action a that is performed if 
either (1) B is true, and the conditional 'B (even)if  a were not performed' is true, or (2) B 
is false, and the conditional '-~B (even) if a were not performed' is true. 

Thus, the task of developing a qualitative theory that does justice to dominance seems 
to require an account of temporal counterfactuals. In the following paper, we show how 
to develop such an account within a generalization of the STRIPS  formalism for determin- 
istic, single-agent planning, and explain how it can be used to provide a formalization of 
dominance. 

2. M o t i v a t i o n  a n d  b a c k g r o u n d  

We begin with the classic STRIPS approach to actions and reasoning about time. 2 This 
approach assumes from the very start that outcomes are entirely determined by a single 
agent's actions. Thus, though there may be a role for plan evaluation in which the outcomes 
of different plans are compared according to the utility of the direct consequences of actions, 
there is really no role here for the reasoning about risk that is the core of decision theory. 
However, the need for true decision-theoretic reasoning becomes essential as soon as actions 
are allowed to have nondeterministic consequences--and, of course, the need for such a 
generalization has often been noted in the planning literature, a As soon as this generalization 
is made, a simple single-agent strategy (i.e., a STRIPS-like plan consisting of a series of 
actions) corresponds to a set of fully specified outcome states, or, equivalently, to a set 
of histories in branching time. So this generalization of STRIPS has to be unified with an 
account of how the utility of sets of histories can be compared. 

Assuming that we know the utilities of histories, the problem then becomes how to 
extend these point utilities to utilities on sets. Classical decision theory provides a way to do 
this through the definition of expected utili ty--which, of course, assumes that a probability 
distribution over histories is available. A decision-theoretic formalism for planning could 
simply import these probabilities: either directly, or in a modified form using "orders of 
magnitude," as in [Tan & Pearl 1994] and [Goldszmidt & Pearl forthcoming]. This alternative 
is being explored by Judea Pearl and others. 

Here, we follow a more radically qualitative approach, which assumes that  we are given 
only a linear preference ordering on histories, and seeks to extend this ordering to a partial 
ordering over sets of histories. This "utilities lifting" problem is discussed or alluded to, 
for instance, in [van Fraassen 1972], [Jennings 1974], [Jennings 1985], [Wellman 1988], and 
[Horty forthcoming]. But, as far as we can tell, there has never been a systematic at tempt 
to develop a solution to the problem that does justice to the very robust common-sense 
intuitions that people have for assessing judgments of preference over sets of outcomes-- 
intuitions that seem in many cases to be largely independent of any precise estimate of 
the probabilities of outcomes. The literature based on classical decision theory occasionally 
alludes to these arguments, as in [McClennen 1990] and [Luce & Raiffa 1957, Chapter 13], 
but the arguments do not seem to have been examined extensively in that literature. 

2See [Fikes & Nilsson 1971], [Lifschitz 1990]. 
3See, for instance, [Allen 1990]. 
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On the other hand, Wellman's s tudy of dominance-driven planning in [Wellman 1988] 
shows that  dominance relations can be very useful in uncertain domains where exact probabil- 
ities are not readily available. And the more theoretical approaches to qualitative preference 
that  have been developed in the recent AI literature are also very relevant to our project. 4 

Two simple approaches emerge from the discussions of the problem; the most common is 
to say that  set P is preferred to Q in case for all h E P there is a bet ter  h' E Q. The other, 
which goes back at least to [Friedman & Savage 1948], says that  P is preferred to Q in case 
for all h E P and h' G Q, h is at least as good as h ~ and some h E P is bet ter  than some 
h ' e O .  

Both of these accounts suffer from flaws that  are pret ty glaring. The first implies that  
a lottery with a large prize is bet ter  than one with a smaller prize, regardless of the odds. 
The second fails to imply that  accepting an outright gift of a large prize is bet ter  than 
not accepting it, as long as there is an independent  chance on any given day that  I might 
suffer from heart failure. (The history in which I accept the gift and have heart failure is, 
presumably, worse than the one in which I do not accept the gift and do not have heart 
failure.) 

Motivated by these flaws, our project a t tempts  to create a more adequate account of 
dominance that  (1) in reaction to the first problem, introduces abnormalities over outcomes 
(and therefore appeals to ideas from nonmonotonic logic), and (2) in reaction to the second 
problem, seeks to provide a definition of dominance that  takes into account the relevant 
causal relations of histories. In this paper, we concentrate on the second of these tasks. This 
study contains no discussion of abnormalities or nonmonotonicity, but is in tended to provide 
a monotonic theory of dominance from which a more adequate nonmonotonic  theory can 
then be developed. 

Probably the chief insight of our paper (which as far as we know is entirely new) is that  
the notion of action that  is so important  in the STRIPS approach provides a very useful basis 
for providing the necessary causal structure for an adequate dominance definition. The main 
goal of the material  that  follows is to present this insight and to articulate it in the form 
of a formal theory. In the course of developing that  theory, we also present a formalism 
for planning and action that  takes into account concurrent and nondeterminist ic  actions. 
In keeping with our policy of developing the monotonic theory first, this account does not 
seek to deal with the frame problem or to introduce nonmonotonici ty in any way. In this 
way, it differs from other generalizations of the STRIPS approach, such as [Lin & Shoham 
1992]. Our account introduces into the formalism the notion of the possible outcomes of a 
nondeterminist ic  action, and generalizes the dynamic assumptions of STRIPS by assuming 
that  a successor state is uniquely determined by the actions that  are performed in the initial 
state and their outcomes. This idea seems to provide a very natural and useful generalization 
of STRIPS. We then show how causal notions that  can be added to the action-driven temporal  
models of this theory can yield a conditional distance relation. 

4These include [Doyle, Shoham, & Wellman 1991], [Doyle & Wellman 1991], [Doyle & Wellman 1994], 
[Boutilier 1994b] and [Boutilier 1994a]. This work is less relevant to the focus of the initial project that is 
presented below (which, as we explain below, concentrates on causal aspects of preference), than it is to the 
subsequent part of the project that takes into account nonmonotonicity. 
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3. M o t i v a t i n g  the  t r e a t m e n t  of ac t ion  and  t i m e  

We start with the idea, which is now current in many other approaches to action, that time 
branches. A moment m is a node in branching time. A history is a maximal linearly ordered 
set of moments. 

There is a set ,.9 of states. We associate a state state(m) C 8 with each moment m. We 
have in mind a language of "fluents" that keeps track of the changing phenomena that bear 
on action and decision. Each formula of this language is assigned a truth value in each state. 
For planning and decision purposes, moments that are associated with the same state are 
equivalent; but we do not rule out the possibility that different moments may have the same 
associated state. Such moments may differ in ways that don't bear directly on planning and 
action; for instance, the histories that lead to these moments may differ. 5 

There is a set Agents of agents. Agents are unanalyzed primitives; we do not need to 
inquire into their nature. Unlike some other theories that deal with branching time and 
action, we treat actions as primitive: there is a set Actions of (fully specified) actions. The 
nature of actions is vital to our project. Starting with the notion of action in the S T R I P S  

model of planning, we will generalize the model to take concurrence and indeterminism into 
account, while attempting to preserve some of the desirable causal properties that S T R I P S  

actions enjoy. 
Intuitively, the actions in Actions correspond to the result of appropriately binding all 

variables of the action types of some reasoning domain. These actions differ if and only if 
their action types differ, or their action types are the same and they have different variable 
bindings (considered as tuples of individuals). We assume in this paper that the relevant 
variable bindings affect argument positions for the agent of the actions, and for other roles 
that may be involved in the action, but that actions have no "localizing" argument positions 
like time and place. Thus, we should think of the members of Actions as action types that 
are relatively specific. They are not individual eventualities, but types of occurrences that 
can be multiply instantiated; for instance, the action of unstacking bl by Agent I may be 
performed many times. 

Consider a blocks microworld World1, where as usual there is only a single agent. (So we 
can suppress reference to the agent.) In this world there might be only three action types, 
Pickup, PutOnBlock, and PutOnTable. Instantiating the variables associated with these 
action types yields a fully specified action; when we refer without qualification to an action, 
a fully specified action is intended. In World1, Pickup(b) and PutOnTable(b) will be actions 
for each block b in the domain. And for every pair of blocks bl and b2, PutOnBlock(bl, b2) 
will be an action. Then Actions WoTldl would be the set in which all of these actions are 
collected together. 

In most planning formalisms (but see, for instance, [Grosz & Kraus 1993]) there is only 
one agent. We now generalize the theory to take multiple agents into account. 

In models with multiple agents, each action type has an argument position that has to be 
instantiated with an agent in obtaining fully specified actions. In each model M there will 
be a function agent M that takes actions of the model to their agents in the model. 6 When 
reference to a model is clear, we sometimes drop subscripts: e.g., we may write 'agent(a)' 
when 'agentM(a )' is clearly intended. 

5We assume t h a t  aspec ts  of his tor ies  t ha t  bear  on p lann ing  and ac t ion  are recorded in the  s ta tes .  
6Though  ac t ions  can have groups  as agents,  we have not  yet  begun to reckon wi th  group agency;  in th is  

paper ,  we assume t h a t  all ac t ions  have exac t ly  one agent .  
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In the  STRIPS model  of action, an agent can only per form one act ion at a m o m e n t ,  and  
the  reper toi re  of feasible actions is de te rmined  by the  s tate  associated wi th  the  m o m e n t  and 
the  precondi t ions  of the  available fully specified actions. We will relax these assumpt ions  in 
two ways: (1) we will allow m a n y  actions to occur at the  same momen t ,  ~ and (2) we will allow 
mul t ip le  possible results  even when the  same actions are per formed at a momen t .  However, 
in doing this we wish to main ta in  an impor t an t  insight of STRIPS:  tha t  the  global ou t come  
when actions a l , . . . ,  an are concurrent ly  performed at m - - t h a t  is, the  s ta te  associated with 
the  m o m e n t  tha t  results when the  actions are performed concurrent ly  in m - - i s  de t e rmined  
by the  local ou tcomes  of the  separate  actions. As we will see, this decompos i t ion  of global 
causal i ty  into the  local results of actions can be useful in formula t ing  decision theory.  

To provide the  inde te rminacy  required by (2), we associate a set A-OutcomesM(a, s) of 
possible ou tcomes  wi th  each act ion a and s tate  s in a model  M.  These  "act ion-outcomes"  
should be though t  of as imposing constraints  on global states; more  vividly, they  could 
be t hough t  of as par ts  of global states. 8 To keep the  te rminology clear, we refer to local 
ou tcomes  (outcomes  of of actions) as "a-outcomes",  and to global ou tcomes  ( the resul t ing 
ou t come  states) as "s-outcomes".  The  fact tha t  an action a (and, let 's  say, no o ther  action) 
is pe r formed  in s ta te  s no longer suffices to de te rmine  a unique  global state,  or s-outcome.  
But  we assume tha t  the  a-outcome of a will p roduce  a unique s-outcome. In general,  when 
a set A of act ions is per formed concurrently,  we need to take action-outcome patterns for 
A into a c c o u n t .  Such a pa t te rn ,  for an initial s ta te  s, is a set of pairs of the  form AO = 
{(a,o) : a e A},  where A is a jo int ly  feasible set of actions at s and o e A-Outcomes(a,s) .  

In effect, we are preserving the  STRIPS assumpt ion  tha t  the  only changes tha t  occur  are 
induced  by actions. In STRIPS and the  action formalisms derived f rom it, this a ssumpt ion  
is enforced by "frame axioms" (or "inertial axioms"),  which can ei ther  be formalized using 
some nonmono ton i c  logic (as in, for instance,  [Shanahan 1995]), or by mono ton ic  condi t ions  
on actions (as in, for instance,  [Schubert 1990]). Here, we do not  care how this is done; we 
s imply assume tha t  there  is a funct ion s-outcome tha t  takes ac t ion-outcome pa t t e rns  into a 
global state.  9 And  in our examples we assume tha t  this funct ion  does not  violate  the  usual 
f rame cons t r a in t s J  ° 

We will i l lus t ra te  the  nonde te rmin is t i c  case with a domain  in which the  actions are coin 
tosses. Here, the  a -outcome of an action is a coin's posi t ion after it is tossed; so each act ion 
has two a-outcomes.  The  s-outcome of performing an action, or set of concurrent  act ions (in 
a world in which the  posit ions of coins are the  only fluents) is the  configurat ion of all the  
coin posi t ions after the  action or actions have been performed.  

Let World2 be a microworld in which there  is only one agent,  and the  objects  consist of 
two coins, coin1 and coin2. Each coin can have ei ther of two polarities: heads up or tails 

7In the general case, some of these actions may be performed by the same agent; but we also allow 
concurrent actions by different agents. 

SThe idea of a-outcomes is similar in some ways to the "hidden variables" technique that is used in [Lin 
1996] to make nondeterministic actions deterministic. Though Lin's approach is deterministic while ours is 
nondeterministic, we conjecture that the two are equivalent with respect to a language that does not mention 
the hidden variables or outcomes. 

9Our treatment of multi-agent domains is similar to the accounts that have appeared in the planning 
literature; for instance, [Georgeff 1987] and [Lansky 1987]. The treatment of concurrence is especially 
similar to that of [Reiter 1996]. We had not seen Reiter's paper until a near-final draft of this paper had 
been written. 

1°This principle of "outcome determinism" is related to the notion of "epistemic completeness" of of [Lin 
& Shoham 1992]. But (1) it is model-theoretic, not proof-theoretic, and (2) it provides for indeterminism. 
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up. Here, the possible states, or s-outcomes, could be represented as sets of the form 

(1) {x,y},  where x • {H1,T1} and y • {H2,T2}. 11 

Let 's assume that  there are two actions in World2, Toss(coin1) and Toss(coin2). 
a-outcomes of these actions are as follows. 

The  

(2) a-outcomes of Toss(coin1): {H1, T,}.  a-outcomes of Toss(coin2): {H2, T2}. 

This rendi t ion of a-outcomes and s-outcomes has the advantage of representing s-outcomes 
as supersets of a-outcomes, so that  a-outcomes are, in a sense, li terally parts of states. Here, 
the a-outcomes determine  the s-outcomes by invoking the frame constraint  tha t  coins tha t  
are not tossed remain in their previous positions, while tossed coins receive their  a-outcome 
positions. 

Note tha t  a branching-t ime model  can easily be recovered from a model  like World2, if 
we retain the STRIPS  assumption that  the only transitions between moments  are de te rmined  
by the performance of actions, and that  a frame principle of minimal  change applies to these 
transitions. For instance, if a moment  is in the state {H1,T2}, then two s-outcomes are 
possible if Toss(coin1) is performed: 

- One s-outcome of Toss( coinl ): {H1, T2}; 

- Another  s-outcome of Toss( coinl ): {T1, T2}. 

Obviously, all four states of World2 should be possible if both coin-tossing actions are 
performed concurrently;  but we can' t  accommodate  this possibility until  we provide for 
concurrent  actions. We are now in a position to remedy this l imitation. At the same 
time, we will take another  feature of STRIPS into accoun t - - t he  assumption tha t  actions have 
preconditions.  We do this by associating with each model  M a function tha t  determines  a set 
joint-actsM(s ) of sets of actions; each set of actions in joint-actsM(s ) represents a combinat ion 
of actions tha t  could be performed in s. In STRIPS, joint-actsM(8 ) would consist only of unit  
sets (unless doing nothing counts as a transit ion, in which case the empty  set would also be 
allowed). T h e s e  would be the unit  sets {a} such tha t  the preconditions of a are satisfied in 
s. When  concurrent  actions are allowed, it may happen that  there is never any interference 
between different actions: all sets of actions actions are jointly feasible. In this case, 

joint-actsM(s ) = {A : A C_ ActionsM and the preconditions of a are 
satisfied in s for all a E A. } 

But in general,  we can expect more complicated pat terns  of concurrent  actions and their 
outcomes. This is i l lustrated by the following example. 

World3 is a blocks microworld. Associated with this world are: 

• Two robot arms arm1 and arm2; 
• Four blocks bl, b2, b3, and b4; 

• Actions PickUpAndPutOn(x, y, z), where z, y E {bl, b2, ba, b4} and 
z E {arml, arm2}; 

11Think of (1) as a scheme that generates sets of objects, which we call constraints, rather than as a set 
of formulas denoting truth values. 
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• The  fifty-four states consisting of all possible stacking configurations of the 
four blocks. Of these states, let sl be the one in which bl, b2, b3, and b4 are 
OnTable,  and let s2 be the one in which bl is on be, and b3 and b4 are 
OnTable. 

The preconditions of PickUpAndPutOn(x, y, z) are that  x is clear and y is clear. The unit 
concurrent  action sets are determined as follows. 

{ PickUpAndPutOn(x, y, z)} E joint-actsworld~(s) if and only if s satisfies Clear(x) 
and Clear(y) in World3, where x ¢ y. 

Thus, for instance, 

{ Pick UpA ndPut On (b3, b~, arm1) } e joint-acts World3 (Sl), 

but 

{ Pick Up A ndPutOn (b2, b3, arm1 ) } ¢ joint-acts Wo~,d3 ( s2 ). 

Since there  are only two arms, if two actions are performed concurrently in World3 then 
they must  be performed by different arms. Moreover, there is a possibility of interference 
when an a t t empt  is made to perform two actions; this could occur if arm1 a t tempts  to put 
bl on b2 in s2 while at the same t ime arm2 at tempts  to do the same thing. 

Notice tha t  this l imitat ion cannot be expressed as a precondition on the actions. We 
are not speaking here of a case in which one arm moves before the other,  but  are supposing 
tha t  the actions are genuinely concurrent.  A condition about what  the other  arm is doing 
simultaneously is not a pre-condition. 

It is very natural  to speak in such cases, as we have just done, in terms of "a t tempt ing"  
to perform an action. But in using such language, we are speaking in a way tha t  can ' t  be 
modeled by STRIPS, or even by the extension that  we are developing. In STRIPS, to a t t empt  
an action is to achieve its results. Even when action is rendered nondeterminist ic ,  as in 
STIT, 12 the consequences associated with the action are those that  occur in every al ternat ive 
in which the action is performed. As we ordinarily speak of action, the goals or postconditions 
are expressed as defaults which may not always be achieved. Crossing the street is an action, 
which if ini t iated may sometimes fail to achieve the goal. We believe that  a nonmonotonic  
extension of the present theory will capture this aspect of action, and provide a bridge to the 
theories of agency in the l i terature of linguistic semantics, as in [Dowry 1979]. But this is a 
task for a later paper. The al ternative t reatment ,  which we will adopt here, is to only allow 
feasibility sets of noninterfering concurrent actions. The formalization is imperfect  because 
if the control systems for the arms are independent ,  it may well happen tha t  interferences 
occur, with unpredictable  results. But,  as we say, we cannot model this in the present 
framework without  cut t ing the connection between actions and their postconditions. 

The two-member  a-outcome sets in World3 are then determined as follows. 

{ PickUpAndPutOn(xl, Yl, Zl), PickUpAndPutOn(x2, y2, z2) ) C joint-actswortd3 (s) 
if and only if Zl ~ z2 and {Zl,Z2} C {arml, arm2) and s satisfies clear(xl), 
clear(y~), clear(x2), and clear(y2) in World3, where x~ ~ yl, x2 ~ y2, 
xl # # y2, yl # and yl # 

12-STiT, stands for "Seeing to it that"; see [Nuel Belnap & Perloff 1988]. In a later paper we will provide 
a more detailed comparison of the theory we develop here and the STIT approach to action. 
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In Worlda, this condition has the consequence that  a pair of actions can only occur 
concurrent ly  if they are performed by different arms on disjoint pairs of blocks in Sl. As we 
have modeled it, World3 is a determinist ic  world; there is only one a-outcome per action, as 
in STRIPS. 

Pu t t ing  together  concurrence and indeterminism, imagine a coin microworld World4 with 
two agents, Fred and Jane, two coins, coin1 and coin2, and three action types: TurnUp (this 
action results in a coin being heads up), TurnDown (this action results in a coin being tails 
up), and Toss. There  are then twelve actions: 

TurnUp( coinl, Fred), TurnUp( coin2, Fred), TurnUp( coinl, Jane), 
TurnUp( coin2, Jane), TurnDown( coinl, Fred), TurnDown(coin2, Fred), 
TurnDown( coin l, Jane), TurnDown(coin2, Jane), Toss( coin l, Fred), 
Toss(coin2, Fred), Toss( coinl, Jane), and Toss(coin2, Jane). 

We will assume tha t  Fred has control over coinl and Jane has control over coin2; the  
precondit ions of six of these actions are then never met.  The remaining Toss actions have 
no preconditions.  The remaining TurnUp actions presuppose tha t  the coin is tails up, and 
the remaining TurnDown actions presuppose that  the coin is heads up. Any set A of actions 
is joint ly feasible in s as long as long as the preconditions of each action are satisfied in s, 
and A does not contain more than one action by the any one agent. The  a-outcomes of the 
actions are as expected.  

a-outcomes of TurnUp(coinl, Fred): {H~ } 

a-outcomes of TurnUp(coin2, Jane): {H2} 

a-outcomes of TurnDown(coinl, Fred): {T1 } 

a-outcomes of TurnDown(coin2, Jane): {T2} 

a-outcomes of Toss( coinl, Fred): {H1,T,} 

a-outcomes of Toss(coin2, Jane): {H2, T2} 

It should be clear how a world like World4 generates a branching t ime model.  There  are, 
of course, four possible states: 

So = {H1,H2}, s~ = {H1,T2}, s2 = {T1,H2}, s3 = {T1,T2}. 

Suppose tha t  we start  at a moment  m0 with associated state So. If we allow any joint ly 
feasible combinat ion of concurrent  actions, and count the empty  set as such a set, there  are 
sixteen act ion-outcome pat terns  for So. These pat terns  and their  associated s-outcomes for So 
are as follows. (Remember ,  in constructing these models, we are applying frame constraints.)  

A01 = O, s-outcome(AOl,So) = So. 

A02 = 

A03 = 

A 0 4  = 

A05 = 

A 0 6  = 

{ ( TurnDown(coinl,Fred), T1)}, s-outcome(AO2,so) = s2. 

{ ( TurnDown( coin2, Jane), T2) }, s-outcome(A 03, So) = Sl. 

{ ( Toss(coin 1, Fred), H1) }, s-outcome(A 04, So) = So. 

{ ( Toss(coinl, Fred), T1)}, s-outcome( A 05, So) = s2. 

{( Toss(coin2, Jane),He) }, s-outcome(AO6, so) = So. 
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A 07 = { ( Toss( coin2, Jane), T2) }, s-outcome( A OT, so) = s 1 .  

AOs = { ( TurnDown( coinl, Fred), T1)( TurnDown(coin2, Jane), T2) }, 
s-outcome(AOs, So) = ss. 

A Ov = { ( TurnDown(coin1, Fred), Wl}, ( Toss(coin2, Jane), H2) }, 
s-outcome(A09, So) = s2. 

A01o = { ( TurnDown( coinl, Fred), T1), ( Toss(coin2, Jane), T2) }, 
s-outcome( A 01o, So) = s3. 

AOu  = { ( Toss( eoinl, Fred),H1), ( TurnDown(coin2, Jane), T2} }, 
s-outcome( A On, So) = Sl 

A 012 = { ( Toss(coin 1, Fred), T1}, ( TurnDown(coin2, Jane), W2) }, 
s-outcome(A012, So) = s3. 

A013 = { ( Toss( coin l, Fred), H1}, ( Toss( coin2, Jane ), H2) }, 
s-outcome(A013, So) = So. 

A014 _-- { ( Toss( coin l, Fred), g l  } , ( Toss( coin2, gane ), T2} }, 
s-outcome(A014, So) = Sl. 

A O15 ---- { ( Toss(coinl, Fred), Wl), ( Toss(coin2, Jane), H2) }, 
s-outcome(A015, So) = s2. 

A 016 = { ( Toss(coin 1, Fred), Wl}, ( Toss(coin2, Jane), W2) }, 
s-outcome(A016, So) = s3. 

We then generate the immediate successors of m0 by creating a new moment for each 
action-outcome pattern AO, and assigning this new moment the s-outcome for AO. In 
diagramming these models, it is natural to display the tree as a graph, and to label each 
edge with the action-outcome pattern that produces it. 

Applying this process to rn0, we obtain sixteen successor moments. Part of this first level 
of the construction wilt look like this. 

m l ,  So ?Tb2, S2 m3 ,  81 m4 ,  So m5 ,  82 

"-.. \ I / / /  
A01 A02 A03 A04 A05 

m0,  So 

Figure 1: Part of the World4 Construction 

4. Mode l s  

Here we summarize in more formal terms the account of models that has emerged from the 
previous discussion. 

A model M consists of the following components. (The relatively large number of com- 
ponents is due to the treatment of actions, states, moments, and outcomes as primitives.) 
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1. A nonempty  set ~m. Explanation: the domain of individuals. 

2. A set AdM. Explanation: the moments  of the model. (Moments aren ' t  clock 
times; they are nodes in a branching t ime tree, to which states are assigned.) 

3. A member  m0 M of .AdM. Explanation: the root moment  for the temporal  
s t ructure  of the model.  

4. A function successorsM from #~'{M to ./~M" Explanation. This function 
returns the immedia te  successors of a moment .  

5. A set SM. Explanation: the states of the model. 

6. A function stateM from .A/~ M to SM. Explanation: the  state assignment 
function of the model. 

7. A set ActionsM. Explanation: the actions of the model.  See Section 3 for 
explanat ion of what is meant  intuit ively by an action. 

8. A nonempty  subset Agents M of 7?M. Explanation: the agents of the model.  

9. A nonempty  set OutcomesM. Explanation: the possible a-outcomes of the 
model.  

10. A function agent M from ActionsM to Agents M. Explanation: This function 
returns the agent associated with each action. 

11. A function A-OutcomesM from ActionsMXSM to the power set of OutcomesM. 
Explanation: This function returns the set of outcomes associated with an 
action in a state. 

12. A function joint-acts M from SM to the power set of ActionsM. Explanation: 
This function returns the sets of actions that  can be concurrent ly performed 
in a state. 

Definition 1. (Act ion-outcome patterns.)  
An action-outcome pattern for M is a set AO of pairs (a,o), where a C ActionsM and 
o E OutcomesM. 
Actions(AO) = {a : (a,o) e AO}. A-Outcomes(AO)= {o : (a,o) e AO}. 
ActionsM, p(AO) = {a C ActionsM : agentm(a ) = p}. A pa t te rn  AO is feasible in s, 
where s e SM, if (1) outcome( (a, o) ) e A-OutcomesM(action((a,o)),s) whenever  
(a,o) C AO, and (2) Actions(AO) e joint-actsM(s ). 
AO-PatternsM(s) is the set of all feasible outcome pat terns for M in state s. 
AO-PatternsM = U{AO-PatternsM(s) : s C $M}. 

Explanation: An act ion-outcome pat tern  is an association of outcomes with a set of 
actions. The  pa t te rn  is feasible in s if the outcomes are appropriate for the actions in s, and 
the set of actions is jointly feasible in s. 

13. A function s-outcomeM from states and act ion-outcome pat terns  appropri- 
ate for the state to states. I.e., if AO is an appropriate  act ion-outcome 
pa t te rn  for s, then s-outcomeM(s, AO) C SM. 
Explanation: This function returns the outcome state tha t  results when 
act ion-outcome pat te rn  occurs in an initial state. 

14. A valuation VM, providing appropriate values VM(X, s) for individual  con- 
stants and predicates X,  for each state s in SM. 
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Explanation: This is a familiar first-order interpretat ion,  parameter ized for 
states. 

We impose two requirements on the models of the theory. The purpose of these conditions 
is to guarantee that  the successor relation on instants is uniquely de termined by the s- 
outcomes of jointly feasible actions, that  histories in the model are constructed by applying 
the successor relation iteratively to the root moment  m0, and that  the depth of branches is 
uniform. 

Condition 1. 
For all m E .MM, either (1) successorsM(m)= 0, or (2) there is a one-to- 
one funct ion F~ M from AO-PatternsM(s) to successorsM(m), such that  for 
all A O E A O-Patterns M , state M( F~M ( A O ) ) = s-outcorne M( state M(m ), A O ). 

Definition 2. (The result function.) 
resultM(AO, m) = F~M(AO). 

Definition 3. (Histories.) 
A history on M is a maximal  chain over the tree with root m0 M and successor function 
successorsM. HistoriesM is the set of histories of M.  

Definition 4. (Depth of moments.)  

depth M is a function from M M  to w, such that:  depthM(mo ) = 0 and for all 
m' e succ ssorsM(m) we h a v e  d,pth . (m')  = depthM(m) + 1. 

Definition 5. (Depth of histories.) 
If h is a finite history of M,  let end-moment(h) be the last moment  in h, and let 
depth M( h ) = depth M( end-rnnornent ( h ) ). If h is an infinite history, let depth M( h ) = w. 

Condition 2. The histories of a model M are of uniform depth. I.e., there  is a 
UM _< w such that  for all histories h of the model,  depth(h) = v. In tha t  
case, we say that  depth(M) = aM. 

Definition 6. (Action-outcome sequences.) 
Let AO-Sequences~ consist of all sequences (AOi)i<dep,h(M), where 
AOi E AO-Patternsi .  Where  a E AO-Sequences~, let stateM(a, O) = stateM(mo M) and 
stateM(a,i + 1) = s-outcorneM(stateM(a,i),ai), where i + 1 < depth(M) and 
s-outcorneM(stateM(a, i), ai) is defined. Let AO-Sequences M be the set of all members  a 
of AO-Sequences~ such that  state(a, i) is defined for all i < depth(M), and 
ai E AO-PatternsM(stateM(a,i)). 

Conditions 1 and 2 ensure that  any model can be generated from a root moment  and 
its associated state, by i terating the process of generating successor moments  to some fixed, 
uniform depth  (which may be infinite). Moreover, each successor moment  is uniquely deter- 
mined by a feasible act ion-outcome pat tern.  They also ensure that  the histories of a model 
are in one-to-one correspondence with AO-Sequences M. We use this fact to establish an 
action-based notat ion for histories. 
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Definition 7. (Notation for histories.) 
Where a E AO-Sequences M, let historYM(Ct ) be the unique history of M corresponding 
to a. And let ao-sequenceM(h ) be the unique AO-sequence in M that corresponds to h, 
where h C HistoriesM. 

Definition 8. (Strategies.) 
A strategy for p E Agents M is any sequence (ai)i<depth(M) of actions, where 
agentM(a~ ) = p for all i < depth(M).  StrategiesM is the set of all strategies of M. 
agent(o.) = p iff o. is a strategy for p. Where o- is finite, with length n, last(o.) = o~. 
StrategiesM(p) is the set of strategies M for agent p. 

Definition 9. (Set of outcome histories for a strategy.) 
Where o. • Strategies M and agent(o.) = p, let HistoriesM(O) = {historYMo. : oi " a}, 
where (a,o} • ai and a g e n t (a )  p. 

Definition 10. (Restriction of M to n.) 
Where M is a model with depth(M) = v and n < v, the restriction of M to n is the 
model whose histories are obtained by truncating the histories of M to depth n. 

Definition 11. (Notation for action-outcome sequences.) 
Where a • AO-Sequences M, and depth M = n, let a~(AO) be the sequence a' such that 

' ' A O .  a~ = a~ for i < n and a~ = 

To simplify our account of the conditional, we will impose the further condition that 
at each moment, each agent performs one and only one action. In models in which the 
action types include a null action, and are closed under conjunction, this assumption does 
not impose any real restrictions. 

Condition 3. Let AO • AO-PatternsM. For each p • AgentsM, there is a unique 
AO(p)  • ActionsM such that agentM(a ) = p, where AO(p)  = (a,o) for 
some o. 

5. Condit ionals  and causality 

The general semantic formalisms for conditionals a3 imposed abstract constraints on con- 
ditional selection functions, or on closeness relations among worlds. The difficulty these 
formalisms have had in showing how selection functions can be constructed in realistic cases 
has been a chronic source of philosophical criticism of these formalisms. 14 And in the AI 
literature, the task of specifying a selection function has also proved to be highly intractable 
in domains with interacting joint constraints; see [Ginsberg 1985]. 

It is useful to look at conditional constructions as presenting a problem in nonmono- 
tonic reasoning that is similar to the frame problem in temporal reasoning. By default, 
[A^ C] E ~ B  holds if A I:I---~B holds. Exceptions to this default are provided by specific 
"counterfactual causal" rules. The problem is how to provide these rules. 15 

13See [Stalnaker & Thomason 1970] and [Lewis 1973]. 
14These complaints have often been relatively unfocused. But the contrast between the relative lack of 

constraint on general selection functions and the complexity and detail of conditional reasoning has disturbed 
even the developers of these logics. 

15Such an approach has been suggested in various places. See, for instance, [Horty & Thomason 1991] and 
[Asher & Morreau 1991]. 
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In most current  action formalisms, a causal predicate is used to relate actions to their 
direct effects. But there is no agreement on the extent to which a general theory of causal- 
ity is needed in such formalisms. The need for causal information is much greater  when 
conditionals are at stake. 

To see this, notice that  in the World4 of Section 3 we lack information about conditionals, 
because we lack causal information. Suppose, for instance, that  in the first turn,  Jane tosses 
her coin and it comes heads up; Fred tosses his coin and it comes up tails. In the second 
turn,  Jane tosses her coin and it comes up heads; Fred turns his coin tails up. Now we ask: 
would Fred have turned his coin tails up in the second turn even if Jane's coin had come up 
heads in the first turn? We don' t  really know. If Fred and Jane are acting without  reference 
to each other ( they are in different places, with no communicat ion),  Fred would have turned 
his coin tails up even if Jane's coin had come up differently. If they are able to observe each 
other,  and Fred is imitat ing the results of Jane's previous toss, then Fred would have turned 
his coin heads up if Jane's coin had come up heads. If Fred is influenced in his planning by 
Jane's previous toss, then Fred may have turned his coin heads up if Jane's coin had come 
up heads. 

For this reason, we will add causal information to our causal model.  This information 
takes the form of a set of relations having any of the following three forms: 

Action1 ~.~ Action2 a-outcome ~.z Action a-outcome ~'~ o Action 

We could think of the causal model then, as a directed graph whose nodes are either actions 
or outcomes, and with three sorts of edges. 

The relation Action1 ~.~ Action2 means that  whether  Action2 is performed can depend 
on Actionl's having just been performed. The relation a-outcome ~ Action means that  
whether  Action is performed can depend on aoutcome's having just come about.  The relation 
a-outcome ~.zo Action means that  the a-outcomes of Action can depend on aoutcome's having 
just come about.  

This representat ion of causal information incorporates several simplifying assumptions. 
For instance, it involves a qualitative form of the Markov condition: there can be no delayed 
influences. But we believe it provides a basis for formulating many decision problems. 

We can i l lustrate the role of causal relations by returning to the coin world. Suppose that  
we think that  what  Fred does depends in some complex, perhaps poorly unders tood way, on 
Jane's previous action. Then the model should contain the following causal relations. (Call 
the world with these Causal relations World4,1.) 

a ~ b, where agent(a)= Jane and agent(b)= Fred. 

We want TurnUp(coin2, J a n e ) ~  TurnUp(coinl, Fred), for instance, among the causal rela- 
tions to indicate how certain conditionals will be affected by the hypothesis tha t  Fred takes 
Jane's actions into account in deciding what to do. For example, suppose that  Jane turned 
up coin2 and then Fred turned up coinl. The dependence between Jane's actions and Fred's 
subsequent actions means that  if Jane had flipped coin2, then Fred might not then have 
turned down coin1. (Contrast  this with the case in which the actions are independent;  they 
take place in different places, with no transfer of information. In this case, Fred would still 
have turned down coin1, even if Jane had flipped coin2.) 
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Suppose now that Jane takes the position of coin1 into account in deciding what action 
to take. (In fact, she has some formula for deciding what action to take, though we may not 
know what this formula is.) Then we want the following additional causal relations. 

H1-~z TurnUp(coin2, Jane) H1 ~ TurnDown(coin2, Jane) 
H1 ~ Toss( coin2, Jane) Ti--.a TurnUp( coin2, Jane) 
T1 ~ TurnDown(coin2, Jane) T1 -~z Toss(coin2, Jane) 

H1 "-~ TurnUp(coin2, Jane), for instance, is among the causal relations because if Jane 
turned coin2 up after coinl came up heads, then she might have done something else if 
coinl had come up tails. 

Finally, suppose that when coins are tossed, they are put on a coin flipping device in 
their current position (e.g., they are put on the device heads up if they landed heads up on 
the previous toss). Then the outcome of a toss of a coin depends on its initial position; this 
is represented by the following causal relations. 

H1 "-% Toss( coinl, Fred) T1 ".~o Toss(coinl, Fred) 
H2 "-% Toss(coin2, Fred) T: ..-~o Toss(coin2, Fred) 

In this case, H1 ~.Zo Toss(coinl, Fred) is among the causal relations because under our causal 
hypothesis the fact that coin1 came up heads can influence the result of the next toss. (The 
sort of counterfactual influence that we have in mind here is perfectly compatible with the 
hypothesis that coinl is statistically fair.) 

Definition 12. (Causal-RelsM.) 
Causal-RelsM is the set of causal relations of the model M. 

6. Causal  i n d e p e n d e n c e  and  cond i t i ona l  se lec t ion  

We now show how a conditional selection function can be defined on action models. Like 
the conditional function of [Thomason ~ Gupta 1980], this function respects the structure 
of branching time; details of the two constructions differ. 

The following definitions are relativized to a fixed model M, which we assume meets the 
conditions of Section 4. Also, we will not try to define a conditional for arbitrary antecedents. 
Instead, we will confine ourselves to antecedents concerning alternative actions that might 
have been performed; such antecedents are adequate for the decision theoretic applications 
that we envisage. 

We begin by defining the set closestM(p,h*,a) for models M of depth 1, where p E 
AgentsM, h* E HistoriesM, and a E StrategiesM(p ). 

Definition 13. (A01 ~M,p A02.) 
Where A01, A02 E AO-Patterns and p E Agents, let A01 "~M,p A02 if and only if for 
all a E ActionsM, if agentM(a ) ~ p then (a, o) E A01 iff (a, o) E A02 

Explanation: Two AO-patterns are similar with respect to p if they differ (if at all) only 
with respect to p's action and its outcomes. 

Definition 14. (closestM(p, h*, a): Basis Case.) 
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Given a model  M with depth(M) = 1, as characterized in Section 4, let So = state(too), 
= (a), where agent(a)= p, AO* • AO-PatternsM(so), h * =  history((AO*)), 

p • Agents, and (a) • StrategiesM(P). Then: 

(1) If a • Actions(AO*) then closest M(p, h*, (a)) = {h*}; and 

(2) Otherwise, 
closestM(p,h*, (a)) = {historyM((AO)) : a • Actions(mO) and AO ,~p mo*}. 

Explanation: The closest histories to h* with respect to strategy a for agent p are the 
histories tha t  involve minimal  changes to the actions that  led to h*: the actions of agents 
other  than p are unchanged,  and the action recommended by a is subst i tuted for p's action 
in h*. All outcomes of p's al ternative actions are allowed. Clause (1) ensures tha t  in case a 
actually yields h* then h* is the unique closest history. 16 

We now show how to define closestM(p, h*, o) for models M of depth n + 1. 

Definition 15. (AOlI-PrecedesM,s,p,AO,AO,,Ao,,A02.) 
AOlI-PrecedesM,s,p,AO,AO,,Ao,,A02 if and only if for some q • AgentsM, q ~ p, we have 
A01 ,'~p A02 and, where (a, o) • AO and agent(a) = q, either: 

(1) (i) There  is no relation a' ~ a in Causal-RelsM, where a' E Actions(AO') and 
a' ¢ Actions( A O"), and (ii) there is no relation o' ~ a in Causal-RelsM, where 
o' e A-Outcomes(AO r) and o' ¢ A-Outcomes(AO"), and (iii) a • Actions(A01) 
but a ~ Actions(A02), or 

(2) (i) There  is no relation a' -,~ a in Causal-RelsM, where a' • Actions(AO') and 
a' ¢ Actions( A O"), and (ii) there is no relation o' -,~ a in Causal-RelsM, where 
o' • A-Outcomes(AO') and o' ¢ A-Outcomes(AO"), and (iii) there is no relation 
o' .~.Zo a in Causal-RelsM, where o' • A-Outcomes(AO') and 
o' ¢ A-Outcomes(AO"), and (iv) a • Actions(A01) and a • Actions(A02), but 
(v) (a,o) • A01 and (a,o) ¢ A02. 

Definition 16. (A01 <M,s,p,AO,AO',AO" A02. ) 
<M,s,p,AO,AO',AO is the transitive closure of I-PrecedeSM,s,p,AO,AO,,AO,,. 

Explanation: Imagine that  AO-pat tern  AO" produces a state s, where both A01 and 
A02 are feasible, and that  AO r produces a moment  at which AO is then applied. Let p be an 
agent. Then  A01 is closer to AO than A02, with respect to s, p, AO, AO', and AO" if A01 
can be produced from AO by fewer changes of act ion-outcome pairs, where these changes 
respect respect the applicable causal relations for the preceding actions of outcomes. 

Definition 17. (closestM(p,h*,o): Inductive Case.) 

16This clause, and a similar clause in the inductive step, will ensure a general property of conditionals 
known as "centering"; see [Lewis 1973]. 
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Given a model Mn+l with depth(Mn+l) = n + 1, where n > 0, let Mn be Mn+l restricted 
to n. Let h~+, = historyu,+l(a~) , where a~ = a~_2~(AO:_~>~(AO~>, and let 
h~ = history(a~_~). Let p E Agents and an = ~r~_~ ~(a) C Strategiesi(P). Let 
strategy(a~) be the strategy T for p such that Ti = C, where Actionsp(a~) = {c} 
whenever c~ is defined, and such that Ti is undefined whenever c~ is undefined. 
Then either (1) strategyp(a~) = an and closestun+~(p,h~+a,an) = {h~+i} , or 
(2) strategv,(  ) ¢ a n d  w h e r e  = w e  have :  

closes tMn+ a (p, h*+l , O'n) = {historYM.+~ (ao-sequenceM.+a (hn-a)~(AOn_l)(AO=)) : 
hn = historyM. ( hn_~ ̂ ( A On_l ) ) C elosest M. (p, h~, tr._l ) and, where 
o = state(end-moment(h,)), we have (2.1) AOn C AO-PatternsM(s) and (2.2) 
there is no AO C AO-PatternsM(s) such that AO <M,~,p,AO*,AO~_~,AOn_~ AOn}. 

Explanation: The closest histories to h* with respect to strategy a for agent p are obtained 
by recursively finding closest histories to the subhistories of h*, at each stage making changes 
that are forced by a and retaining any actions and outcomes that are not influenced by the 
causal conditions.  

The utility of the formalism that has been presented so far consists in its applicability 
to examples of conditional reasoning about action. The theory is to be tested according to 
how successful it is in formalizing and explaining a variety of examples in this domain. 

Also, an important part of understanding the theory is seeing how it applies to examples. 
The intricacy of the definitions that we have just rehearsed was induced by a process of 
reviewing examples, and modifying versions of the theory when they were unable to deal 
with them. Without a systematic review of these case studies, it may be hard to see why the 
theory was constructed as it was, although anyone who is familiar with the counterfactual 
reasoning in any of its guises is likely to realize that the problem is intrinsically complex. 

For these reasons, a reasonably self-contained presentation of the theory should contain 
a long section dealing with examples. But space limitations make it impossible to do that 
in this version. Here, we will only sketch a few cases. 17 

Examples illustrating the theory can be constructed by seeing how conditionals would 
be treated in the microworlds that were presented in Section 3. (Of course, these models 
need to be supplemented with appropriate sets of causal information.) The following cases 
illustrate how this can be done. 

We will confine ourselves to the World4 model of depth 2. (See Section 3.) We will need 
the following action-outcome patterns, histories, and strategies. 

AO~ = { ( TurnUp( coinl,Fred), gl), ( Toss( coin2, Jane),g2) }. And AO~ = AO~. 

A O~ = { ( TurnDown(coin1, Fred), T1), ( Toss(coin2, Jane), H2) }. 

' = result(AOl,mo). 81 

A O~(a, o) = { (TurnDown(coinl, Fred), T1 ), (a, o)}. 

h* = historyA01, A02. 

O" 1 - ~  ( TurnVp( coinl, Fred), TurnDown( coinl, Fred)>. 

o2 = < TurnDown(coin1, Fred), TurnDown( coinl, Fred)>. 

17We hope to develop and maintain a version of the paper that will contain appropriate case studies. 
Consult http://www.pitt.edu/thomason/thomason.html for progress on this project. 
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Example 1. Whatever  causal 1"elations are in the model,  

closest( Fred, h*, ~T 1 ) : { history( A 0~, A 0;)  }. 

That  is, if Fred had turned down his coin on the second turn,  Jane would 
still have tossed her coin on this turn,  and it would still have come up heads. 

Example 2. Assume that  there are no causal relations in the model.  In this case, 

.closest(Fred, h*, a2) = { history( A 0~, A 0;)  }. 

That  is, if Fred had turned down his coin both times, Jane would still have 
tossed her coin both times, and it would still have come up heads each time. 

Example 3. Assume the causal relations of World4,1; here, Jane's actions can 
depend on Fred's. Now, 

closest(Fred, h*, al ) = { history( A 0;,  A 0;)  }. 

As before, if Fred had turned down his coin on the second turn,  Jane would 
still have tossed her coin on that  turn,  and it would still have come up heads. 
But now, 

closest(Fred, h*,a2) = {history(AO~,AO~(a,o)) : agen t (a )=  
Jane and o e A-Outcomes(el,a)}. 

That  is, if Fred had turned down his coin on both turns,  Jane might have 
done anything on the second turn. (Opinions may differ on whether  the out- 
comes of Toss(coin2, Jane) should be restricted in this case. Our definition 
of closeness is conservative, in allowing all possibilities.) 

7. U t i l i t i e s  o f  h i s t o r i e s  a n d  d o m i n a n c e  

7.1. T w o  w a y s  t o  i n t r o d u c e  u t i l i t i e s  

Classical decision theory assigns a numerical  value, or utility, to each fully specified result of 
a course of action. In our branching-t ime models, this corresponds to assigning a numerical  
uti l i ty to each history. If we wish to complete the decision-theoretic picture,  we can also 
assign a probabili ty to each history. A qualitative assignment, as we will t reat  it, is much 
more modest:  there are no probabilities at all, and there is only a "no worse" relation 
that  compares the relative util i ty of any two histories. The most natural  extension of our 
concurrent  action models to quanti tat ive utilities turns out to yield an account of expected 
util i ty tha t  resembles that  of [Gibbard & Harper 1978]. 

We will define a relation of dominance between strategies on each of these approaches, 
and state a theorem showing that  qualitative dominance is sound with respect to quant i ta t ive  
dominance.  
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7.1.1. Q u a n t i t a t i v e  d o m i n a n c e  

We obtain a quantitative utility model by adding the following two items to the model 
components described in Section 4. 

1. A function ut from the set HistoriesM of M to the reals. 

2. A probability measure pr over HistoriesM. 

Gibbard and Harper begin ([Gibbard & Harper 1978, p. 153]) with the idea that the 
value of an act is the sum over the set of outcomes of the act of the product of the utility 
of the outcome with the probability of the conditional stating that this outcome would 
occur if the act were performed. The conditional distance relation defined in the previous 
section gives us a way of representing the probability of this conditional; the histories that 
would happen (relative to a history h) if an act a were performed by p are the histories in 
closestM(p, h, (a)). This leads at once to the following reconstruction in quantitative utility 
models of the Gibbard-Harper "counterfactual" utilities and the corresponding dominance 
relation. 

Definition 18. (utaH(o. ] h).) 
utait(o- [ h) = Eh'eclosest(p,h,o) ut(h')pr(h'), where p = agent(o.). 

Definition 19. (utaH(o. I P), where P C Histories.) 
utc (o. IP)= Eh, P utc (o. I h). 

Definition 20. (GH-Dominance.) 
o _~GH T iff utaH(o- ] Histories) _> utaH(T I Histories). 

This is a weak, or "no-worse" notion of dominance. We use this as the primary dominance 
notion because it is easier to work with. Strong dominance can be defined as follows. 

Definition 21. (Strong GH-Dominance.) 
O. ~'-GH T i f f  UtGH(O" ] Histories) > UtGH(T ] Histories). 

7.1.2. Q u a l i t a t i v e  d o m i n a n c e  

A qualitative model, as well as the components listed in Section 4, has the following additional 
ingredient. 

1. A reflexive, transitive ordering ~. 

The relation h ~ h' means that h is no worse than h'. We do not exclude the possibility that 
the relation ~ is inferred through a process of reasoning, as in [Boutilier 1994b] and [Tan & 
Pearl 1994]. But we do not discuss such reasoning processes here. 

Intuitively, a strategy o- qualitatively dominates another strategy T if any history that 
can ensue on o is no worse than any history that would ensue if T were adopted. This leads 
to the following definition. 

Definition 22. (QDT-Dominance.) 
O- ~ Q D T  T iff for all h E Histories all hi E closest(p,h,o.) and all h: E closest(p,h,T), we 
have hi > h2. 
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Again, we can define a notion Of strong dominance. 

Definition 23. (Strong QDT-Dominance.)  
O- ~'QDT T iff o.  .~.QDT T and for some h E Histories(o.), we have hi > h2 for some 
hi • closest(p,h,o) and h2 • closest(p,h,~-). 

7.2. S o u n d n e s s  

Any quanti tat ive utility model is also a qualitative model, if we simply take h ~ h ~ to mean 
that  ut(h) _> ut(h'). It is therefore meaningful to ask what the relation is between qualitative 
and quanti tat ive dominance in a single model. We expect to have quanti tat ive dominance 
in many cases where there will be no qualitative dominance relation; for instance, accepting 
a bet on a fair coin at bet ter  than 50-50 odds might quantitatively dominate  refusing the 
bet. But, since the history in which the bet is accepted and lost is neither bet ter  than nor 
the same as the history in which the bet is refused, there is no qualitative dominance here. 
However, we can show that  whenever there is qualitative dominance, there is quanti tat ive 
dominance. 

T h e o r e m  1. Let M be a quanti tat ive utility model. If we have o. ~-QDT r in this model, 
we also have o, ~ GH T. 

Proof. Let O.,T C StrategiesM(p ). Clearly, if o. ~ G H  T then for some h C Histories, 
h ~ e closest(p,h, T), h ° C closest(p,h,o), we have h ~ > h ~. Then h * ~ h ~-, so o, ~ODT T. 

Gibbard and Harper show is that  under certain conditions, their account of expected 
utility gives the same results as that  of classical decision theory. Their two conditions 
presuppose a language with an explicit conditional, and so we cannot verify them directly. 
However, the crucial condition (their "Condition 1") would be validated if we adopted an 
object language with an explicit conditional, and the other condition is one that  one can be 
expected to hold widely in decision-making examples. 

Thus, our soundness result shows (1) that  whenever a dominance relation holds in the 
qualitative theory it will correspond to the recommendations of a generalization of one 
quanti tat ive account, and (2) that  in many cases it will correspond to the recommendations 
of classical decision theory. 

7.3. A n  e x a m p l e  

We illustrate the theory with a single case: Jeffrey's disarmament example from Section 1. 
Here, we have two agents, US and USSR, and six actions, Arm(US), Disarm(US), Wait(US), 
Wait(USSR), Make-Peace(USSR), Make-War(USSR). The model is deterministic,  so that  
we can ignore the a-outcomes of actions. We will consider the model of depth 2. We take 
the utilities of Jeffrey's matrix, given in Section 1. 

If there is no causal information, the qualitative dominance argument is valid; that  is, 
the pacifist strategy (Disarm(US), Wait(US)) qualitatively dominates the militarist strategy 
(Arm(US), Wait(US)). But if we add a causal relation Disarm(US) ~ Make-War(USSR), 
the pacifist strategy does not qualitatively dominate the militarist one. This, we feel, accords 
well with common sense. Our account of dominance seems to work well in more complex 
cases as well, but we hope that  this one simple example helps to illustrate the idea. 

lSSee [Gibbard & Harper 1978, p. 157]. 
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8. Some lines of development 

Much work remains in developing the technical part of the theory and relating it to the 
formalization of common sense practical reasoning. Here are some considerations. (1) In 
the current version, we have not considered what would happen if an explicit conditional 
were added to the language. This would facilitate a comparison to the general conditional 
formalisms, as well to Gibbard and Harper's causal decision theory. (2) The expressive 
coverage of the theory we have presented was ruthlessly simplified; for instance, the only 
allowable conditional antecedents were simple strategies. Thus, the definitions need to be 
generalized in a number of ways. (3) Unfortunately, the simplifications did not prevent the 
definitions from becoming unpleasantly complex. It would be good to have a more modular 
and readily intelligible presentation of the theory, along with some diagramming conventions. 
(4) The properties of interesting special cases of the theory need to be developed; for instance, 
the deterministic case has many interesting features. (5) It is clear that a causal theory of 
some sort is required by our conditional, but it is less clear what form this theory should 
take. The version that we have provided here is rather crude, and certainly does not permit 
the expression of causal dependencies that are at all complex. The utility of the causal 
theory needs to be tested by formalizing some representing domains. (6) More generally, the 
entire theory needs to be tested in this way. We have in mind not only domains borrowed 
from decision theory, but cases from "cognitive robotics," such as those described in [Reiter 
1996]; and [Lansky 1987] also provides complex, realistic examples. (7) The branching time 
formalism here needs to be compared with the matrix formalisms of decision theory, and with 
the "STIT" formalisms deriving from [Nuel Belnap & Perloff 1988]. A detailed comparison 
with the "utilities lifting" literature mentioned in Section 2 would also be useful. (8) The 
current theory does not provide even for qualitative differences in the likelihood of branches. 
As we intimated in Section 2, we have in mind an account of these differences using ideas from 
nonmonotonic logic. 19 (9) We know (for instance, from Wellman's work) that dominance 
reasoning is implementable. But the extent to which the theory that we have presented here 
can guide implementations is unclear; this question raises an entire research program, which 
we have not even begun to think about. (10) Finally, the addition of an epistemic dimension 
is obviously desirable, and would help us to make contact with many of the most exciting 
issues in contemporary decision theory. 
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