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What man is so mad as wil say the swan is black: or that the raven is in couloure white, when 
the matter is otherwise to be judged by commonsense? 

-Cardanus ca. 1576 

A b s t r a c t .  What  sorts of observations could confirm the universal hypothesis that  all ravens are 
black? Carl Hempel proposed a number of simple and plausible principles which had the odd 
("paradoxical") result that  not only do observations of black ravens confirm that  hypothesis, but 
so too do observations of yellow suns, green seas and white shoes. Hempel's response to his own 
paradox was to call it a psychological illusion--i.e., white shoes do indeed confirm that  all ravens 
are black. Karl Popper on the other hand needed no response: he claimed that  no observation can 
confirm any general s ta tement-- there is no such thing as confirmation theory. Instead, we should 
be looking for severe tests of our theories, strong attempts to falsify them. Bayesian philosophers 
have (in a loose sense) followed the Popperian analysis of Hempel's paradox (while retaining 
confirmation theory): they have usually judged that observing a white shoe in a shoe store does 
not qualify as a severe test of the hypothesis and so, while providing Bayesian confirmation, does 
so to only a minute degree. This rationalizes our common intuition of non-confirmation. 

All of these responses to the paradox are demonstrably wrong--granting an ordinary Bayesian 
measure of confirmation. A proper Bayesian analysis reveals that observations of white shoes may 
provide the raven hypothesis any degree of confirmation whatsoever. 

Keywords .  Confirmation, confirmation paradoxes, Bayesian reasoning, induction, inductive 
inference, protocol. 

*I wish to acknowledge the helpful comments of David Dowe, Brian Ellis, Chris Wallace, John Bigelow, Neil 
Thomason, Noretta Koertge and participants of the 1993 Australian Association for the History, Philosophy and 
Social Studies of Science Conference at LaTrobe University. 
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1 I n t r o d u c t i o n  

There has been a great deal of recent interest in, and controversy about, Bayesian approaches 
to understanding confirmation and statistical inference. What distinguishes Bayesian from other 
views is that it takes Thomas Bayes' theorem (explained below) for calculating conditional prob- 
abilities as a rule for conditioning the probability of hypotheses upon new evidence, and regards 
this as a key to any normative account of hypothesis evMuation. Bayesian thought has made 
substantial progress within the philosophy of science (cf. Howson and Urbach 1989 for an account 
of much of that) and within artificial intelligence as a method for reasoning under uncertainty 
(cf. Neapolitan 1990 and Pearl 1988). 

Nevertheless, there remain puzzles and anomalies aplenty to occupy Bayesian theorists. One 
such puzzle is variously known as Hempel's paradox, the raven paradox, and "the" paradox of 
confirmation. Most Bayesians (including me, below) will claim that the paradox is resolved-- 
easily---using Bayesian principles. The remaining difficulty is that these resolutions are non- 
identical. I intend to finally eliminate disagreement by embracing all possible resolutions of the 
paradox. 

My strategy here is to assume that some variety of Bayesianism is correct (I ana, after all, 
some variety of Bayesian!). This is not question-begging, for it is important for advocates and 
opponents alike to find out just what Bayesian principles commit one to regarding confirmation 
theory. In accord with this strategy I will blithely assume, for example, that the prior probabilities 
of hypotheses, needed to operate Bayes' theorem, are available. 

2 B a y e s i a n  P r e l i m i n a r i e s  

Bayes' theorem is a non-controversial theorem of the probability calculus: 

P(hle) = P(elh) × P(h) 
P(e) 

This asserts that the probability of hypothesis h conditional upon the evidence e is equal to the 
likelihood (P(e]h)) times the prior probability of h divided by the probability of the evidence. 
What is controversial is the further equation of this quantity with the posterior probability of 
h--asserting that the proper probability to adopt is just the prior conditional probability, on 
the assumption that it is conditioned upon just the evidence we have received. This latter 
equation is known as the Bayesian rule of conditionalization. Again, I shall not be defending 
conditionalization here, but assuming it. Following such an assumption we immediately find a 
proper means of measuring the degree to which some evidence e supports (or disconfirms) the 
hypothesis h, namely the extent to which the posterior probability of h on e exceeds (or falls 
short of) its prior probability: 

S(hle) =e¢ P(hle) - P(h). 

This measure of support is the ordinary one in Bayesian literature. A second measure of 
support, the ratio of likelihoods e given h over e given not-h, is equally defensible: 

P(elh) 
 (elh) =,s 
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It is a simple theorem that the likelihood ratio is greater than one if and only if S(hle ) is greater 
than zero..X(elh ) can be understood as a degree of support most directly by observing its role in 
the odds-likelihood version of Bayes' theorem: 

O ( h l e )  = ,XO(h). 

This simply asserts that the conditional odds on h given e should equal the prior odds adjusted 
by the likelihood ratio. Since odds and probabilities are interconvertible (O(h) =d/ P(h)/P(~h)) ,  
support defined in terms of changes in normative odds measures changes in normative probabilities 
quite as well as S(hle). A does have one significant advantage over S(hle ) however: it is simpler 
to calculate. Indeed, since a likelihood is just the probability of evidence given a hypothesis, 
and since hypotheses often describe how a causal system functions given some initial condition, 
finding the probability of the evidence assuming h is often a straightforward computation. 1 What 
a likelihood ratio reports is the normative impact on the posterior probability of the evidence, 
rather than the posterior probability itself (i.e., the other necessary ingredient for finding the 
posterior is the prior probability of h). However, confirmation theory is primarily concerned with 
accounting just for rational changes of belief, and so .X is an appropriate measure for dealing with 
many of its concerns. 2 

3 Hempel's Paradox 

To motivate Hempel's paradox historically we need to take a quick look at early logical posi- 
tivist views on confirmation. The positivists in the early century were deeply impressed by the 
turn of the century revolutionary developments in the sciences, especially relativity theory (el. 
Coffa, 1991). They wanted to account for what was good in science, initially demarcating sense 
from nonsense (i.e., science from non-science) by insisting that all meaningful sentences be ver- 
ifiable through direct sensory experience (cf. Hempel, 1965). A little reflection produced the 
embarrassment that the general hypotheses of the sciences that positivists admired would not 
be accommodated by this definition. Jean Nicod (1923) proposed therefore a qualitative positive 
instance criterion of confirmation to replace verification: 

e confirms a general hypothesis h just in case e is a positive instance of h. 

If h is Vx(Rx D Bx) (or more simply, R ~ B), e is a positive instance of h iff for 
some object a, ~- e ~ Ra A Ba. ~ 

It is surely plausible that positive instances confirm general hypotheses, for this seems to be 
necessary if anything is to confirm general hypotheses. 

Carl Hempel (1945) took up Nicod's criterion, with various refinements, and it has remained 
popular within the philosophy of science ever since (cf. Glymour's bootstrapping criterion of 
confirmation, t980). For our purposes, the most important refinement was Hempel 's addition of 
the equivalence condition: 

If e confirms h and if h and h' are logically equivalent, then e confirms h'. 
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This too is a plausible principle: since logically equivalent hypotheses are interchangeable in 
all but opaque contexts (e.g., I might believe h but not h' because I fail to realize that they 
are logically equivalent), it seems imperative that any evidence support them equally. Hempel's 
paradox is now immediate. Consider the raven hypothesis: that all ravens are black, or R --~ B. 
This is logically equivalent to its contrapostive ~B ~ ~R. By Nicod's criterion, any positive 
instance of ~B  ~ ~R, say white shoes, confirms it. By equivalence, white shoes also confirm 
that ravens are black! 

3.1 Hempel ' s  Answer 

Hempel, having found the paradox, thought he also had found the answer: namely, that the 
feeling of paradox is illusory. By his lights it is perfectly OK to confirm the raven hypothesis with 
white shoes or anything else that conforms to the hypothesis. The contrary feeling arises from 
the notion that  the raven hypothesis is about ravens--but that is a wrong notion. The hypothesis 
Vx(Rx D Bx) is logically equivalent to Vx(~Rx A Bx); thus, the raven hypothesis asserts of every 
thing that  it is either not a raven or is black. A white shoe observation therefore exhausts some 
of the content of h. Hempel wrote (1945, p. 18), "The impression of a paradoxical situation is 
not objectively founded; it is a psychological illusion." 

Not very many philosophers of any stripe have followed Hempel on this point (even Glymour 
defects, opting for an ad hoc rule to exclude white shoes; cf. 1980, pp. 157ff). At least one good 
reason to differ is that  Hempel's analysis fails to explain why naturalists don't conduct their 
observations at the shopping mall. 

4 Bayesian Analyses of the Paradox 

A Bayesian response that is less than universal, but still common, may be arrived at via the 
following line of thought. Bayesians are obliged to assert that Karl Popper was wrong about 
most things methodological, including of course his denial of the possibility of confirmation and 
the flip side thereof, an overemphasis on falsification (Popper, 1959). But Popper was right about 
this: severe tests are preferable to bland, common-place predictions. 4 Most hypotheses predict 
the ordinary, so ordinary predictions can hardly help us distinguish between fruitful and fruitless 
hypotheses. What  we want are predictions that are a priori surprising--such as that light 'bends' 
or that some diseases are inheritable. A severe test then is one in which the outcome e predicted 
by h would be a surprise were h false. Bayesianism supplies a very natural interpretation of 
severity. 

A test of h with outcome space {e,-~e} is severe just in case: 

i) e is predicted by h: P(elh) = high 

ii) e would otherwise be surprising: P(el-~h) = low 

Jointly, these two conditions imply that 

P(,Ih) 
P(el~h) 

- very high. 
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Severe tests therefore set the stage for outcomes that are highly confirmatory. 
What is wrong with shopping mall excursions is just that hunting for, and finding, white shoes 

does not constitute a severe test for the raven hypothesis. In short: white shoe observations may 
confirm the raven hypothesis, but only to an insignificant degree. This claim saves our intuition 
that  the degree of confirmation is effectively nil and so saves our methodological avoidance of 
shopping malls. Note too that  this response is unavailable to Hempel (and Glymour): Hempel's 
program was to provide a qualitative account of confirmation, and so reference to insignificant 
degrees  of confirmation is unsupportable. 

So far so good. But why are white shoe observations of low confirmatory power? Asserting this 
is one thing, justifying it another. The 'standard' Bayesian justification is succinctly expressed by 
Howson and Urbach (1989). They claim that if we assume a discipline of random (and uniform) 
selection from among all objects in the universe (we shall have to also assume the universe is 
finite then), we can ascribe the varying degrees of confirmation afforded by different observations 
entirely to the varying class sizes of the different relevant types of objects (p. 90): 

. . .  since non-black, non-ravens form such a numerous class compared with black 
ravens, it is almost (but not absolutely) certain that a random object about which 
we know nothing will turn out to be neither black nor a raven, but relatively unlikely 
that it will be a black raven. Hence, for a Bayesian, both kinds of object confirm 'All 
ravens are black', but non-black, non-ravens do so only minutely. 

This is dead wrong. It is a misapplication of the Bayesian analysis of severity. Even supposing 
we can employ a discipline of universal random selection, )~ is not a function only of the relative 
proportions of class sizes relevant to h - -  )~ is also dependent upon the hypothesis space and the 
experimental protocol used to test h. 

4.1 The Correct Bayesian Analysis 

The correct Bayesian analysis, whatever it may be, must conform to the verdict provided by .~ 
(equivalently, S(hle)). So far, we have not been given enough information in the raven story 
to calculate any likelihood; so in some sense the correct analysis must be to announce that  we 
have no idea what the confirmatory impact of white shoe observations might be. However, let 
us consider what the story lacks for the calculation of P(elh ) and P(el~h ). We've already been 
given a protocol for conducting the observation: uniform random selection among all objects. 
Taldng e to mean that  a white shoe is observed, we need also to know then what proportion of 
all objects are white shoes on the assumption that ravens are black. 5 To make things definite, let 
us assume (for the moment) that the raven hypothesis has no effect on the supposed number of 
ravens and also on the supposed number of total objects; indeed, let us assume that  the space of 
possible hypotheses is exactly as given in Figure 1. 

In this case, we do have enough information to calculate the relevant likelihoods (where IUI 
is the number of objects in the universe): 

P(elh) = lOg/IuI 

P(el- h) = 109/IUI 
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~0 ° S B 10 6 

W 10 9 

h : R ~ B  

R 5 S 
B 10 6 
W 5 109 

-~h : -~[R ~ B] 

Figure 1 

So, ,k = 1. White shoe observations do not have a minute impact on the raven hypothesis; they 
have no impact whatsoever. 

4.2 A n o t h e r  B ayes i an  Analys i s  

Paul Horwich (1982) has provided yet another Bayesian analysis of the raven hypothesis--one 
that again accounts for the observational protocol. Rather than assume that we randomly select 
from among all objects, Horwich asks what happens when we randomly select from one or another 
relevant subset of objects. In particular, he asks whether the observation of a black raven might 
lead to a different evaluative outcome depending upon whether we are selecting (randomly) from 
among all ravens or fl'om among all black things. He answers, yes! Why? Because R*B subjects 
h to the risk of falsification, 6 whereas RB* does n o t /  

Howson and Urbach pronounce the argument 'specious' (1989, p. 91): "The only difference 
between R*B and RB* is in the point at which one learns that  the hypothesis has not been 
refuted." 

Howson and Urbach are wrong; Horwich is right for the wrong reason. Howson  and Urbach 
are being mesmerized by the propositional content of the observation report: it is the same in 
both cases, therefore presumably its impact on the hypothesis must be the same in both cases. 
This presumption is in error because what is important for confirmation--viz, the likelihoods--is 
not fully determined by the propositional content of e and h. R*B and RB* select the same 
observational statement e, but generate different likelihood ratios. Taking as our example Figure 
1 again we find: 

P(R*BIh) 1 = 2  
A(R*BIh) = p (R .B j~h  ) = .-~ 

Whereas, 

P(RB*Ih) 
A(RB*Ih) = P(RB*I-~h) 
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10/(10 + 106) 
5/(5 + lO6) 

106 + 5  
= 2 x  

106 + 10 

= 2 - e  

Clearly, ),(R*B[h) > ~(RB*Ih ). But, contra Horwich, this is not due to superior 'falsifiability'. 
In fact, the B* observations can end up refuting h: consider what would happen if we exhausted 
B* without finding a raven (when we know a priori that  there are ravens in the world), s 

4.3 Rationalizing the Standard Bayesian Response 

None of the above removes the intuition that there is surely something right about the original 
Bayesian pointmthat  white shoe observations speak to the raven hypothesis, but in a vanishingly 
small voice. It is proper to ask of any candidate confirmation theory whether it can explain--or 
explain away--our intuitions on such matters. Can Bayesian confirmation theory actually account 
for this intuition? Yes. All we need is to substitute a new protocol to rationalize this idea: 

A(W'SIh)= P(W*SIh) 
P(W*SI-,h) 

109/109 
109/(109 + 5) 

109 + 5 

10 9 

= l + e  

It is not Howson and Urbach's intuitions that are at issue here, rather it is their explanation of 
those intuitions--which ignores protocol--that is objectionable. 9 

5 R e m a r k s  

We have seen that the observational or experimental protocols whereby we conduct our tests 
are crucial to understanding the normative impact of evidence on our assessment of hypotheses. 
This is really little more than common sense. Commonsensically, for example, we would hardly 
take a known prankster's production of a counterfeit bill as seriously as a randomly discovered 
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counterfeit bill in support of the hypothesis that  the number of counterfeits in general circulation 
is large. Yet both observations may well be reported using the same language. Refusing to 
acknowledge the varying evidential impact here is indeed "propositional mesmerization." 

Now many Bayesians will respond by pointing out that when we observe the prankster produce 
the bill we are observing much more than the bill alone, and that this information is properly 
recorded in the statement of the evidence. This may be so. In that  case we will obtain a much 
richer and more complex outcome space, one that records what ordinarily would be thought of as 
features of experimental procedure rather than outcomes. It makes no difference to .k how those 
features are taken into account, and so it makes no difference to Bayesian confirmation theory. 
If others can make explicit in the observation language all that is needed to calculate likelihoods 
(beyond the hypotheses), then good for them. 

What this response should not be allowed to do, however, is provide an excuse for pretending 
there is no difficulty here to think about. The need for the explicit consideration of protocol has 
not been noticed only recently; for example, Jerzy Neyman (1950) discusses it in the context 
of selecting a proper reference class. And recent interest in the subject has been stimulated by 
Sharer (1985). Nevertheless, Bayesianism has an odd history of simply ignoring protocol or of 
discounting its impact on confirmation. Witness the mishandling of Hempel's paradox. 

Another clear case is Bayesian confusion about 'stopping rules': it is standard Bayesian dogma 
that the rule used to stop the gathering of a sample is irrelevant to statistical inference; all that 
counts is the sample actually gathered (cf. Howson and Urbach, 1989; pp. 169-171). This is just 
a special case of the sweeping denial that  protocol is relevant. This denial does not cohere with 
the acceptance of the likelihood ratio as a measure of degree of confirmation. I° 

Another point that  needs emphasis, and is often overlooked by Bayesians, is that  the hypothesis 
space is crucial. Without hypotheses alternative to the one under test it is obvious that we will 
have no likelihood ratio, for we will have no likelihood P(el~h). Therefore, some specific space of 
hypotheses must be assumed. My own example hypothesis space for the raven hypothesis is very 
specific indeed: not only do I assume in case h is false that  there are non-black ravens, I assume 
that there are exactly 5 of them! Indeed, it would not be unreasonable to claim that I've simply 
rigged my results in my choice of hypothesis space, n 

My point is: not only have I done this, but I can do this. That  is, likelihood ratios are indeed 
a partial function of the hypothesis space, and therefore sweeping claims about the degree of 
support that  the raven hypothesis properly receives from white shoe observations--independent 
of any consideration of protocol and hypothesis space--are foolishness. Bayesians, when discussing 
Hempel's paradox, have done so under the guise of presenting a general theory of confirmation; 
if so, such theories must apply to any hypothesis space. 12 

6 What Went Wrong with Hempel? 

A remaining bit to be tidied up requires a Bayesian analysis of what is wrong with Hempel's un- 
derstanding of the paradox. Bayesians are obligated not to complain about Hempel's equivalence 
condition; for if two hypotheses are logically equivalent, then probabilistic consistency requires 
that they be assigned identical probabilities, etc. What  is wrong is the idea that positive instances 
necessarily are confirming instances. There's no denying that they commonly are confirming in- 
stances (if positive instances seldom confirmed, then what would?); but it is a long way fl'om 
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R 1 S 
B 1 
W 0 2 

h : R ~ B  

R 1 S , 
B 1 
W 1 1 

B] 

Figure 2 

commonality to universality. 

6 . 1  C o u n t e r e x a m p l e  1: H e x e d  S a l t  ( S a l m o n ,  1 9 7 1 )  

It is typical that  the probability functions we are concerned with already embed (via conditional- 
ization, for example) a good deal of background knowledge. Here I shall represent the background 
knowledge K explicitly as a subscript. Suppose that in our background knowledge we are aware 
that all salt dissolves. Then we shall hardly expect hexed salt to do otherwise, and we will not 
take a positive instance of hexed salt dissolving as confirmatory for the hypothesis that  hexed 
salt dissolves. Bayesianism trivially accommodates this point: since PK (e) = 1, )~K (elh) = 1; i.e., 
e is non-confirmatory because, although PK(elh ) = 1, PK(el~h ) = 1 also. 

6.2 Counterexample 2: Killer Bees (Swineburne,  1 9 7 1 )  

Let h assert that killer bees cannot live north of the 38th parallel north. Let e assert that  killer 
bees have been observed at 37.99°N. This is a positive instance of the hypothesis that  disconfirms 
h. (Cf. also Good, 1967.) 

6 . 3  C o u n t e r e x a m p l e  3:  B l a c k  R a v e n s  A r e  W h i t e  S h o e s  

A black raven observation may fail to confirm R ~ B! This must be, on my analysis, since such 
observations after all stand to -~B ~ ~R in just the same relationship as does the white shoe 
observation to the raven hypothesis. 

Consider then random selection from U and Figure 2. In this hypothesis space, observing a 
randomly selected black raven fails to support the raven hypothesis. If this seems counterintuitive, 
think of h and ~h as two urns with white and black balls. Retrieving a black ball marked R fails 
to help us in deciding whether the sample has come from the urn h or the urn -~h. If your 
incredulity applies to the idea of extending this point to hypotheses about ravens, then I think 
you must be right: this kind of hypothesis space wouldn't seem to fit our world very well; in any 
case, random selection from the universe is not a possible protocol to implement. 
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7 C o n c l u s i o n  

We should well and truly forget about positive instance confirmation: it is an epiphenomenon 
of Bayesian confirmation. There is no qualitative theory of confirmation that can adequately 
approximate what likelihood ratios tell us about confirmation; nor can any qualitative theory lay 
claim to the success (real, if limited) of Bayesian confirmation theory in accounting for scientific 
methodology. 

Bayesian confirmation theory, on the other hand, cannot even begin without an explicit 
consideration of observational or experimental protocol and hypothesis space. Propositional 
mesmerization--an overconcern with how experimental outcomes are recorded, rather than with 
what they imply within their experimental and hypothetical context--has led to confused claims 
about scientific methodology. Whereas such confusions pose little threat to scientific practice, 
since practitioners will for the most part ignore philosophers of science, there is need for greater 
clarity when it comes to developing computational models of Bayesian reasoning, whether the 
models be intended descriptively or normatively. It is a virtue of such modeling that it requires 
complete explicitness, thereby providing a difficult test of the clarity and coherence of the philo- 
sophical basis for one's model of inference. I believe I have shown that a Bayesian model that 
simply ignores protocol will fail that  test. 

N o t e s  

1. I must confess straightaway that finding the other likelihood P(e]-~h) is often much more 
problematic, since ~h is likely to be much more complicated than a single alternative causal 
hypothesis. But pursuing this important issue would yield a completely different, if related, 
paper; so I shall continue to rely upon nonchalance here. 

2. Nor am I the first Bayesian to focus on ~ rather than S(h[e): I.J. Good has primarily 
concerned himself with likelihood ratios (in log form; Good, 1950). 

3. Nicod also considered any instance a such that -~Ra to be evidentially irrelevant to h; but 
I ignore this since Hempel and others abandoned that aspect of Nicod's criterion. 

4. A great many philosophical Bayesians are immigrants from Popperian territory (including 

me). 
5. What  is protocol? Sharer (1985, p. 261) defines it as the "set of rules that tell, at each step [of 

the experiment], what can happen next." Perhaps more vaguely, I will take as protocol whatever 
needs to be known, in addition to the hypothesis space, in order to calculate the likelihood ratios 

relevant for some test. 
6. To simplify expression, we can let the two distinct ways of arriving at the same observation 

statement be recorded thus: 'R*B' shall mean that a black raven has been observed when selecting 
among ravens, while 'RB*' shall mean we have the same observation when selecting from among 

all black objects. 
7. Horwich is clearly another Popperian turned Bayesian. 
8. Some have wondered whether I am being quite fair to Horwich here. My assumptions here 

are at least not obviously unfair. It is Horwich's assumption that B be exhaustible, since otherwise 
the protocol of random, uniform selection therefrom is impossible. And no participant in these 
discussions has yet volunteered to doubt that there are indeed ravens. If it requires only the 
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drawing upon such an evident fact to find fault with Horwich's methodological pronouncements, 
then surely something is wrong with those pronouncements. 

9. Although the numbers of Figure 1, which my rationalization here depends upon, do not 
make sense interpreted literally, the acceptability of my explanation depends only upon the pro- 
portions being more or less sensible. 

10. In support of my assertion, consider this example. We are interested in testing the 
hypothesis h, that a certain coin is biased s.t. the probability of heads is 2/3, against h', that the 
coin is fair. Let the evidence that is reported be e: that in the sample of flips obtained the number 
of heads is equal to the number of tails. Is protocol, in the form of a stopping rule, irrelevant to 
how this evidence should be assimilated? Hardly. 
Protocol A. Flip the coin twice. In this case, 

P(elh) 
A( lh)- P(el- h) 

2!(2/3)(1/3) 8 
2!(1/2): 9 

Protocol B. Flip the coin until the sample has equal numbers of heads and tails. Random walk 
theory tells us that P(elh') = 1. Random walk theory further tells us that the probability of 
walking away from an absorbing (stopping) state is zero if the bias away from that state is zero 
or negative; otherwise, if the bias is positive and represented by ~ > 1, then the probability of 

q a 

absorption is (p) , where a is the number of steps (with q probability) away fi'om the stopping 
state (el. Cox and Miller, 1965; §2.2). Assuming h, after one flip we shall be in state - 1  with 
probability (1/3) or in state +1 with probability (2/3). The probability of absorption is one in 

. ~1  2 1 2 8 the first case and (1/2) in the second; therefore, .X(e[h) = P(elh ) 5 + 5 x ~ - 5 ¢ ~" 
Although I like protocol B, if anyone is disconcerted by protocols that may never complete, 

we get a similar result with: 
Protocol C. Flip the coin four times. We have, 

4 
~(eih) = P(elh) ( 2 )  (2/3)~(1/3)2 

11. See Earman (1992) for an interesting, if inconclusive, discussion of the Bayesian practice 
of ignoring the hypothesis space. 

12. And here is where the proof of my title would come in. I leave this as an exercise for 
the reader, with the obvious hint that to obtain arbitrary likelihood ratios for white shoes be 
prepared to apply further contortions to hypothesis and protocol spaces. 
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