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Abstract

This paper studies the model checking problem for knowledge formulae in the S5, Kripke
structures generated by finite state environments in which states determine an observation
for each agent. Agents have perfect recall, and may operate synchronously or asynchronously.
Common knowledge formulae are shown to be be intractable, but efficient incremental al-
gorithms are developed for formulae containing only knowledge operators. Connections to
knowledge updates and compilation of knowledge based protocols are discussed.

1 Introduction

The literature on reasoning about knowledge in distributed and multi-agent systems has dealt
primarily with semantic issues [CM86, FHV91, HM90, HV89, PT92], the development of logics
and decision procedures for their validity problem [FI86, HM92, HV88a, HV88b, LR86, PR85],
and the use of modal languages with knowledge operators to analyze specific coordination tasks
[DM90, Had87, Hal87, HZ92, Maz86]. There has been less work on the following question: given a
description of a distributed system, how do we efficiently compute the answer to a query about the
knowledge of the agents (processors) in a given state? Closely related is the question of update:
how should an agent maintain its knowledge of the world, and its knowledge of other agents’
knowledge, so that it may efficiently answer such queries.

In this paper we begin the investigation of these questions for a very simple abstract framework.!
We suppose that some fixed number of agents inhabit an environment with a finite number of
possible states. In each state every agent makes an observation, which will in general be insuffi-
cient to determine that state. The evolution of the state is constrained by a transition diagram,

"This paper is the first of a series, to be continued with [Mey93b).
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which determines the runs of the system, i.e. the valid finite sequences of states. We suppose
that both the transition diagram and the relationship between states and the observations of each
agent are common knowledge to all agents. Though simple, this framework is sufficiently rich to
represent many systems of interest, including finite state message passing systems, synchronous
or asynchronous, with bounded buffers. The framework is also able to represent most games of
imperfect information, including Bridge, Poker, Battleships, Stratego and Kriegspiel.

Since the observations do not determine the state, agents, in general, have only incomplete
information about the current state. However, an agent potentially knows more than it learns
from its most recent observation. For example, suppose I have been informed by an accomplice
that my opponent in a Poker game holds exactly one ace. If I observe him discard one card
(receiving another in its place) then even though I am not able to directly observe his hand, I may
infer that he now holds at most two aces. The same sort of reasoning applies to knowledge about
knowledge. If my opponent knew that I knew he had one ace (my accomplice is a double agent)
then he knows that I now know he has at most two aces. Indeed, if it is common knowledge that
I cheat, then it is common knowledge that my opponent has at most two aces.

In order to formalize this sort of reasoning, we need to ascribe a precise state of knowledge to
the agents. There are a number of natural ways to do this. Following the standard development
of knowledge in distributed systems [Hal87], in every run we are required to assign to each agent a
local state. In order to exploit prior knowledge, an agent needs to recall its previous observations.
We assume the strongest possible model of memory, namely that agents have perfect recall of
all their prior observations. This, however, still leaves two possible ascriptions of local state,
and we study both. The first of these assigns to an agent the sequence of its observations in
all previous states. This corresponds to assuming that agents operate synchronously, i.e. with a
global clock. The second ascription of local state we consider assigns to an agent its sequence of
distinct observations. This corresponds to assuming that agents operate asynchronously.

We obtain from each of these local state ascriptions a Kripke structure which may be used to
interpret languages with knowledge operators. The propositional modal language we consider in
this paper contains an operator for the knowledge of each agent, as well as an operator for the
common knowledge of each group of agents. The basic propositions describe the current state of
the world. Thus the formulae of this language refer only to the current state, and to the mutual
knowledge that agents have about the current state.

The problem we are interested in, then, is how to efficiently compute whether a given formula
holds at a given world in this Kripke structure. The question of how to evaluate modal queries in
a Kripke structure is the model checking problem, which is known to be in polynomial time for the
modal language we consider [HM92]. However, this result is not applicable to our problem, since
it assumes a finite Kripke structure, whereas the Kripke structure associated with an environment
may have an infinite number of worlds, corresponding to the runs of the system. Nevertheless, it
would appear at first blush that this complexity can be overcome. Given that there exist only a
finite number of states of the world, and that our queries ask only about the current state, and
agents’ mutual knowledge of the current state, it seems reasonable to expect that the number of
different states of knowledge an agent may attain in a given environment is also finite.

A surprisingly simple example presented in Section 2 shows that this is not the case. The
states of knowledge attained by agents may require arbitrarily deep nestings of modal operators
to describe. This suggests that the complexity of model checking knowledge formulae may be high.
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Indeed, we show that for formulae involving common knowledge, the model checking problem in
our framework is PSPACE complete in the synchronous case and undecidable in the asynchronous
case. These results hold even with a fixed formula. :

On the other hand, formulae not involving common knowledge are less complex. The reason
for this is related to a slightly different perspective on our problem. Consider the point of view -
of an agent in one of our environments. As each new observation is made, the agent is interested
in answering the question “Given what I have just seen, and all that I knew before, what do I
know now?” That is, the agent is required to update its previous knowledge to reflect the new
information. Now although the ascription of knowledge assumes that agents have perfect recall,
this ascription is external: no assumption is made that agents actually maintain their sequence
of observations. Any data structure that may be used to give correct answers to the knowledge
queries of interest is an adequate representation of knowledge.

Given some constraints on formulae, it turns out that a data structure containing much less
information than the agent’s sequence of observations suffices as a knowledge representation. We
show in Section 3 and Section 4 that provided the formulae we wish to check contain no occur-
rences of common knowledge operators, and only a bounded number of alternations of knowledge
operators, there exists a constant time incremental algorithm for computing the agents’ knowledge,
which has the property that the data structure incrementally maintained has constant size. An
incremental algorithm of this sort exists for both the synchronous semantics and the asynchronous
semantics. In particular, these results imply that fixed formulae not involving common knowledge
correspond to regular sets of runs, and may be implemented in linear time.

Our incremental algorithms take an approach to the update problem somewhat different from
that usually adopted in the literature on knowledge base updates [KM91], which assumes that
agents maintain their knowledge as a set of sentences of some language. Our methods are more
closely related to the model checking approach to reasoning about knowledge recently advocated
by Halpern and Vardi [HV91].

The results of this paper are a first step towards the construction of environments which
facilitate the design and prototyping of protocols in distributed systems by providing automated
knowledge analysis. In addition, our incremental algorithms may be viewed as a contribution to the
issue of compilation of knowledge based programming languages, which involves the construction
of extensional programs for the repeated evaluation of a fixed knowledge formula. We discuss this
application further in Section 5.

The structure of the paper is as follows. Section 2 introduces the formal model and states some
preliminary results. Section 3 deals with the synchronous case, and shows that certain classes of
knowledge formulae may be tractably checked using an incrementally computed data structure. In
Section 4 the asynchronous semantics is introduced, and it is shown how to generalize the results
of Section 3 to this case. The relation of our work to compilation in knowledge based programming
languages is discussed in Section 5, and Section 6 contains concluding remarks.

2 Definitions

Suppose that Prop is a set of propositional constants, and that O is a set of observations. An
environment for n agents with observations O is a tuple E = (S,I,T,Ox,. .., On, V) such that

1. S is a finite set of states,
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2. I is a subset of S,

3. T is a binary relation on §,

4. O; is a function from S to O, for each ¢ = 1...n, and

5. V is a valuation on S, i.e. a mapping from S x Prop to {0,1}.

We say that T is the transition relation of the environment £, and that the O; are the observation
functions of E. The set I represents the initial states of the environment.

If s € S is a state, the value O;(s) intuitively represents the information that agent ¢ is able
to obtain in state s by direct observation of the environment and its own current local state. The
observation functions induce an equivalence relation K; on the set of states defined by sk;s’ when
O:(s) = 0i(s’). Intuitively, two states are equivalent with respect to R; when agent 7 is unable to
distinguish these states by immediate observation. The actual values of the observation functions
will play no essential role in our framework, so we could equivalently have defined environments
using the equivalence relations R; instead of the functions O;. We will sometimes use this fact
when presenting examples of environments.

Example 2.1: Suppose agent 1 sends a message to agent 2, in a system which guarantees
that the message will be delivered either immediately, or with a delay of one time step. As
agent 1 sends the message, it makes a permanent record of the fact that the message has
been sent. Similarly, once the message has arrived, agent 1 makes a permanent record of
this fact, which it is able to access at all times thereafter.

We may represent this situation as an environment F as follows. Take the set of states to
be § = {a,b, c}, where the state a represents that the message has not yet been sent by agent
1, the state b represents that the message is in transit, and the state ¢ represents that the
message has been received by agent 2. The set of initial states I of the environment consists of
the state a only. The transition relation T is the set of tuples {{a, a), (a,b), {a, c), (b, c), {c, c)}.

For the set of observations we choose O = {sent, unsent, rcvd, unrcvd }, representing the
values of the variables maintained by the two agents. Thus, the observation functions are
given by Oy(a) = unsent, O1(b) = Oy(c) = sent for agent 1 and Oy(a) = O,(b) = unrcvd,
O:(c) = revd for agent 2. Taking Prop = {p} to consist of a single proposition representing
that the message has been received, we get the valuation V with V(z,p) = 1 if and only if
« = c. The environment FE is represented in Figure 1, where the arrows indicate transitions,
and the ovals represent the equivalence classes associated with the observation relations.

Before describing how an environment determines a Kripke structure which may be used to
answer queries about an agent’s knowledge given a sequence of events, we first discuss Kripke
structures in the abstract, and describe a standard construction on Kripke structures that helps
to reduce the complexity of the computation of knowledge formulae.

We will deal with formulae in the propositional modal language £¢ which has a modal operator
K for each agent 7, as well as a modal operator Cg for each set (7 of two or more agents. Intuitively,
the operator K; refers to the knowledge of the agent i, and the operator Cg refers to the common
knowledge of the group G. More precisely, the formulae of £E are defined as follows:

1. Each propositional constant p in Prop is a formula.
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Figure 1: An environment

2. If ¢ and 1 are formulae then —p and ¢ A v are formulae.
3. If ¢ is a formula then Kj;p is a formula for each: =1...n.

4. If ¢ is a formula then Cgy is a formula for each subset G of {1...n} of cardinality two or
more.

The sublanguage £L,, consists of the formulae of £S which do not contain the operators Cg.

The language LS is interpreted in the following class of models. A Kripke structure for n
agents is a tuple M = (W, Ky,...,K,, V) where W is a set of worlds, K; is a binary relation on
W for each ¢, and V : W x Prop — {0,1} is a valuation. If all the relations K; are equivalence
relations then we say that M is an S5, structure. Most of the Kripke structures we deal with in
this paper will be S5, structures. The semantics of £ is given as usual, the only nonstandard
point being the truth definition for the common knowledge operator. If G is a set of agents then
we say a world u is G-accessible from a world w if there exists a sequence of worlds ug, u1,...un
such that u, = w, u, = u and for all i = 0...n —1 there exists an agent j € G such that u;K;u;y;.
The clauses of truth definition are the following.

1. For propositional constants p € Prop, M, w |= p if V(w,p) = 1.

2. M,w k1 Ay if Myw k= ¢y and M, w = @,

3. M,w |= —¢, if not M, w k= ¢r.

4 M,w kE K;p if M,u |= ¢ for all worlds u such that wk;u.

3. M,w = Ceyp if M,u k= ¢ for all worlds u which are G-accessible from w.
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Note that if M is an S5, structure and G = {1} is a singleton set then u is G-accessible from
just when wX;u. Thus, in this case the semantics of Cg collapses to the semantics of K, which is
why we assumed above G contains at least two agents.

The problems we will be concerned with in this paper involve what is known as the model
checking problem: how to determine whether a formula o holds in a given a world w in a Kripke
structure M. The following result? describes the complexity of this problem when M is a finite
Kripke structure. In this case we write ||M]| for the sum of the number of worlds in M and the
number of tuples in the relations X;.

Proposition 2.2: If M is a finite 55, structure and ¢ € LY then M, w k= ¢ can be decided
in time O(|e| - ||M]]).

We now review a result that enables the complexity of model checking to be optimized. It is
clear from the truth definition that only worlds {1,...,n}-accessible from w influence the truth
of formulae at the world w. More formally, define the submodel generated by a world w to be the
structure M’ = (W', K}, ..., K5, V') with W’ equal to the set of worlds {1,...,n}-accessible from
w, and the K/ and V’ the restrictions of the respective components of M to the set W’. Then we
have the following straightforward generalization of Segerberg’s “Generation Theorem” [Che80]:

Lemma 2.3: If ¢ is a formula of £§ and M’ is the submodel of M generated by the world
w then M,w k= ¢ if and only if M',w = .

We are now ready to describe the Kripke structure associated with an environment. We
consider two distinct such structures in this paper. In the present section, we will deal just with
the synchronous interpretation. The Kripke structure associated with an environment in the
asynchronous case will be introduced later, in Section 4.

Suppose E = (S,I,T,04,...,0,,V) is an environment. A run of the environment E is a finite
sequence of states s;8z... 38, such that s; € I and s;Ts;41 for each j = 1...m — 1. We write
runs(E) for the set of runs of E. Note that under the assumption that T contains a cycle, the set
of runs is infinite. If T is serial, then every run is the prefix of some strictly longer run. In other
words, no run terminates. Environments with arbitrarily long runs will be of greatest interest to
us. We adopt the following notational convention: constants s,t,... will always denote states;
runs will be denoted by 7,7/, r1,.... If r is a run we write fin(r) for the final state of r. When we
write rs, this will denote a run with final state s and initial portion r.

For each agent i we define an equivalence relation on the runs of an environment E. The
local state of agent i in a run r = $152...5, of an environment E is the sequence {r}i =
0i(51)0i(s3) ... Oi(sm). That is, the local state of an agent is the sequence of observations made
by the agent in the run. We say two runs r and r’ are indistinguishable to agent i, and write
r~; 7, if {r}i = {r'};. That is, two runs r = 8,83...,, and r’ = s}s),...s,,, are indistinguishable
to 1 if m = m/ and for for each | = 1...m we have O;(s;) = O;(s}). In other words, we assume
agents are synchronous and have perfect recall of their observations.

Now, we obtain for each environment £ for n agents the Kripke structure

ME = <W3K:1>"'3Kn7VE>

2F(.)r. © € Ly, this result is shown in [HM92]. The generalization to £ is along similar lines. See [[LU79] for an
exposition of the measures of computational complexity we use in this paper.
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with worlds W = runs(E), access relations K; = ~; for i = 1...n, and valuation Vg : W x Prop —
{0,1} given by Ve(r,p) = V(fin(r),p). It is clear that Mg is an S5, structure. If r is a run then we
will write (E,7) = @ instead of Mg, |= ¢. Note that for propositional constants p, the relation
(E,r) Ep depends only on the the final state of r. It follows from this that all formulae of £Y
describe the current state, and the agents mutual knowledge of the current state. However, as

Example 2.1 shows, environments may be constructed so that the current state contains a limited
amount of information about the past.

Example 2.4: Consider the environment E for two agents of Example 2.1. The runs of this
environment are strings of the form a*b'¢™, where k > 1 and 0 <1 < 1 and m > 0 are
natural numbers. Suppose r = a*b'c¢™ and ' = a*'b"'¢™ are runs of the same length. Note
that Oy(z) = Oy(c) if and only if z = ¢. Hence if r ~; ' then m = m/, and we find that
there are precisely two runs r’ such that r ~; r’, namely those with &' = k + [ — I', where
I' is either 0 or 1. (One of these runs is just r itself.) A similar argument shows that there
exist precisely two runs 7' such that r ~; r’. Thus, the component generated by the runs of
length n of the Kripke structure Mg is described by the sequence

1

ac®” ! ~; abc®? ~,; o

C’n_2 ~ a2bc'n—3 Ny L. NV a"'lc ~1 a"—lb ~2 a”
where we have omitted the relations holding between each run and itself. It follows that
(E,ac™ ') = (K:K;)p holds for all j < n — 1, but not for j > n — 1. In particular, we
see that even if the message is delivered immediately, the fact of its delivery never becomes
common knowledge®.

This example illustrates a number of points about the Kripke structures Mg. First, the
structure Mg may have an infinite number of worlds. This means that Proposition 2.2 does not
directly apply to the model checking problem in Mg when E is an environment in which the
relation T' contains a cycle. On the other hand, note that the submodel of Mg generated by a
run r contains only runs of the same length as r. Since the set S of states is finite, there are only
finitely many such runs, in fact at most |S |enstb(r)_ 1t follows directly from this that all formulae
are decidable, and Proposition 2.2 may be used to obtain an exponential time algorithm. However,
an improvement on this is possible. Rather than construct the complete submodel generated by
a run, we can create runs only as they are needed, and reuse space after we are done with them.
This yields the following upper bound.

Proposition 2.5: The set { (E,r,¢) | ¢ € LS, r € runs(E) and (E,r) [= ¢} is decidable
in polynomial space.
The following result shows that this upper bound is the best possible.

Theorem 2.6: There exists an environment E for two agents and a propositional constant
p such that the set {r | (E,r) |z Cq1,2yp} is PSPACE hard.

The proof of Theorem 2.6 is by an encoding of space bounded deterministic Turing machine
computations. Consider the even numbered runs in the sequence of runs of Example 2.4. I‘he
symbol b in these runs moves progressively from left to right, much like the head of a Turing

3A closely related example has previously been used by Halpern and Moses [HM90] to make this point.
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machine. The hardness proof exploits this resemblance: runs correspond to configurations of ,
Turing machine, and a single step through the derivation relation of this machine corresponds
to taking two steps in the Kripke structure, first to an intermediate configuration through the
relation ~; and then through the relation ~j.

3 Bounded Alternation Formulae

Theorem 2.6 shows that model checking common knowledge formulae may be highly complex. For
certain formulae containing only knowledge operators the situation is better. Define the alternation
depth of a formula in £,, to be the number of alternations of distinct knowledge operators in the
formula. We will show in this section how to incrementally maintain a constant size data structure
that makes it possible to efficiently model check formulae in £, of bounded alternation depth. In
particular, we will see that it is not necessary to maintain the history in this case.

The data structure we will use is defined as follows. Suppose S is a fixed set of states equipped
with a valuation function V : § x Prop — {0,1}. For numbers k& > 0 and agents : we define by
mutual recursion the set 7; of k-trees over S, the set 7Ty ; of i-objective k-trees over S, and the
set Fr: of i-objective forests over S. Define 7o to be the set S, and also define To; = S for each
agent . Once 7 ; has been defined, let F} ; be the set of all subsets of 7; ;. Now, define 7,41 to be
the set of all tuples of the form (s, Uy, ...,U,), where s € S and U; is in F; for each i = 1...n.
Finally, for each i let 7,4, ; be the set of such tuples where U; is the empty set. Intuitively, the
state s represents the actual state of the world, and for each i the set U; represents the knowledge
of agent i. Note that cach component U; in a 1-tree is simply a set of states, representing agent
v’s knowledge about the world. For higher k the set U; represents agent i’s knowledge both about
the world and other agents’ knowledge, up to alternation depth k.

The elements of 7; may be regarded as trees of height k, with the edges labelled by agents
and vertices labelled by states in S. If w € 7; we write root(w) for the state s occurring as
the first component of the tuple w, or for w itself in case k = 0. If w = (s,Us,...,Uy) and v
is an element of U;, then we say that v is an i-child of w. Note that no i-child of any vertex
has an i-child itself. It is easily shown that if ezp(z, k) is the function defined by ezp(z,0) =z
and ezp(z, k + 1) = z2°P(*k) then k-trees over S have size less than C} = ezp(nlog(|S]), k). An
element U of F ; may be regarded as a forest of i-objective k-trees. We define the 1-objectification
function obj;, that for each k maps k-trees to i-objective k-trees, as follows. When w € T, we
define obj;(w) = w. When k > 0, obj, maps the k-tree (8,Ui,...,U,) to the k-tree obtained by
replacing U; by the empty set.

By viewing a k-tree w as tree-like Kripke structure, it is possible to define a truth relation
w [= ¢, meaningful when ¢ is a formula of L, of alternation depth less than or equal to k.
The worlds of this Kripke structure are just the vertices of the tree w. If a vertex v of w is
labelled by a state s, then we take the proposition p to be true at v just when V(s,p) = 1, where
V is the valuation on S. The appropriate accessibility relations are different from the i-child
relations, however. We define the accessibility relation K; to be the smallest relation such that
each vertex may access its i-children, and all i-siblings of a vertex may access each other. This
makes the accessibility relations transitive and euclidean, but not equivalence relations, since an
t-child cannot access its parent.? We define w = ¢ to hold just when ¢ is true at the root of this

4 : - .
The Kripke structures we have defined here are very similar to the knowledge trees used by Halpern and Vardi
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tree-like Kripke structure.

We now state a result showing that k-trees have enough structure to represent the set of all
formulae of alternation depth k or less which hold at a given world in an arbitrary S5, structure.
Suppose M = (W,Ky,...,K,, Vi) is an S5, structure and Jet f be a function mapping the worlds
of M to the set of states 5. We assume f preserves the valuation, i.e. for all worlds w € W and
propositions p, we have Viy(w, p) = V(f(w),p), where V is the valuation on S. For k > 0 define
the functions Fy : W — Ty as follows. If k = 0, then define Fi(w) = f(w). ¥ k > 0, define
Fi(w) = (f(w),U1,...,U,), where U; = {0bj(Fr-1(v)) | wKiv}.

Proposition 3.1: If ¢ is a formula of £, of alternation depth less than or equal to k then
for all worlds w of M we have M, w |= ¢ if and only if Fi(w) @8

Let us now specialize this result to the Kripke structure M. E corresponding to an environment
E=(S51I,T,0,...,0,,V) with observations ©. We first take the k-trees 7% to be constructed
over the states S of this environment, and the valuation on S to be the valuation V of E. Next,
choose the function f to be the the final state mapping fin from the set of worlds runs(E) of Mg
to S. For the remainder of this section, we take F} to be the mappings that result from these
choices. By the definition of Mg, the mapping fin preserves the valuation. Thus, we obtain the
following corollary of Proposition 3.1.

Corollary 3.2: For every run r of E and sentence @ of L, of alternation depth less than or
equal to k, we have (E,r) = ¢ if and only if Fi(r) = ¢.

Since the size of Fi(r) is independent of the length of r, this result shows that for sufficiently
long runs it suffices to compute in a structure which is smaller than the component of Mg generated
by the run. Of course, if it is necessary to first construct this component of Mg in order to compute
Fi(r) this is no gain. However, there is a more efficient, incremental way to construct Fi(r).

Define for each number k& > 0 the function Gi : T X S — T4, by induction on k. The definition
of G}, will be by mutual recursion with the functions Hy;: Fri x O — Fi;, where ¢ is an agent
and k > 0. We define Go(w, s) = s. Once G has been defined, we define for each i the function
Hy; by taking Hy;(U,0) to be the set of k-trees Gi(v,s) where v € U, there exists a transition
of E from root(v) to s, and O;(s) = o. Using the functions Hy i, we may now define Gy, by the

equation
Gk+l((s’ Uy, .., Un)v 3,) = (s’v Hi [Ul, 01(3,)]’ crey Hk,n[Un, On(sl)])'

Note that if U is the empty set then Hi;(U, o) is also empty. It follows from this that Gy maps
k-trees to k-trees, and also maps t-objective k-trees to i-objective k-trees, so these definitions are
proper.

Intuitively, if agent i’s state of knowledge is (partially) represented by the the set of k-trees U,
then Hy;(U,0) computes the agent’s revised state of knowledge after it makes the observation o.
Note that in the special case k = 0, we have that U is a set of states and

Hoi(U,0) = {t € S | 3s € U[sT't and O;i(t) = o]}. (1)

[HVSSa] to show decidability and completeness of logics for knowledge and syncl_lr.onous time. '
SIt suffices that the access relations K; be transitive and euclidean, so Proposition 3.1 also applies to K45, the

logic of belief.

233



Thus the update computation represented by the mapping Ho,; 1s closely related to (though not
subsumed by) Winslett’s [Win88] Possible Model Approach to the semantics of updates, and
to Katsuno and Mendelzon’s [KM91] generalization of this approach. Similar ideas occur in
Rosenschein’s discussion of knowledge in robotics [Ros85], and in the standard theory of state
:dentification in finite state automata [Koh70). The following result shows how G may be used

to compute F) incrementally.

Lemma 3.3: For every run rs of E and every number k, Fi(rs) = Gr(Fi(r), s).

If r is a run of length one then Fj(r) may be straightforwardly computed: if 7 consists of the
single state s then Fi(r) is the k-tree with root s and an :-child Fy_1(s’) for each state s’ with
0i(s') = Oi(s). Combining this with Corollary 3.2, Lemma 3.3 and Proposition 2.2, we obtain the

following result.

Theorem 3.4: For formulae ¢ of alternation depth k or less, (E,r) |= ¢ can be decided in
time O(Ck - (Ir] + I¢1))-

In particular, we see that to model check formulae of alternation depth bounded by a constant
it suffices to maintain a data structure of constant size. Note that this result trades in the
“exponential time” dependence on both formula size and length of run of Proposition 2.5 for a
linear time dependence on both formula size and length of run, but at the cost of non-elementary
dependence on alternation depth. Thus for high alternation depth formulae this approach is
unlikely to be practicable without further optimization. When dealing with very deep formulae
in short runs, the algorithm of Proposition 2.5 may well be more efficient.

A special case of Theorem 3.4 worth noting is when n = 1, i.e. there is just a single agent.
Since all formulae of £; are of alternation depth one or zero, it suffices to work with 1-trees, which
are tuples of the form (s,U) where s is a state and U is a set of states. The set U is updated
according to equation (1). Thus the theory of this section may be viewed as a generalization of
standard accounts of update in the single agent context. We note that our results make explicit the
validity of this update computation under the assumption of perfect recall, which is not generally
considered in this work.

Theorem 3.4 also subsumes the situation in which we wish to check a fized formula of £, in
runs of increasing length, for which we obtain the following.

Corollary 3.5: Let ¢ be a fixed formula of £, and let E be a fixed environment. Then the
set {r € runs(E) | (E,r) = ¢} is regular.

In general, the finite state automaton obtained for a fixed formula will not be minimal, so
further optimization is possible. We will discuss this possibility in more detail elsewhere.

4 Asynchronous Environments
We now consider an alternate semantics for environments, in which we do not assume that agents

are synchronized. Instead of assuming that an agent is aware of every transition made, as before,
we now assume that an agent notices transitions only when these lead to changes in its observation.
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Define {r}{, agent i’s asynchronous local state in the run r, to be the sequence of distinct
observations of agent i. That is, if r is a run consisting of a single state s then we define {r}? =
0:(3), and for runs of the form rs we define

{rs}? = {r}? when Oi(s) = O;(fin(r)
{rs}? = {r}20i(s) when Oi(s) # Oi(fin(r)).

Using this function we may now define two runs r,r’ to be asynchronously indistinguishable to
agent 1, written r =; r', if {r}? = {r'}?. Notice that the agent still has perfect recall under this
definition, but it is no longer assumed to be able to keep track of time. We write ME for the
Kripke structure obtained from an environment E by replacing the relations ~; in Mg by the
relations =;. We write (E*,r) = ¢ when the formula ¢ holds at run r in Mg.

Example 4.1: We reinterpret the environment of Example 2.1 with respect to the asyn-
chronous semantics. Consider first the asynchronous indistinguishability relation ~; for
agent 1. If r is a run of the form a*, then {r}? = unsent. For all other runs r, of the form
akblc™ with k > 1,0 <1 <1 and I4+m > 1, we have {r}® = unsent - sent. Thus, there
are precisely two equivalence classes of runs with respect to the relation ;. Similarly, it
may be shown that the relation =, partitions the set of runs into precisely two classes: the
runs of the form a*b' and the runs of the form a*#'¢™ with m > 1. Note that none of these
equivalence classes contains a run a*b'¢™ with I > 1: although the agents are unable to tell
the time, they still know that the message is delayed by at most one time step.

We showed in Example 2.4 that in the synchronous case, the agents may acquire, with
time, increasing levels of mutual knowledge about the proposition p: ‘The message has been
delivered.” In contrast, in the asynchronous interpretation, the formula Cy; 2)—K1p is true in
all runs: it is always common knowledge that agent 1 does not know the message has been
delivered.

In the synchronous case, we were able to establish the decidability of all formulae in £S by
noting the substructure of Mg generated by any run is finite. As Example 4.1 shows, this is
no longer the case when environments are interpreted asynchronously: in this example all runs
generate the entire structure. Indeed, we may show the following:

Theorem 4.2: There exists an environment F' for two agents and a propositional constant
p such that it is undecidable, given a run r, to determine if (F'*,r) |= C(1,23p-

The proof of this result is by reduction from the Halting problem for Turing machines. It uses
the fact that by modifying any environment E by adding a one bit clock whose state alternates
with every transition, and making this clock observable to all agents, one obtains an environment
E' for which the asynchronous structure M, is isomorphic to the synchronous structure Mg. Part
of the environment F is the environment E’ so obtained from the environment E constructed in
the proof of Theorem 2.6, which simulates space bounded computations. The remainder of the
environment F' uses asynchrony to guess the amount of space required by the computation of the
Turing machine on the given input.

That common knowledge formulae are decidable in synchronous environments, but undecidable
in asynchronous environments, might lead one to expect a similar jump in complexity for formulae
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not containing common knowledge. In fact, the situation here is not much worse than in the
synchronous case.

We will describe an incremental computation for formulae in £, which generalizes the tech-
niques of the previous section to the asynchronous case. The basic data structure we employ
will again be k-trees. The sets 7 are defined as before. For each number k£ > 0 let the
functions F¢ : runs(E) — Ti be defined inductively by Fg(r) = fin(r) and, for & > 0,
Fe(r) = {fin(r),Un,...,Un) where U; = {obj,(F{_,(r")) | =i r'}. This definition is almost
identical to the definition of the function Fj in Section 3, the only difference being that we have
replaced the accessibility relations ~; of Mg by the relations =~; of M§. Thus, we obtain the
following consequence of Proposition 3.1, analogous to Corollary 3.2.

Corollary 4.3: For every run r of E and formula ¢ of £, of alternation depth less than or
equal to k, we have (E?,r) = ¢ if and only if FZ(r) = ¢.

This result shows that instead of checking the infinite structure Mg, we may check the finite
structures F¢(r). To complete the generalization of the results of the previous section, we need
to show how to compute the functions F. In the synchronous case, the runs indistinguishable to
agent i from a run of the form rs are all of the form r's’, where r ~; ' and O;(s) = Oi(s"). Thisis
no longer the case under the asynchronous semantics, where we may have rs =; r'sys; ... s, with
r ~; r' and O;(s1) = Oi(s2) = ... = Oi(s;). This means that a direct application of the previous
incremental approach does not work - we may need to look further than the “next state” in
computing F2(rs) from Fg(r). Another complication is that the number [ is possibly unbounded.
Nevertheless, an incremental characterization of the the functions FY is still possible. Briefly, what
is required is to repeatedly apply the one-step incremental computation while the runs examined
may be extended without changing the final observation. This process is terminated as soon as
no new information is extracted.

We define for each £ > 0 a function G% : 74 x S — 7 which will play a role analogous to
that of the function Gy of the previous section. The definition is by means of a mutual recursion
with the functions Hy, : Fi; x O — Fy;, where ¢ is an agent and k > 0. Like the function
Hj; used in the synchronous case, the function H{; maps a state of knowledge U of agent 7 and
an observation o to the agent’s new state of knowledge Hy ;(U, 0) upon making the observation o.
Thus, as above we define G%(w, s) = s, and

G§+1((3, Ulv MRS Un)? 3’) = <3’1 Hl(:,l [Ub 01(3’)17 AR ng,n[Unv On(sl)])'

To define the function H};, we assume that G} has been defined. The definition makes use of
an auxiliary function Jy;, : Fy; — Fi;. Intuitively, this function computes the update agent i
would perform on making observation o if it knew that either zero or one steps have been taken
through the transition relation. Thus, if U € Fri, we put

Jrio(U) = {w €U | Oiroot(w)) = o}U
{G%(w,s) | w € U and root(w)T's and O;(s) = o}

The following result states some basic properties of Jkio-

Lemma 4.4:

(1) The function Ji;, is monotonic, i.e. if U; C U, then Jr,iolU) € ki o(U3).
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(2) Forall U, Ji;,(U) C Jl?,j,o(U)'

It follows from Lemma 4.4 that for all U we have Ji;,(U) C JZ; (U) € J3, ,(U) C .... Since
these values are subsets of the finite set Tk, this implies that there exists some m for which
Jp o (U) = Jiit (U). We define Hg;(U, o) to be this fixpoint value Ji% o(U). This completes the
definition of the H; and G}. We may now establish the following recursion relation, which gives

the incremental way to compute F2.
Proposition 4.5: For every run rs we have G¢(Fg(r),s) = F2(rs).

We have now seen how to compute F¢(rs) from FZ(r). It remains to show how to calculate
F¢(r) when r is a run of length one. In the synchronous case, this was straightforward, since it
required only the examination of the states and observation relation. In the asynchronous case,
this no longer suffices, and we need a fixpoint computation similar to that just described. For each
number k > 0 define the function g3 : § — T; by g§(s) = s and for k£ > 0 by g§(s) = G¢(uk(s), ).
Here u(s) is the k-tree with root s such that v is an ¢-child of ui(s) if and only if v = obj,(g%_,(s"))
for some state s’ with O;(s’) = O;(s).

Lemma 4.6: For all s € S we have gi(s) = F2(s).

Combining Corollary 4.3, Lemma 4.6, Proposition 4.5 and Proposition 2.2, we obtain the
following results, analogous to Theorem 3.4 and Corollary 3.5 respectively.

Theorem 4.7: For each sentence ¢ of £, of alternation depth k or less, (E*,r) |= ¢ can be
decided in time O(Ck - (|r]| + |¢])).

Corollary 4.8: Let ¢ be a fixed formula of £, and let E be a fixed environment. Then the
set {r € runs(E) | (E*,r) | ¢} is regular.

5 Compiling Knowledge Based Programs

In a number of papers [DM90, Had87, HM90, HZ92, Maz86] it has been shown that knowledge
formulae may provide necessary and sufficient conditions for the achievement of a variety of coor-
dination tasks. This analysis enables the formulation of knowledge based protocols [HF89] for these
tasks, in which knowledge formulae are used as preconditions for actions. Knowledge based proto-
cols have been shown to provide perspicuous descriptions of standard protocols, and to elucidate
the common ideas underlying apparently different protocols.

Given a precise description of the environment in which a knowledge based protocol runs,
e.g. a specification of the assumptions concerning message delivery and loss, there exists an
equivalent standard protocol, obtained by replacing the knowledge preconditions by appropriate
standard computations based on the state of the processor. The determination of these standard
computations has so far been carried out on a case by case basis. For example, Dwork and Moses
[DM90] establish that in protocols solving a distributed agreement problem in the presence of
processor failures, the truth of a particular formula asserting a type of common knowledge of a
group of agents is a necessary and sufficient condition for agreement. They show how a test for
the truth of this formula may be implemented, given a variety of assumptions on the nature of
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failures. For omission failures it turns out that the test may be implemented in time polynomial in
the number of processors, which number also bounds the length of the relevant runs. However, for
arbitrary (Byzantine) failures, the test is shown to be NP hard, with an upper bound of PSPACE,

This type of analysis has shown the appropriateness of knowledge as a level of abstraction
for the design of distributed systems. Consequently, the possibility of high level programming
languages with explicit operators for knowledge is a current topic of investigation [MK93]. In order
to permit the execution of knowledge based protocols, such a language would have to support the
compilation of knowledge tests into standard functions of the state of the processor. Our work
in this paper may be viewed as initial foray into the feasibility of this kind of compilation. Of
particular interest in this regard are the results concerning evaluation of a fixed formula in runs of
increasing length, which is precisely the type of operation required in knowledge based protocols.
It is encouraging that fixed knowledge formulae may be implemented by finite state automata
(Corollary 3.5, Corollary 4.8).

However, there remains a gap between our formalization and even the simplest type of knowl-
edge based protocol. In knowledge based protocols, the set of successors of a given state depends
not just on information local to that state, but also on the knowledge of the agents, since knowledge
may constrain action. This means that the set of runs generated by a knowledge based protocol
is generally smaller than the set of runs generated by the underlying transition system obtained
from the agents’ possible actions. Since the knowledge based protocol being run is assumed to
be common knowledge, agents may take such interactions into account in their reasoning. Our
model is unable to represent this interdependence of knowledge and action. Another limitation of
our formulation is its finite state nature. The specification of even such simple protocols as the
Alternating Bit Protocol requires an infinite input stream, hence an infinite state space. Never-
theless, given the simplicity of our framework, the results of this paper would seem to provide a
lower bound on the general problem.

In this respect the high complexity we have found for common knowledge formulae (Theo-
rem 2.6, Theorem 4.2) is somewhat disappointing. Common knowledge is known to be a pre-
requisite for simultaneous action, and variants of common knowledge have been found to play a
central role in many other types of coordination [HM90, PT92]. Thus compilation of common
knowledge formulae is likely to be a crucial requirement of knowledge based programming. The
PSPACE hardness of common knowledge queries in synchronous environments shows that one
cannot always expect to find efficient implementations for tests involving common knowledge. In
the asynchronous case the situation is worse: here the undecidability result shows that compilation
into even a terminating program is in general impossible.

However, some caution is required in interpreting these results. The environments constructed
in the proofs of Theorem 2.6 and Theorem 4.2 are very unnatural. Although limited in some re-
spects, the class of environments studied in this paper is too broad in other respects. It is not clear
whether these results apply to more reasonable classes of environments, such as message passing
systems. Further, in many cases common knowledge is not attainable, and various weakenings of
common knowledge suffice for the coordination tasks of interest.

Related to the question of compilation of knowledge based programming formalisms is the
work of Rosenschein and Kaelbling [Ros85, RK86], which deals with the verification of externally
ascribed knowledge properties of situated machines. However, while the language of [RK86] per- -
mits the decomposition of a machine into a number of components, each of which is treated as an
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agent, the focus is on agents’ knowledge of the world rather than nestings of knowledge operators.

Another strand of work on knowledge based programming languages is Shoham’s [Sho93] pro-
posal to develop Agent Oriented Programming Languages. These are a specialization of message
passing formulations of object oriented programming, in which objects take the form of agents,
which have a variety of mental states, including beliefs and commitments. These mental states are
revised as messages are sent and received. However, instead of the external ascription of knowl-
edge we have studied in the present paper, belief in Shoham’s model is internally ascribed: an
agent believes just what is recorded in its database. Furthermore, update in Shoham’s framework
does not make use of any semantic knowledge, and default assumptions are applied: an agent
maintains its beliefs about the world, and its beliefs about other agents beliefs, until it learns con-
tradictory information {IS92]. We note that in our model no such persistence is assumed: indeed,
in the synchronous case, an agents’ knowledge may change with each tick of the clock, since it
must be true in a non-deterministically changing world. It would be interesting to find semantic
assumptions justifying belief persistence.

6 Conclusion

We have presented in this paper a model-theoretic approach to computing knowledge formulae in
finite environments. An alternate approach would be to formalize an environment as a theory in
a logic with modal operators for knowledge and time, and then compute knowledge by deduction
in this logic. Complete axiomatizations of logics of knowledge and time in systems with perfect
recall are known in both the synchronous case [HV86, HV88a] and the asynchronous case [Mey93al.
However, these results are for languages not containing common knowledge operators. For both
synchronous and asynchronous systems, adding common knowledge to these logics makes the
validity problem IT}-complete [HV89], which implies that there can be no complete axiomatization.
This precludes the direct application of logics and knowledge and time to our problems, since it
is necessary to express that the environment is common knowledge to all agents. On the other
hand, the results of this paper suggest that appropriate decidable and axiomatizable fragments of
logics with common knowledge and time may exist, but this requires further work.

While the algorithms we developed in Section 3 and Section 4 are theoretically linear time for
bounded alternation depth formulae, in many cases they will not be directly practicable, because
the state spaces of most systems of interest are too large to be explicitly represented. However,
recent work on model checking in temporal logic [Val90, BCM*90, ES93] is beginning to provide
ways to deal with the state space explosion problem, and we expect that the techniques developed
in this area can be applied to model checking knowledge also. We leave this for future work.

Finally, we remark that the two semantic ascriptions of knowledge we have studied in this
paper are not the only ones possible. One reasonable alternative is to drop the perfect recall
assumption and ascribe knowledge to an agent based on its current observation only. As shown
by Fisher and Immerman [FI86], in systems of this form common knowledge formulae may be
reduced to knowledge formulae.
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