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A b s t r a c t  

The literature on refinements of Nash equilibirum is now gener- 
ally acknowledged to have failed in its task of providing a viable 
equilibrium selection theory for games. Part of the reason for 

its failure lies in its shaky foundations as a theory of rational 
behaviour. Backward induction is a particularly doubtful ra- 
tionality principle. This paper uses the Centipede Game as a 
setting within which to explain why Aumann's recent attempt to 
rehabilitate backward induction is unsuccessful. 

1 I n t r o d u c t i o n  

Rational belief and rational action are usually studied axiomatically. 
Axioms are propounded and the properties of rational individuals are then 
deduced mathematically. If the necessary mathematics is sufficiently chal- 
lenging, at tention then concentrates on whether an author 's theorems are 
true rather than the more fundamental  question of whether the axioms are 
successful in formalizing the concepts they are intended to capture. In spite 
its widespread acceptance, I therefore believe that  much orthodox work on 
the foundations of game theory is at best doubtful. In this paper, I plan 
to use the notion of backward induction as a case study to illustrate this 
contention. 

Backward induction is widely regarded as one of the cornerstones of 
game theory. Zermelo used it to prove one of the first theorems of game 
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Figure 1: The Centipede Game 

theory--namely that Chess has a solution. Selten [14] made it the basi3 
of his notion of subgame-perfect equilibrium, since which time it has been 
incorporated into most of the many refinements of Nash equilibrium that 
have been proposed. Indeed, Kohlberg and Mertens [9] make it a sine qua 

non for a refinement concept. It is therefore surprising that only recently 
have attempts been made to deduce the validity of backward induction 
from more primitive rationality principles. The difficulties encountered in 
such attempts have led Binmore [5], Reny [11], Bicchieri [3,4] and others to 
question whether backward induction is indeed compelling as a rationality 
principle. However, Aumann [1] has recently sprung to its defense by offer- 
ing an argument that claims to deduce the backward induction solution in 
finite games of perfect information from the hypothesis that the rationality 
of the players is common knowledge before the game begins. 

Notice that the use of backward induction in the Centipede Game of 
Figure 1 requires that the opening action be down. Similar counter-intuitive 
conclusions are obtained by applying backward induction in the finitely 
repeated Prisoners' Dilemma or in Selten's [13] chain-store paradox. 

This paper explains why I believe that Aumann is mistaken in arguing 
that prior common knowledge of rationality implies backward induction. I 
believe that the object lesson is that intuition is inadequate as a source of 
inspiration when rationality axioms are being invented. Where then should 
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we look for inspiration? 
I think that the answer lies in taking the evolutionary approach to game 

theory seriously. It is true that attacking the problem in this way will at 
best lead to the conclusion that some types of bounded rationality are more 
succesful than others. But, as I have argued elsewhere (Binmore [5]), this 
is perhaps the best for which one can reasonably hope. However, if one 
does adopt an evolutionary approach, the outlook for backward induction 
is bleak indeed. 

E v o l u t i o n  and backward  i n d u c t i o n  As Binmore, Gale and Samuelson 
[6] show, one cannot count on evolution taking a population to the subgame- 
perfect equilibrium, even in Selten's one-shot Chain-Store Game--which is 
the standard example employed in textbooks when justifying the concept. 
Instead, the evolutionary dynamics studied often take the system to a Nash 
equilibrium of the game which is not subgame-perfect. At the subgame- 
perfect equilibrium, a potential competitor to an established chain-store 
sets up a rival store because he predicts that the chain-store will not re- 
spond by initiating a mutually damaging price war. At the alternative Nash 
equilibrium sometimes selected by evolution, the potential entrant stays 
out. But if he were to enter, he would find that sometimes the chain-store 
would respond by fighting and sometimes it would acquiesce in splitting 
the market. 

Computer simulations lead us to similar results in the Ultimatum Game. 
In this simple bargaining game, player I and player II have a sum of mnoney 
to divide if they can agree on how it should be split. The rules of the game 
specify that player I makes a take-it-or-leave-it offer to player II who can 
then accept or refuse. If she refuses, both get nothing. Backward induction 
says that  player I should propose a split in which player II gets at most 
one penny, and that she should accept. However, the much replicated ex- 
periment of Gfith, Schmittberger and Schwarze [8] demonstrates that real 
people do not use this subgame-perfect equilibrium. Instead, player I tends 
to offer player II something between ½ and ½ of what is available. If he 
offers less than 1 g, he has a probability of about ½ of being turned down. 
Some authors deduce from this conclusion that game theory is irrelevant 
to bargaining because agents are motivated by fairness norms rather than 
strategic considerations. Orthodox game theorists prefer to argue that the 
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subjects in such experiments have exotic utility functions which incorpo- 
rate factors other than money. However, the evolutionary simulations of 
Binmore, Gale and Samuelson [6] show that, amongst the many Nash equi- 
libria of the game which that are not subgame-perfect, there is a particular 
equilibrium with a huge basin of attraction relative to the dynamics stud- 
ied. At this equilibrium, player I offers player II about ¼ of the money 
available and player II accepts with a probability that is just high enough 
to make the offer worthwhile. 

Space precludes further discussion of such evolutionary results, although 
I hope that the lecture for which this short paper has been written will 
be more forthcoming. The results are mentioned only to make the point 
that backward induction is a very dubious principle for applied purposes-- 
even in the simplest Of games7 On this point, Aumann [2] and I have no 
differences. As he frequently insists, there are few real-world situations 
for which it makes sense to postulate commmon knowledge of rationality. 
However, I do not believe that backward induction is justified even when 
it does make sense to postulate that there is prior common knowledge of 
rationality. 

2 Prior C o m m o n  Knowledge of Rationality 

Aumann's [1] paper has been through several drafts. Binmore and 
Samuelson [7] criticized the original draft, which was presented at the re- 
cent Nobel Symposium in Bjhrkborn, Sweden. Although Aumann's paper 
has now changed, I do not want to bring our critique up to date because I 
have found nobody who thinks it reasonable to follow Aumann in regarding 
it as reasonable to model a player as a collection of independently acting 
agents--one for each node at which the player makes a decision. However, 
later versions of Aumann's paper contain a new argument which does not 
use this hypothesis but still claims that prior common knowledge of ratio- 
nality implies that the opening move in the Centipede Game will necessarily 

be down. 
I agree with Aumann that his argument does indeed demonstrate that 

a 'rational player' will begin the Centipede Game by playing down under 
the conditions he specifies. But I shall then ask whether it is really rational 
to be a 'rational player'. The issues depend to a substantial degree on 
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how the subjunctive conditionals which appear in the arguments should 
be interpreted. Binmore and Samuelson [7] go on at some length on this 
subject, but here space will preclude all but  a bare-bones account. 

It will be taken for granted that  there is always common knowledge 
of the game being played, so that at tent ion can be concentrated on what 
players know or do not know about their opponents. A player's knowledge 
of the characteristics of his opponents (including what what the opponents 
know or do not know about him) is not usually accorded a formal role in 
game-theoretic analyses. Usually, the assumptions being made about what 
players know about each other are implicit in the equilibrium concept that  
an analyst chooses to consider. However, in what follows, I shall assume 
that  part of our enterprise is to label each node x in the Centipede Game 
with a pair (S, T) of sets. The interpretation is that ,  if node x were to be 
reached, then it would be common knowledge that  player I lies in set S 
and player II lies in set T. With such a convention, Aumann 's  assumption 
of common knowledge of rationality can be expressed by labeling the first 
node with a pair (R1,R2), where both R1 and R2 contain only ' rat ional  
players'. 

During the course of a game, the actions that a player takes will enrich 
the information about his characteristics available to his opponent. Suppose 
that  node x is labeled with the pair (S, T). Suppose also that ,  if player I 
were to take action a at node x, then the next node would be y. Finally, 
suppose tha t  there is at least one player in the set S who sometimes would 
play a if node x were reached. Then it will be assumed 2 that  y is labeled 
with the pair (S', T), where S' C S. A similar assumption is made if it is 
player II who moves at node x. The perennial problem of refinement theory 
arises when no player in S would ever take action a if node x were reached. 
How then should node y be labeled? This problem will not go away, but  it 
will be put to one side for the moment. 

If the first node of the n-legged Centipede Game of Figure 1 is labeled 
(S, T), then it will be denoted by G~(S, T). An elaborate definition of a 
'rational player' is not necessary if the aim is only to show that  the ' rat ional '  
opening move is down in G~(R1, R2), where R1 and R2 will always denote 

2The assumption implies that actions taken by one player are not informative about 
the other. I make this assumption only to keep things simple. 
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sets of ' rational players'. A ' rat ional  player' need only be taken to be 
someone who would maximize his payoff when making the first move in all 
games G~(R1, R2), provided that  his knowledge were adequate to determine 
the maximizing action. 

For all R1 and R2, it follows that  down would always be played in 
Gi(R1,R2). As an induction hypothesis, suppose that  the first move of 
G~-i(R1,R2) would be down for all R1 and R2. Now consider the first 
move of G~(R1, R2). If the play of across were a possible opening move 
of G,~(R1, R2), then the second node G,~(R1, R2) would need to be labeled 
(R~,R2), where R~ C R1. But we know that  down would be the open- 
ing move of G,~_I(R~,R2) if this were reached. Moreover, the common 
knowledge assumption implies that  the player making the opening move 
of G,~(R1, R2) knows this also. It follows that  a ' rational player'  in the 
set Rt would be making a suboptimal move by playing across, since his 
payoff from playing down would be greater. From this contradiction, we 
deduce that  no ' rat ional  player' in the set R1 would ever open Gn(R1, R2) 
by playing across. When there is prior common knowledge tha t  everybody 
is a ' rat ional  player', it follows that  the Centipede Game will open with the 
play of "down". 

Is it rat ional  to be  a 'rat ional  player' ? To address this point,  consider 
the labeling of the second node of G3(R1, R2). Since this node cannot be 
reached, we have no rule to assist in its labeling. Nevertheless, to assess 
the rat ionali ty of a ' rat ional  player' who plays down at the opening move, 
we need to ask what payoff he would get if he were to play acro88s. 

I have italicized the subjunctives in the preceding sentence to emphasize 
that  we have a subjunctive conditional to consider. Aumann's  agrees with 
Binmore and Samuelson [7] that  subjunctive conditionals are impor tant  
in his arguments and later versions of his paper emphasize their appear- 
ance in his reasoning. In presenting my version of his argument, I have 
therefore tr ied to be pedantic in my use of the subjunctive mood, even 
though too much use of the subjunctive is oppressive to the modern ear. 
However, the new subjunctive conditional that  we need to consider has a 
different character from those that  appear in Aumann's  argument because 
its interpretat ion requires entering a different possible world from those he 
implicitly considers. 
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S u b j u n c t i v e  cond i t iona l s  A brief aside on the subjunctive conditionals 
will now be offered because there is a great danger of their being confused 
with the material implications that are always adequate when interpreting 
'If P,  then Q' sentences in pure mathematics. However, the following simple 
example may provide some food for thought. Consider the subjunctive 
conditional, "If my dean were a man, my salary would be tripled." If this 
sentence is treated as a material implication, then it is true because my 
dean is actually a woman. But, as used in ordinary conversation, it is 
clearly false. 

Philosophers have written at length on the subject of how subjunctive 
conditionals are to be interpreted (Sandford [12]). But the orthodox view 
seems entirely adequate for the purposes of decision theory. I shall therefore 
follow the usual practice of interpreting a subjunctive conditional using the 
notion of a p o s s i b l e  w o r l d .  

When the antecedent P in the subjunctive conditional "If P were true, 
then Q would be true" is actually false, one looks to the context in which 
the sentence is uttered for relevant possible worlds in which P is true. If Q 
does indeed follow in such possible worlds, then the subjunctive conditional 
is said to be true. For example, since my dean is actually a woman, someone 
interpreting the subjunctive conditional "If my dean were a man, my salary 
would be tripled" needs to consider what possible world I have in mind 
when seeking to make sense of my statement. In these enlightened times, 
the relevant possible world is clear enough. It is created by replacing my 
current female dean by a male dean, leaving everything else the same. 
However, were Isaac Newton to have said "If my dean were a woman, my 
salary would be tripled", we would certainly not have thought it appropriate 
simply to replace his male dean by female dean, leaving everything else the 
same. For a female dean to be possible in the seventeenth century, all sorts 
of other changes in society would need to be postulated. 

Spec i fy ing  the  con tex t  Within what possible world should we interpret 
a subjunctive conditional that begins, "If a 'rational player' were to play 
a c r o s s  . . .  " ?  I n s i d e  Aumann's argument, the relevant possible world is one 
in which the 'rational player' who played a c r o s s  is still regarded as 'rational' 
in spite of his choice of action. Aumann [1] insists on this interpretation, 
and I agree that it is the appropriate interpretation within his argument. 
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But, nothing says that  subjunctive conditionals outs ide  his argument that  
begin, "If a 'rational player' were to play across . . . "  must be interpreted 
in the manner that  is appropriate inside his argument. How a subjunctive 
conditional is interpreted depends on the context in which it ar ises-- just  
as in the example involving my dean. If the context is uncertain, then it 
is the duty of the analyst to clarify the context he has in mind by making 
formal assumptions if necessary. 

One way of specifying a context for our troublesome subjunctive con- 
ditional is to name a label (S, R2) for the second node of G3(R1 ,  R2) .  One 
can, for example, follow Zermelo 3 and insist that  S C R1. If we do insist 
that S C_ R1, then we can justify backward induction. However, the as- 
sumption that  S C R1 seems strange to the layman, who argues that  the 
play of across has refuted the hypothesis tha t  the opening player lies in the 
set R1. This leads him to propose that  S C_ CR1. One possibility for the 
set S is then that  its members would always play across no mat ter  what.  
Backward induction would then fail since player II would play across if 
the second node of G3(R1, R2) were reached, because player II would then 
believe player I would play across if the third node were reached. In this 
situation it would definitely be irrational to be a ' rat ional  player'. 

But nothing compels us to adopt either S C R1 or S C_ CR1 as properties 
of the relevant possible world within which to interpret our troublesome 
counterfactual. 4 If we wish to justify the rationali ty of a 'rational player',  
we therefore need to add something to the assumption of prior common 
knowledge of ' ra t ional i ty ' - -something that  tells us what would  be known if 
a 'rational player' were to play across. As stressed in Binmore [5], it follows 
that  the formal definition of a game is not adequate for a full analysis of the 
game, even if one adds the proviso tha t  there is prior common knowledge 
of rationality. Often this point is made by asserting that  an equilibrium 
concept needs to incorporate a "theory of mistakes". 

3Note that, within Zermelo's proof of the minimax theorem for Chess, this is indeed 
the appropriate interpretation. In computing security levels, Zermelo always needs to 
make whatever hypothesis is least favorable about the future course of play for the player 
currently being considered. 

4The logic of the layman's argument is flawed because anything follows from a con- 
tradiction. But it does not therefore follow that his suggestion that S C CR1 can be 
rejected. 
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The simplest such theory of mistakes is Selten's [14] trembling-hand 
story. This  tells us that  ' irrational play '  by a ' rational player '  is always 
to be a t t r ibuted  to transient random errors. We then have a rationale for 
assuming that  S C R1. But nothing says that  this s tory  is the only story 
tha t  can be told. Indeed, adopting such a story would seem to close the 
door on any hopes tha t  game-theoretic results might be relevant to the play 
of real people. We all know that  bad play by actual people is usually the 
result of a failure to think things through proper ly- -and  people who have 
reasoned badly in the past are likely to reason badly in the future. 

Kreps, Milgrom, Roberts and Wilson's [10] "gang of four" paper tells 
a different story in which there are ' irrational '  types as well as ' rational '  
types of player. Wi th in  such a story, the observation of an action that  
would be a mistake for a ' rat ional '  player is explained by a t t r ibut ing it to an 
' i r rat ional '  p layer-- jus t  as our layman would wish. In Selten's terminology, 
trembles are then correlated and so backward induction cannot be justified. 
Of course, the analysis of a game with such a theory of mistakes is much 
harder  than  with Selten's t rembling-hand story. But if we want a theory 
tha t  is at all relevant to what  real people do when they play games, it seems 
to me tha t  this is the route we must follow. 

R a t i o n a l i t y  as a p r o p e r t y  o f  p l a y e r s  Sometimes a crude form of error 
is made when variants of the fallacy of the twins are used in an a t tempt  
to prove that  cooperation in the one-shot Prisoners'  Dilemma is rational. 
Player I supposedly reasons as follows: 

I am rational. So anything I decide to do will necessarily be rational. 
Player II is also rational and hence will aways make the same decision 
as I make when placed in identical circumstances. Therefore, he will 
do whatever I do in the Prisoners' Dilemma. Hence I should cooperate. 

The mistake is to argue tha t  a choice is rational because it is made by a 
ra t ional  person. But  this is to put  the cart before the horse. We do not say 
tha t  a choice is rat ional  because it has been chosen by a rat ional  person. 
We say that  a person is rat ional  because he chooses rationally. 

I offer this fallacy as a warning before considering a possible objection 
to my claim that  it is not necessarily rational to be a ' rat ional player'. One 
can argue tha t  my definition of a 'rational player' is unduly  nar row--and  
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it is certainly true that  there is more to rationali ty than my definition of 
a 'rational player' allows. However, there is a danger to be avoided if the 
definition is extended. We must not argue that,  if the opening player in 
G3(R1, R~) plays down, then this action is necessarily optimal because he is 
known to be rational. This would force us to conclude that  being rat ional  
implies knowing that, if across were to be played, then player II would 
necessarily not deduce that  player I is someone who always plays across. 
But what would be the source of such knowledge? It seems to me that  the 
causal chain should always flow from knowledge to action rather than  the 

reverse. 

3 C o n c l u s i o n  

In brief, I believe that  the rationality of a ' rational player' must nec- 
essarily remain open as long as we have no idea what would be believed 
about him if he were to make an ' irrational '  move. In consequence, we 
have no grounds for claiming that  we know the 'solution' to games like 
the Centipede or the finitely repeated Prisoners' Dilemma. For myself, the 
realisation that one could be a game theorist without having to argue for 
systematic defection in the finitely repeated Prisoners' Dilemma came as a 
great relief. 
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