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Abstract  

A proof system for the correctness of parallel programs using knowledge in distr ibuted systems is presented 
and proven sound and relatively complete with respect to a formal Kripke style semantics tha t  supports  t ruly 
concurrent computat ions.  

1 I n t r o d u c t i o n  

Because of its practical importance and technical complexity, the verification of parallel programs has been a major 
topic of investigation for many years ([OG76, AFdRS0 D. In the last decade attention has primarily been focused 
on finding compositional methods to prove the correctness of parallel programs, e.g. [Zwi88]. 

On the other hand in the last decade--in a slightly different context-- epistemic logic [HM85, MvdH], a logic 
to reason about the knowledge of agents, has been advocated to be used as a tool to verify a special class of 
programs running on distributed systems, viz. protocols (e.g. [HZ87]), aiming to correctly send messages across 
the distributed system (a network of processors). 

In this paper we aim to employ epistemic logic to reason about parallel programs more in general, in the sense of the 
first paragraph above. The general idea here is that program statements that have to do with receiving a message 
create a kind of ignorance on the part of the process/agent involved that can be resolved by synchronization. The 
receiving process and the sending one together know what has been sent/received. This can be expressed by means 
of an epistemic logic. 

The reason why we believe epistemic logic is advantageous for reasoning about parallel programs is the fact that 
it enables us to prefix assertions with a modal (epistemic) operator that states what the agent (processor) knows. 
This means that our approach is modular in the sense that assertions can be proven correct in a local context, 
after which they can be lifted to a global context without loosing the information where it came from, i.e. that the 
assertion at hand pertains to the knowledge of a particular agent. 

We then may 'group' knowledge of the agents engaging in a parallel execution by means of a notion of group or 
distributed knowledge. By sharing the knowledge of these agents we finally arrive at the global assertions we are 
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interested in concerning the behaviour of the entire system. 

In the paper, a proof system will be presented which allows one to reason about and proof assertions concerning 
knowledge of (groups of) processes in a distributed system. For example, the formalism enables one to state 
and prove assertions like "Ki(x = 3)" (agent i knows that the value of x is 3 in the current situation) and 
"K{1,2,3}(x = Y)" (it is group knowledge of the processors 1,2 and 3 that  x equals y). 

There have been other at tempts at defining and proving the notion of knowledge in distributed systems, of which we 
mention [KT86]; they used an interleaving semantics, as opposed to our poset semantics (a form of true concurrency 
semantics, cf. [BRR89]), and, moreover, their proof method is based on the well-known proof systems of [AFdRS0] 

and [OG76], and is therefore not compositional. 

This paper must be viewed as a sequel to [HHM93]; the ideas of that paper are elaborated further in the concrete 
context of a simple programming language, culminating in a sound and complete proof system for this language. 

The proof system essentially consists of two layers, one dealing with the usual reasoning about a process in isolation, 
and the other dealing with programs possibly consisting of more programs in parallel. The first layer concerns the 
realm of set semantics, the second concerns that of Kripke-semantics. 

The proof of completeness of the proof system also consists of two parts: the usual part, proving derivability 
of local assertions of single processes (e.g. {x = 1}/ : x := 5{x = 5}) and a "knowledge"-part,  dealing with 
formulae like {true}P1 :: St II P2 :: $2{K2~2} for some local assertion ~a2. With respect to the lat ter  part,  the 
completeness achieved is somewhat special in that  it is only shown that  all triples with a postcondition consisting of 
an epistemic formula can be deduced, leaving out of consideration 'classical' triples, i.e. triples with a non-epistemic 
postcondition. It reflects the fact that we are only interested in assertions that  are known by the agents involved. 
This feature renders our approach modular with respect to agents, so that  we can speak of an agent-oriented 

approach to program correctness. 

The programming language used here is of a striking simplicity: for example there is no recursion included in its 
definition. We would like to emphasize that  this is no necessary restriction imposed by our epistemic approach, and 
we expect that many extensions can be made to the language without too much effort. The reason for our choice is 
a clearer focus on the main contribution of the paper: the introduction of epistemic operators in the proof system. 

2 Syntax 

We will now give the syntax of our language, which is a variant of CSP ([Hoa78]). Assume a set CHAN of 
communication channels, and a set VAR of variables, both finite. We will denote the variables of a s ta tement  (or 
program for that  matter) by and VAR(S) respectively. 

i-Expression e i : :  I I + I - I x 
i-Basic command s~ :: skip I x~ := e~ I c!e~ I c?x~ 
i-Statement :: Z: I S; I S BS; 
Program PR :: [P1 :: s l  I 1  II Pn :: Sn] 

The indices indicate the type of an expression or variable. To avoid cumbersome notation, they are omit ted when 
derivable from the context or of no importance. Furthermore, we have various syntactic restrictions guaranteeing 
that  each channel in CHAN is unidirectional and connected to exactly 2 processes. 

In this syntax, c~ is a constant, skip is the null command, x := e denotes an assignment, c!e denotes 'output  the 
value of e on channel c', and c?x denotes 'input a value from channel c and store it in x'. Typically, basic commands 
wilt be denoted by s. Furthermore, a statement S is a labeled basic command, and the operations ; and [] are 
sequential composition and nondeterministic choice, respectively. A program P R  finally is a parallel composition 
of a number of processes, where a process is a statement labeled with an - indexed-  process label P.  
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3 S e m a n t i c s  

In this section, we prepare grounds for the use of first order epistemic logic, of which our assertion language is an 
instance. As a model for our logic, we use the well-known notion of Kripke models. 

In order to do so, we first define the view semantics for individual processes, which consists of a set semantics. Then, 
we proceed to define the Kripke semantics of programs, thereby using the view semantics of an individual process 
to define the reachability (possible worlds) relation of ttlat process. We then are able to interpret Hoare-triples 
containing (also) epistemic assertions, to be defined later on. For a more general introduction to this approach, we 
refer to [HHM93] which provides some background on this. 

R e m a r k  We will not be concerned with deadlock behaviour of programs, for reasons of simplicity. We intent to 
do so in the near future. 

3 .1  T h e  S e m a n t i c a l  D o m a i n  

In the following, let PR be a program. We define S with typical element a to be the set of valuations of 
VAR(PR) U I_VAR LJ [HVAR, where LVAR with typical elements x, x' is the set of logical variables, and LHVAR 
with typical elements hx, hx' is the set of logical variables . cr maps elements of VAR and logical variables onto 
the domain 2~, with typical element (~, and logical history variables hx onto 7/, to be defined shortly. We will use 
the notation a[c~/x] to denote the valuation function which is equal to a but for the valuation of x, which is ~. 
Similarly we use cr[h/hx] where h e 7-/. 

Next we define the set of program labels A = {l, (c~, c, ?, m}, (c~, c, l, ?), (a, c, l, m)If, m appear in PR}. Thus, there 
are two possible formats for labels, with as intended meaning that  a 'simple' label l reflects some internal action, 
whereas a 'quadruple '  label describes a communication, or an at tempt at a communication. The appearance of the 
question marks in the quadruple labels is due to incomplete information: they typically occur in the semantics of 
communication s tatements  in isolation. In the sequel, both simple and quadruple labels will be denoted by )~,/~,... 
when we are not  interested in their inner structure. The set of/- labels,  Ai, consists of the simple labels from 
A which appear  syntactically in Pi and the quadruple labels from h which contain a simple label which appears 
syntactically in Pi. The  set of global labels, A0, consists of the labels from A that  do not contain a question mark. 
Finally, we define the set of histories 7-/, with typical element h, as the set of posets (H, <) over A0. Note that,  
as labels are unique, and our language contains no recursion, the notion of poset causes no problems. The basic 
building blocks of our semantical domain, points, are pairs (a, h) E $ x 7-/, where the first component of a pair is a 
state, and the second component describes the history via which the state in the first component was reached. We 
sometimes abuse notat ion and write ~ E h when we mean A E H,  where h = (H, <). We will use the dot "." to 
denote the concatenation operation between histories. Furthermore, when h is a poset with only one element, we 
may use that  element as denotation for h, and e denotes the empty history. 

In the next section, individual processes will be provided with a semantics, which we will call view-semantics, 
because of the fact that  it provides local processes with certain information of the whole semantics. Therefore, next 
to the full domain we will use a kind of local domain for each process Pi: ,~ × it/i, where Si is defined analogously to 
S but for the fact that  valuations are now restricted to variables of process i and 7-/i are posets over A~. Elements 

of 8~ map logical history variables onto 7-/i. 

3 .2  V i e w  S e m a n t i c s  f o r  S t a t e m e n t s  

In this section we will provide some of the semantic clauses giving meaning (assigning views) to statements. Assume 
in the following tha t  S is a statement of process i. The semantical operator is typed as follows: H -  : S × p(,.~i × 7ti) -+ 
p(Si × ?-/i). It  is defined pointwise, as in [FLP84], which means we only have to define [S~v((a,h)), for all pairs. 
Once this is done, we derive the semantics for sets as follows: ~S~(V) = U(~,h)ey([S],((a, hi)}. We will use (a, h / 

also to denote elements of Si × 7/~. 
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Note the update of the history in the assignment clause: 

• El: x := 4v((~r, h)) = ((a[cr(e)/x], h.  1)} 

Intuitively, the clause states that  when executing l :x  := e in local point (o ~, h), one obtains a new point, of which 
the state is updated with respect to variable x, and the (local) history is suffixed by l. 

The semantics of the output statement is obtained by augmenting the history with a quadruple label which expresses 
that  a corresponding communication has taken place. 

®El: c!e]v((cr, h)) = {(~7, h .  (e~,c,l,?))} 

In order to obtain a compositional semantics, we have to define the semantics of individual statements in such a 
way that their behaviour in all possible contexts is captured. Therefore, in the case of the input statement, which is 
highly context-dependent, we have to include all pairs of changed states and extended histories describing possible 
communications: 

®~l: c?x]~((o',h)) = {(cT[c~/x],h. (o4c,?,/)) I o~ E Z }  

3 . 3  K r i p k e - s t y l e  S e m a n t i c s  o f  P r o g r a m s  

Now that we have defined the view-semantics of statements, we are able to define the semantics of programs, possibly 
composed of several processes. Our domain will be a pair consisting of a Kripke structure ;L4 = (S × ~ ,  ~r, R1, ..., Rn) 
and a pair (cr, h), where the relation Ri represents the accessibility relation of process i, giving the points that  are 
"equivalent" as far as process i is concerned. The pair (~, h) fulfils the role of current world in the Kripke semantics 
of statements and assertions. 

A few words are in order here to explain the emerging Kripke structure, in particular concerning the relations R~. 
Each equivalence relation Ri, belonging to process i, is derived from the semantics Vi of the statement that  process 
i contains, in a simple fashion: V~ divides the set S × "iLL into two classes in a trivial way. The resulting relation, 
which is written Rye is formally defined as follows (the formal definition of the restriction operator r follows): 

(a, h)Rv, (o", h') ¢==V [(a, h) [ i E V~ ~ (or', h') [ i E V~] 

That  is, two points are equivalent according to i iff their projections onto process i are either both in TV/ or both 
not in V~. The intuition behind this is the inability of i to distinguish points that  are "the same locally", i.e. with 
respect to i. We now define formally the operations of restriction and chaotic closure: 

Def in i t ion  1 The restriction operator [: (S × 7-/) × ~V---+ ( S i x  Hi) is defined as follows: 

(o',h) r i = ( a  rsi, h [,i) 

where o- r8 i is defined by a [8 i(hx) = a(hx) [h i, hx E LHVAR 
[~ i(x) = o'(x), x E VAR(Pi) U LVAR 

and h rh i denotes the i-local projection of some global history h E 7-/. 

Thus, the restriction operator consists of a state restriction and a history restriction. One could view the restriction 
of a global point with respect to process P~ as a projection, or selection of only i-relevant information of that  global 
point. The definition of history projection is omitted here (see full paper [HM93]), but we would like to remark that 
although global histories are posets, projections of global histories are sequences (or linear posers), which reflects 
the sequential nature of processes. 
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Defini t ion 2 The chaotic closure operators CC' : ~ x  Hi -+ P(S  × 74) and CC : P($i × 74~) ~ P(S  × 74) are 
defined as follows: 

CC'(<o-,h>) = ((o-',h'> [ (o-',h'> r i  = <a,h>} 

CC(H) = U cc'(<o-,h>) 
(a,h)~H 

From this definition, it is clear that  chaotic closure is a kind of 'inverse projection': the chaotic closure 'blows up' 
a local point in every non-/aspect .  

Re ma rk  From these definitions, it follows that the Rv~-equivalence class of a point (o', h) in S x 7/ is equal to 
CC(~) if (a, h) r i E vi, and (5 × 7-L)\CC(Vi) if (or, h) I i ~ Vi. 

Defini t ion 3 (semantics of programs) Define ~ as the set of all Kripke structures of the form (S x 7/, ~-, R1, ..., Rn) 
]or n e ~V. Let P R  = [P1 :: $1 II ... ]] P~ :: Sn]. Now 

[.] : P R  x ~ x (S x 74) -.4 ~ x (S  x 74) 

is defined by 

• I[P~ :: s ,  I1.. II P~ :: S n ] ] ( M o ,  ('~o, ho)) = (A.4, (a, h)), where 

M = (3 x 74,Tr, Rv,,  ...,Rye), 
Vi = ~S~]v((ao, ho) r i), 
(a, h) = fc (POSS(Pi , . . . ,  Pn, (no, ho))), 

where fc is a choice function, picking an arbitrary pair (c~, h) from a given set in 9(8  x 74), and P O S S  is defined 
below. 

The function P O S S  serves to describe the set of worlds that are held possible by all the processes involved, 
starting from a common point (a0, h0). It is defined as POSS(P1,. . . ,  Pn, (a, h)) = N~ CC(~S~]((a, h) r i)), with as 
direct consequence POSS(P1,  ..., Pn, (a, h)) = ~i  POSS(Pi ,  (a, h)). (For a more constructive definition, we refer 
to [HHM93]. However, the intersection used in the definition of P O S S  above allows us to relate the semantics 
with the logic in a clearer way.) The choice function is needed in order to obtain an arbitrary point out of this set, 
which, together with the model .A4 constitutes a world. 

4 S y n t a x  o f  Formulae  

In this section, we define our language of assertions. There will be three kinds of assertions: local assertions Assnl, 
aon-epistemic assertions Assn_ and epistemic assertions Assn. These will correspond to the different correctness 
formulae to be defined further on. Moreover, we define sets of (local) expressions and local history expressions: 

! ! l Expr~ ei : :  a l x i ( e V A R ~ ) l e ~ + e ~ l e ~ - e ~ l e i x e ~  
Expr e :: c~ I x (e  VAR) I ~ + e ' l  e - e ' l  e x e' 
He~pr~ he~ :: e I Z~ I (e,, c, l~, ?) I (x~, e, ?, l~) I he~. he~ I hx r i I hist r i 
A s ~  ~ :: ~ = e~ I he~ = h ~  I - ~  I ~o~ A ~o~ 1 3 x [ ~ ]  I 3hx[~p~] 
Assn_ ~¢_:: e = e ' l ~ i l ¢ p - A ~ _  
Assn cp :: ~_  [ K ~  [ Ko~p 

The definition of expressions is as in the definition of the syntax of the language. As to the history expressions, 
these consist of the empty history e, or a (simple or quadruple) label, to be understood as a poset, or two history 
expressions composed sequentially, or the projection of a history variable hx, or the projection of the current history 
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hist.  Note that there are no global history expressions, forcing us to reason about  history expressions on the local 

level only. 

The local assertions consecutively denote equality of expressions, equality of history expressions, and the operations 
negation, conjunction and quantification. The non-epistemic assertions include equality of non-local expressions, 
the set of all local assertions and the operation of conjunction. The epistemic assertions finally consist of the 
non-epistemic assertions, and two predicates expressing the knowledge of a processor of some local assertion, and 
the knowledge of a group of processors of some assertion. 

In the sequel, we will use the expressions hx = hx ~, hx = hist,  etcetera to denote the assertions A~ hx [ i = hx ~ I i 

a n d A ~ h x  [ i = his t  [ i. 

5 Semantics  of Formulae 

In order to assign a meaning to (history) expressions in local and global points, we have the following function, s 
available: ~ : E x p r  x (S × 7/) ~ 2~, Yi : Expri  × (S~ × 7/i) ~ 2~ and Vh~ : Hexpr~ × ( ~  × ~ )  -+ 7-t~. From the 
last function Phi, we list two cases: 

Yni((ei, c, l, ?))((~, h)) = (P~(el)((o', h)), c, l, ?) 
Ph{(hist [ i)((a, h)) = h 

One can easily prove that the functions 1; and 12~ yield the same results when given a local expression. Formally: 
for all e~ • Expr~: F(e~)((a, h)) = V~(e~)((o', h) I i). 

Furthermore there are three interpretation functions on assertions: "/~ : Assn~ × ( ,Six 7/~) -+ { t rue ,  false}, 
T-  : A s s n _  × (S x 7-l) ~ {t rue,  false} and T :  Assn  × ]C × (S z 7/) -+ { t rue ,  false}. Again we give only two 
interesting clauses (in the second clause, R a  denotes Ni Rye): 

T ( K ~ ) ( . A 4 ,  (or, h)) = V(a', h')[(o', h)R¼ (a', h') ~ T(qa)(A/[, (a', h'))] 
T(Ko~a)(.A4, (a, h)) = V(a', h')[(a, h)Rc(o-' ,  h) ~ T(~o)(A,4, (a, h))] 

Note that in this way, we obtain S5-properties, and that group knowledge is defined like implicit or distributed 
knowledge ([HM85, vdHM92]). 

6 Reasoning about Programs 

In order to define our correctness formulas further on, we need the definitions of validation as defined below. One 
should be aware of the limitations (with respect to the assertions that can be evaluated) of the semantical units 
involved. For instance, in a local point, say from S~ x 7/~, only local assertions from Assn i  can be evaluated; and 
in a global point from S x 7-/, only non-epistemic assertions (i.e. from A s s n _ )  can be evaluated. An epistemic 
assertion from A s s n  can only be interpreted in a world. 

Def in i t ion  4 For all closed ~i, qa-, and ~ we define 

(S~ × n~ D ) V  b~ qa~ 4:~ Via, h) E V[(a, h) b qa~] 
(S × 7-/~)(rr, h) ~ ~_ ~ T_(~a_)((o', h)) 
(,S x 7 / D ) V  b ~a- 4-~ V(a, h) E V[(c~, h) ~ 9~-] 
(A4, (a, h)) ~ ~ 4=~ T(~)(AJ,  (a, h)) 
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We next want to express that evaluating a local/-assertion in a global point amounts to evaluating the assertion 
in the local point which is the/-restriction of that global point. Stated otherwise: the validity of local assertions 
does not depend on the environment (= other processes). Formally: 

Lemma 1 

We now come to the definition of two kinds of correctness formulae, connecting program semantics with semantics 
of assertions. These are instances of the well-known Hoare-triples, with the following informal interpretation: if the 
precondition holds at a certain point, then, after execution of the statement/program involved, the postcondition 
holds. 

Definition 5 ® ~ {~i}S~{~#~} ~ V(a, h) e S~ x n~[(a, h) ~ ~ ~ [S~]~((a, h)) ~ ~#~] 

• ~ {~_}PR{~#} ~ VM e tgV(a,h) e S × n[(a,h)  ~ cp_ ~ ~PR](M,(a,h}) ~ ¢] 

Note that in the second rule, as a special case of PR we can have [Pi :: Si]; moreover, note that the postassertion 
of the second rule is the only assertion that is interpreted in a Kripke-model. 

7 Proof  System 

The proof system is divided into three parts: a general part, a local part and a global part. The general part contains 
rules that hold in both the local and the global system. The local part contains rules and axioms to describe the 
individual program constructs of processes. The global part deals with parallel constructs, or programs, and also 
covers knowledge-related issues. In the general part, the symbol S denotes either a process S or a program PR. 

7.1 General  Part  

Axiom 1 (tautologies) All valid assertions in first-order arithmetic 

Axiom 2 (K-axiom) (Kip A Ki(~ --+ ¢)) --+ Ki¢ 

Axiom 3 (veridicality) Kip -+ 

Axiom 4 (positive introspection) Kip ~ KiKi~ 

Axiom 5 (negative introspection) -~Ki~ --~ Ki'~Ki~o 

Axiom 2 ' -5  ~ replace i by G in axioms 2-5 

Axiom 6 (group knowledge) Kip -+ KG~, where i E G 

Rule 1 (modus ponens) ~' ~ --~ ~ 
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Rule 2 (necessitation) 

Rule 3 (generalization) 

qo 
Kiqo 

qzi 
Vx¢~] 

R u l e  4 (consequence) P --+ p'' {p'}S(q'},q' -~ q {p}S{q} 

R u l e  ,5 (conjunction) {pl}S{ql}, {p2}S{q2} 
{Pl A p~}S{q~ A q2} 

Axioms 1-5 together with rules 1 2 form the well-known logic $5. Axioms 2'-5' and 6 add group knowledge to the 
system. Rule 3 allows first-order local formulae in the system. 

The consequence rule allows to strengthen the precondition and weaken the postcondition of a Hoare-triple, thus 
weakening the triple as a whole; the conjunction rule allows to combine two Hoare triples. 

One may wonder why we do not need the Barcan axiom Vx[Ki~] ~ K~(Vx[~]). The reason for this is that our 
language does not contain arbitrary first-order $5 expressions; for instance, the expression Vx[K~] is not in the 
language (cf. section 4). 

7 .2 L o c a l  Part  

Axiom 7 (skip) {~i[hist . l/hist]}l : s k i p { ~ }  

Axiom 8 (assignment) {~i[hist.  1/hist, e/x]}l : x := e{~} 

Axiom 9 (output) {~i[hist .  (e, c, l, ?)/hist]}l : c !e{~}  

Axiom 10 (input) {Vx'[~i[hist . (x', c, ?, l)/hist,  x'/x]])l : c?e{T~} 

I I  I I  I 

Rule 6 (sequential composition) {~}Sl{¢pi }, {~i }S2{~i} 

, S ' S I, 
Rule 7 (nondeterministic choice) {~i} l{~i},{~i} 2{~i } 

Consider for instance the assignment axiom. In order to be sure that ~pi holds after execution of I : x := e, we have 
to guarantee that, in the state before the assignment, ~ holds where e is substituted for x (the same holds for the 
history assignment: all non-composed statements have this assignment in their axiom, because semanticMly, they 
all do a history assignment). 

As for the input axiom: because it is not known what value has been received, the only way to guarantee that ~ 
holds after execution is to have that substituting any value for x results in a true assertion in the state before the 
execution. 
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7.3 G l o b a l  P a r t  

Rule 8 (K- in twduc t ion )  
:: 

Rule 9 (K-persis tence)  {(P-}P~ :: Si{Kig~i}( for i = 1, ...,n) 
{~ - } [P1  :: $1 II-.. [[ P~ :: Sn]{Ki~,} 

Rule 10 (variable subst i tut ion)  As usual; omitted 

The K-introduction rule allows us to lift a 'classical' local assertion (valid in the set-theoretic context) to a new 
assertion, valid in a Kripke-model which states that ,  within the Kripke framework, the process under consideration 
knows the local assertion. 

The K-persistence rule states that  knowledge of processes on their own does not change when placed within a 
bigger context. 

The variable substitution rule is needed for technical reasons, in the completeness proof (to get rid of 'freeze' 
variables). 

7 .4 E x a m p l e s  

1. 

. 

Let P R  = [P~ :: l :  c?x II Pj :: z: ~!5]. 
F-{his t  [ i = e}l : c?x{h i s t  [ i = ( x , c , ? , l ) }  (axiom 10) 
F {h i s t  
F" { h is t  
F {h i s t  

{ h i s t  
{h i s t  
{ h i s t  
{h i s t  
{h i s t  
{h i s t  

r i = e}P~ :: l : c?x{K~(his t  [ i = ix, c, ?, l))} (K-introduction) 
[ i = e } P R { K ~ ( h i s t  [ i = (x, c, ?, l))} (K-persistence) 
[ j  = e } m : c ! 5 { h i s t  [ j  = (5,c,m,?)} (axiom 9) 
[ j = e}Pj  :: m :  c !5{Kj (h i s t  [ J = (5, c, m,  ?))} (K-introduction) 
[ j = e } P R { K j ( h i s t  [ j = (5, c, ra, ?))} (K-persistence) 
I i = e A his t  [ j = e } P R { K ~ ( h i s t  [ i = (x, c, ?, l)) h K j ( h i s t  [ j = (5, c, m, ?))} (Conjunction) 
= e } P R { K a ( h i s t  [ i = (x, c, ?, l)) A K G ( h i s t  [ j = {5, c, m,  ?))} (Consequence, Group kn.) 
= e } P R { K c ( h i s t  r i = (x, c, ?, l) A his t  [ j = (5, c, m, ?))} (Consequence) 
= e } P R { K G ( h i s t  = (5, c ,m,  l) A x = 5)} (Consequence) 

Let $1 ~ l m :  c!0; 112 : c'!1, $2 ~- 121 : c'?x; 122 : c ' !x  + 1, S~ ~_ (lal : c?z; 132 : cl'?y)D(133 : c '?y;  134 : c?z), and 
P R  ~ [P1 :: $1 [I P2 :: $2 II P3 :: $3]. Then we can derive in a similar way { t rue}PR{K{1 ,2 ,3}x  = 1 A y = 
2 A z = 0}, and also { t r u e } P R { K { 1 , 3 } z  = 0} and { t r u e } P R { ~ K ( ~ , 3 } y  = 2}. Note that  the last formula says 
that  the combined knowledge of processes 2 and 3 is not enough to derive the value of y. However, we can 
prove the formula { t r u e } P R {  K{2,3}y = x + 1}. 

8 S o u n d n e s s  

The axioms 1-6 and rules 1-3 are known to be sound with respect to first order $5 (see e.g. [HC84]). So it 
follows from our semantics that  these axioms and rules are sound. The program axioms together with the rules for 
sequential composition and nondeterministic choice from the local part can checked to be sound in a standard way, 
as is the case for the rules of consequence and conjunction. There remains the proof of the K-introduction rule and 
the K-persistence rule. We only prove the soundness of the K-introduction rule here. 

P r o p o s i t i o n  1 
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p r o o f  
Suppose ~ i  {~i}S~{~/,~} ~ V(o-,h} E 8~ × ~ [ ( a , h )  ~ qPi ~ ISi]v((o-,h)) ~ i  "¢i] 
To prove: b {~o{}Pi :: Si{K{¢{} ~ V(o-, h) e S × ~,.A4 e ]C[(a, h> ~ ~ ~ [P{ :: S{](A.4, (or, h)) 
b{ K{¢{]. So suppose (a, h) ~ ~ .  Then also (a, h) [ i b{ ~ ,  by Lemma 1 
So, by assumption [Si]~({o', h) I i) b{ ~b{ ¢:~ < ~{ ~/~, where < = [S{]~((o-, h) [ i) 
¢~ C C ( ~  ) ~ g,{ (Lemma 1) ~ ((S × 7-t, ~-, Rv, ), f~( CC(V{ ) ) ~ IQ ~b{ ~ [P{ :: S~](2¢[, (a,h))  ~ I(.i~{ [] 

9 Completeness 

In order to prove completeness of our system, we extend Assni  by adding sp(~i, Si) to it, the strongest postcondition 
with respect to a statement and a local assertion. This is an assertion with the following properties: 

1. states that sp(~i, Si) is a postcondition of ~ and Si, 2. states that  it is the strongest one. 

The semantics is given as follows, as an extension of definition 4: 

( S i x  7-li S)(o-, h} ~ sp(~i, S~) ¢:~ 3(o'0, h0)[(o-0, h0} ~ i  ~i A (a, h) e ~Si]v((a0, h0})] 

The proof that this definition indeed provides a semantical characterization of the strongest postcondition is stan- 
dard and not given here (see e.g.[dB80]). As usual, we have that the strongest postcondition can be expressed in 
Assni ,  for any ~i E Assn l  and statement Si (we only list two cases). 

• ~ sp(~i , l :  c?x) ~ (3x ' ,hx  : ~i[x ' /x ,  hx/hist]  A hist  [ i = hx [ i .  (x ,c ,? , l ) )  
• ~ sp(~oi, S1; $2) ~ sp(sp(~i,  $1), $2) 

The following lemma justifies the previously introduced syntactical abbreviation hx = hist  meaning Ai hx [ i = 
hist [ i. Although in our assertion language there is no means of reasoning directly about  global history expressions 
such as hist, it follows from this lemma that we can make global statements using the abbreviations. 

L e m m a  2 A history h E 7-L is completely determined by all its projections h Ih i, where i ranges over all processes. 

Finally, we are ready for the main theorem of this section. Let P R  = [P1 :: $1 I1 ..- II Pn :: S~]. 

T h e o r e m  1 The proof system presented in this paper is complete resp. K-complete: 

2. if  ~ { ~ } P R { K G ¢ }  then ~ {~}PR{Ko~p}  (a  C_ {1, . . . ,n},~ E Assn_)  

We only prove the second clause of this theorem, that asserts that any correctness formula involving a postcondition 
referring to the knowledge of (groups of) processes can be derived in our axiom system, provided it is valid. 
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proof  
Let G = {1, ...,n}, and suppose ~ {~;}PR{Kc~b}. Let, for all i, ~ denote the list of/-local variables 
in VAR. Define ~ = ~;[~'/~1, . . . ~ / ~ ,  hx/hist] A xl = vl A ... A ~ = v,~ A hist -- hx 
(hx, ~ fresh for all i). Clearly, ~ ~ qo, so ~ {~}PR{KG¢} holds. 
Now let ~i be the/-local restriction of (~), formally defined in the full paper. 
Then we can prove ~ ~ / ~ i  ~i. Now by definition of sp(~i, Si), we have ~ {~i}Si{sp(~i, Si)}. 
Thus, by 1. it follows t- {~}Si{sp(~i,  S~)}. 
By rule 8 it follows that S {~i}Pi :: Si{Ki(sp(~i, Si))}, all i 
By K-persistence, S {~}PR{K~(sp(~i, Si))}, all i 
Then, by conjunction, S {Ai ~i}PR{Ai Ki(sp(~i, S~))} 
Group knowledge: F- {Ai ~i}PR(A~ Ka(sp(~,  Si))} 
Distrib. of KG over A: t-- {A~ ~i}PR{Ka A~(sp(~i, Si))} 
K-axiom, and A~(sp(¢;~, S~)) ~ ¢ (see full paper): b {hi qo~}PR{Kv¢} 
Consequence: t'- {~}FR{K~¢}  
Variable substitution rule: ~- {~}PR{Ke~b} 

10 Conclus ion  

In this paper we have presented a proof system for the correctness of a simple parallel programming language using 
a logic in which epistemic operators are included to be able to speak about the knowledge of the sub-processes 
involved in the execution of parallel programs in this language. As we have seen this proof system comprises of a 
local and a global part. The former is classical dealing with the correctness of local processes, whereas the latter 
part concerns the parallel composition of processes and eventually the whole process of parallel computation. 

It is in this latter part where the use of epistemic operators comes into the picture. These operators enable us to 
(still) refer to assertions along with the agents (processes) that know them. Combining this knowledge to knowledge 
of larger groups of processes eventually gives us the desired assertions known by the process as a whole but again 
we still can refer to the knowledge of every subgroup of processes when we want to. So combining knowledge 
into group knowledge does not destroy the information about what is known by subgroups. This illustrates the 
modularity of our approach. So, summarizing, one could state that in our proof system, the constructs on the 
locM level are handeled in a more or less standard way, whereas the parallel (top) construct is treated by means of 

epistemic operators. 

We believe that the epistemic approach to the correctness of parallel programs may be used fruitfully for a range 
of programming languages. In particular, since our approach is agent-oriented we believe that the approach is 
amenable to object-oriented parallel programming languages since the objects in these languages are exactly the 
agents/processes involved in the execution of a program. This will be investigated in future research. We would 
finally like to mention that we do not need a merging lemma ([Apt83]), due to compositionality of the semantics 

(cf. also [AdB93]). 

acknowledgement  Thanks to Jozef Hooman for providing us with his very useful lecture notes ([Hoo93]) and for 
suggesting us to use channeled communication. 
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