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Abstract

Multiple election paradoxes arise when voting
separately on each issue from a set of related is-
sues results in an obviously undesirable outcome.
Several authors have argued that a sufficient con-
dition for avoiding multiple election paradoxes is
the assumption that voters have separable pref-
erences. We show that this extremely demand-
ing restriction can be relaxed into the much more
reasonable one: there exists a linear orderx1 >
.. . > xp on the set of issues such that for each
voter, every issuexi is preferentially independent
of xi+1, . . . ,xp given x1, . . . ,xi−1. This leads us
to define a family of sequential voting rules, de-
fined as the sequential composition of local vot-
ing rules. These rules relate to the setting of con-
ditional preference networks (CP-nets) recently
developed in the Artificial Intelligence literature.
We study in detail how these sequential rules in-
herit, or do not inherit, the properties of their lo-
cal components. We focus on the case of mul-
tiple referenda, corresponding to multiple elec-
tions with binary issues.

1 Introduction

In many contexts, a group of voters has to make a common
decision on several possibly related issues, such as in mul-
tiple referenda, or voting for committees (the issues then
are the positions to be filled – see [1]). As soon as voters
have preferential dependencies between issues, it is gener-
ally a bad idea to decompose a vote problem onp issues
into a set ofp smaller problems, each one bearing on a sin-
gle issue: “multiple election paradoxes” (or “paradoxes of
multiple referenda”) then arise.

Such paradoxes have been studied in several papers, with
two slightly different views. In [6, 15], voters can vote only
Y or N on each issue; the paradox occurs when the set of

propositions that win, when votes are aggregated separately
for each proposition received the fewest votes when votes
are aggregated by combination: for instance, suppose there
are 3 propositionsA, B, C and three voters voting respec-
tively for ABC̄, AB̄C and ĀBC. Propositionwise aggrega-
tion leads toABC, which ABC receives support for not a
single voter. The paradox studied in [10] is a little bit dif-
ferent. They show that voting issue by issue is feasible (to
some extent) when preferences are separable, and that it
generally fails when they are not (a voter’s preferences are
separable if her preferences on an issue does not depend on
the choice to be made for other issues). However, separa-
bility is an extremely strong assumption that is unlikely to
be met in practice. Furthermore, even when preferences are
separable, some paradoxes still arise, such as the choice of
a Pareto-dominated outcome [13, 2].

Example 1 A common decision has to be made about
whether or not to build a new swimming pool (S orS̄) and
a new tennis court (T or̄T ). Assume that the preferences
of voters 1 and 2 are S̄T ≻ S̄T≻ S̄T̄ ≻ ST, those of voters
3 and 4 areS̄T≻ ST̄ ≻ S̄T̄ ≻ ST and those of voter 5 are
ST≻ ST̄ ≻ S̄T≻ S̄T̄ .

The first problem with Example 1 is that voters 1 to 4 feel ill
at ease when asked to report their projected preference on
{S, S̄} and{T, T̄}. Only voter 5 knows that whatever the
other voters’ preferences about{S, S̄} (resp. {T, T̄}), she
can vote fotT (resp. S) without any risk of experiencing
regret (this is calledsimple votingin [1]). The analysis of
the paradox in [10] considers that voters report their pref-
erences optimistically (thus voters 1-2 report a preference
for S over S̄), but this assumption, even if it has been jus-
tified by experimental studies (see [14]), remains arbitrary,
and would not necessarily carry on to more complex situa-
tions such as a voter with the following preference relation:
ABC≻ ĀB̄C̄≻ ĀB̄C≻ ĀBC̄≻ ĀBC≻ AB̄C̄≻AB̄C≻ABC̄:
only a very optimistic voter would report a preference for
A (except, of course, if some prior beliefs about the others’
preferences make him believe that the common decision
aboutB andC will be BC.)

The second problem (the paradox itself) is that under this
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assumption that voters report optimistic preferences, the
outcome in Example 1 will beST, which is the worst out-
come for all but one voter, and a fortiori, is a Condorcet
loser. Lacy and Niou [10] and Benoit and Kornhauser [2]
give other examples, with three issues, leading to an even
worse paradox where the outcome is ranked last by every-
one.

The main question is now, how can these paradoxes be
avoided? Reformulating the question in a more construc-
tive way, how should a vote on related issues be conducted?
We argue that we have to choose one of the following two
ways, each of which has some specific pitfalls: either work
at the global level and vote for combinations of values, or
work at the local level and vote separately on each issue,
sequentially or simultaneously1.

The “global way” consists in giving up decomposing the
global vote into local votes andvoting for combinations
of values. This solution is supported by Brams et al. [5,
6]. There is some ambiguity on how the process should be
conducted, thus leading to three possible methods:

1. ask voters to report their entire preference relation on
the set of alternatives, and then apply an usual voting
rule such as Borda.

2. ask voters to report only a small part of their prefer-
ence relation and apply a voting rule that needs this
information only, such as plurality;

3. limit the number of possible combinations that voters
may vote for.

From a theoretical point of view, Solution 1 works: each
agent specifies his preference relationin extensoand then
any fixed voting rule is applied to the obtained profile, with
no risk of a paradoxical outcome. However, as noticed in
[5], this solution is practically unfeasible if the number of
issues is more than a small number (say, 3): the exponential
number of alternatives makes it unreasonable to ask voters
to rank all alternatives explicitly. In other words, imple-
menting such a voting rule on a multi-issue domain needs
anexponential protocol. Clearly, exponentially long proto-
cols are not acceptable. Therefore, as soon as the number
of issues is not very small, this solution is ruled out bycom-
munication complexityconsiderations.

Solution 2 requires little communication, but it is its only
merit. Voting rules that are implementable by a cheap pro-
tocol make use of a very small part of the voters’ prefer-
ences: if the protocol is required to have a polynomial com-
munication complexity, then the voting rule it implements
use at most a logarithmic part of the profile. Such rules
do exist: not only plurality and veto, but more generally all

1In the context of assembly elections, these two families of
voting rules are called assembly-based and seat-based, respec-
tively [1, 2].

rules that require, for instance, theK top candidates of each
voter, whereK is a fixed integer. However, when the num-
ber of issues grows, these rules could give extremely bad
results. For instance, using plurality when the number of
issues is significant and the number of voters small could
well result in a situation where no outcome gets more than
one vote, in which case plurality would give an extremely
poor result.

Solution 3, sketched in [5], presents the chairperson with a
very problematic choice. This may be feasible when issues
can clearly be packaged into groups of issues such that two
groups are clearly independent, but this favorable situation
is far from being a general rule.

The “local” way, supported by Lacy and Niou [10] for mul-
tiple referenda, consists in sticking to a vote issue by issue,
the outcome of the vote on one issue being revealed before
the vote on other issues. They show that sequential voting
(with whichever agenda) allows for escaping the worst ver-
sions of the multiple election paradoxes, namely, it avoids
a Condorcet loser to be elected. However, this method still
has three major drawbacks. First, the voters may still feel
ill at ease when reporting their preference on an issue, when
this preference depends on the value of issues not decided
yet. Second, the study is based on the assumption that vot-
ers will behave optimistically, by reporting the projection
of their preferred outcome, which is debatable except in
some specific cases. Third, even if a sequential vote avoids
the final outcome to be a Condorcet loser, the paradox re-
mains to a large extent, as can be seen on the following
example:

Example 2 We have three issues A, B, C and2M + 1
voters.

M voters: ABC̄≻ ĀB̄C̄≻ . . .≻ AB̄C≻ ABC
M voters: AB̄C≻ ĀB̄C̄≻ . . .≻ ABC≻ ABC̄
1 voter: ĀBC≻ ĀB̄C̄≻ ĀBC̄≻ ĀB̄C≻ ABC

≻ ABC̄≻ AB̄C̄≻ AB̄C

In Example 2, having voters decide first onA, then toB and
then toC, and assuming they behave optimistically, will
lead toABC, which is (a) a “nearly-Condorcet loser” (it
is Condorcet-dominated by all candidates except one) and
(b) Pareto-dominated by half of the outcomes. (More acute
paradoxes can be found, but they need more issues and thus
more space.) Actually, the reason why the sequential pro-
cess avoids a Condorcet loser to be elected is only because
thelastvote is made with a full knowledge of the values of
other issues, thus this result loses his significance when the
number of issues becomes bigger.

There is a well-known restriction on voter preferences that
allows for such paradoxes to be avoided, that is, when all
voters haveseparablepreferences across the outcomes of
the issues. Then, a voter’s preferences on the values of an
issue is independent from the values of other issues, and the
elicitation process can be performed safely issue by issue
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(and even without needing to resort to sequentiality). Un-
der the separability assumption, voting separately on each
issue (either sequentially or simultaneously) enjoys good
properties, including the election of a Condorcet winners
when there is one. However, the separability restriction is
very demanding, and unlikely to be met in practice, espe-
cially because separable preferences constitute a very tiny
proportion of possible preferences on multiple issues (see
[8]).

The question is now, can this extreme separability assump-
tion be relaxed without hampering the nice properties of
sequential voting? As it stands, the answer is positive, as
the method can be safely applied to far many profiles than
separable profiles. Unformally, the condition should be that
each time a voter is asked to report his preferences on a sin-
gle issues or a small set of isssues, these preferences do not
depend on the values of the issuesthat have not been de-
cided yet.

Formally, this can be expressed as the following condition:
there is a linear orderO = x1 > .. . > xp on the set of is-
sues such that for every voterv and everyj, the preferences
of v on x j are preferentially independent fromx j+1, . . . ,xp

givenx1, . . . ,x j−1. If this property is satisfied, then a sim-
ple protocol can be implemented: the voters’ preferences
about issuex1 are elicited; then a voting rule is applied so
as to make a decision on the value ofx1; then this chosen
value ofx1 is communicated to the voters, who then report
their preferences on the values ofx2 given the fixed value of
x1, and so on. Such preference profiles are calledO -legal
and abbreviated aslegal for O = x1 > .. . > xp in this pa-
per. This protocol generalizes to clusters of issuesI1, . . . , In
where for each voter and eachi, Ii is preferentially inde-
pendent ofI j+1, . . . , Im givenI1, . . . , Ii−1, where{I1, . . . , Im}
forms a partition of the setI of issues.

This domain restriction (O -legality) and the resulting se-
quential voting rules and correspondences that are then ap-
plicable are defined in Section 3. In Section 4 we study
in detail the properties of these sequential composition by
relating them to the corresponding properties of local vot-
ing rules to those of its components. It turns out that
while many properties expectedly transfer from local rules
to their sequential composition, this is not the case for two
important properties, namely neutrality and consensus. In
Section 5 we focus on the particular case ofmultiple ref-
erenda, obtained where all issues are binary. In Section 6
we briefly mention further issues. Because of space limit,
proofs are omitted2.

2They can be found in a longer version of the paper, at
http://www.irit.fr/recherches/RPDMP/persos/JeromeLang/papers/mep-long.pdf.

2 Preferences on multi-issue domains

Let I = {x1, . . . ,xp} be a set ofissues. For eachxi ∈ I ,
Di is the finite value domainof xi . An issuexi is bi-
nary if Di = {xi ,xi}, or equivalently{1i,0i}. (Note the
difference between the issuexi and the valuexi .) If X =
{xi1, . . . ,xim} ⊆ I , with i1 < .. . < ip, then DX denotes
Di1 × . . .×Dim. X = D1× ...×Dp is the set of allalter-
natives(or candidates). Elements ofX are denoted by~x,~x′
etc. and represented by concatenating the values of the is-
sues: for instance, ifI = {x1,x2,x3}, x1x2x3 assignsx1

to x1, x2 to x2 andx3 to x3. We allow concatenations of
vectors of values: for instance, letI = {x1,x2,x3,x4,x5},
Y = {x1,x2}, Z = {x3,x4},~y = x1x2,~z= x3x4, then~y.~z.x5

denotes the alternativex1x2x3x4x5.

A preference relationon X is a strict order (an irreflexive,
asymmetric and transitive binary relation). Alinear pref-
erence relationV is a completestrict order, i.e., for any~x
and~y 6=~x, either~x≻~y or~y≻~x holds. We generally note
~x≻V ~x′ instead ofV(~x,~x′).

Let {X,Y,Z} be a partition of the setI and≻ a linear pref-
erence relation overX = DI . X is (conditionally) preferen-
tially independentof Y givenZ (w.r.t. ≻) if and only if for
all~x1,~x2 ∈ DX,~y1,~y2 ∈DY,~z∈DZ,

~x1.~y1.~z≻~x2.~y1.~z iff ~x1.~y2.~z≻~x2.~y2.~z

Conditional preferential independence originates in the lit-
erature of multiattribute decision theory [9]. Unlike prob-
abilistic independence, it is a directed notion:X may be
independent ofY givenZ withoutY being independent of
X givenZ. Note that preferential independence is weaker
than utility independence.

Conditional preference networks, or CP-nets, are a lan-
guage for specifying preferences based on the notion of
conditional preferential independence. They allow for elic-
iting preferences, and for storing them, as economically as
possible. Formally, aCP-netN [3] over a set of attributes
(or issues)I is a pair consisting of a directed graphG over
I and a collection of conditional preference tablesCPT(xi)
for eachxi ∈ I . Appendix 1 gives some fairly detailed
background on CP-nets.

Let O = x1 > ... > xp be a linear order onI . We say that
≻ follows O = x1 > ... > xp if for all i < p, xi is prefer-
entially independent of{xi+1, ..., xp} given{x1, ..., xi−1}
with respect to≻.

If ≻ follows O then the projection of ≻ on xi

given (x1, . . . ,xi−1) ∈ D1 × . . . × Di−1, denoted by
≻xi |x1=x1,...,xi−1=xi−1, is the linear preference relation on
Di defined by: for allxi ,x′i ∈ Di , xi ≻xi |x1=x1,...,xi−1=xi−1

x′i iff x1...xi−1xixi+1...xp ≻ x1...xi−1x′ixi+1..xp holds for all
(xi+1, . . . ,xp) ∈ Di+1× . . .×Dp.

Due to the fact that≻ follows O and that≻ is a linear or-
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der,≻xi |x1=x1,...,xi−1=xi−1 is a well-defined linear order as
well. Note also that if≻ follows bothO = x1 > ... > xp

andO ′ = xσ(1) > ... > xσ(k−1) > xi(= xσ(k)) > ... > xσ(p),

then≻xi |x1=x1,...,xi−1=xi−1 and≻xi |xσ(1)=xσ(1),...,xσ(k−1)=xσ(k−1)

coincide. In other words, the local preference relation onxi

depends only on the values of the issues that precedexi in
O and in O ′.

Let G be anacyclicdirected graph (DAG) onI . A prefer-
ence relation≻ is compatible with G, denoted by≻∼ G,
if ≻ follows some orderO = x1 > ... > xp on I that fol-
lows G, that is, such that for every edge(xi ,x j) in G we
havei < j. For any two preference relations≻1,≻2 and
CP-netN , we use the following notations:≻1∼ N if
≻1 extendsN ; ≻1∼≻2 if there exists a CP-netN ′ s.t.
≻1∼ N ′ and≻2∼ N ′; ≻1∼N ≻2 if ≻1∼ N and≻2∼ N .
Lastly, we say≻1 and≻2 are G-equivalent, denoted by
≻1∼G≻2, if and only if ≻1 and≻2 are both compatible
with G and for anyx ∈V, for any~y,~y′ ∈ Dom(par(x)) we

have≻x|par(x)=~y
1 =≻x|par(x)=~y

2 . Note that≻1∼G≻2 if and
only if there exists a CP-netN whose associated graph is
G and such that≻1 and≻2 both extendN . We frequently
use the notationV (for “ vote”) instead of≻.

Example 3 Let I = {x,y,z}, all three being binary. and
let V and V′ be the following votes:

V : xyz≻ xyz̄≻ xȳz̄≻ xȳz≻ x̄yz̄≻ x̄ȳz̄≻ x̄yz≻ x̄ȳz
V ′ : xyz≻ xyz̄≻ x̄yz̄≻ xȳz̄≻ x̄yz≻ x̄ȳz̄≻ xȳz≻ x̄ȳz

Let G be the graph overI whose set of edges is
{(x,z),(y,z)}. V and V′ are both compatible with G.
Moreover, V∼G V ′, since all local preference relations co-

incide: x≻x
V x̄ and x≻x

V′ x̄; z≻z|x=x,y=y
V z̄ and z≻z|x=x,y=y

V′ z̄;
etc. The CP-net that V and V′ both extend is defined by
the following preferences tables: x≻ x̄; y≻ ȳ; xy : z≻ z̄;
xȳ : z̄≻ z; x̄y : z̄≻ z; x̄ȳ : z̄≻ z.

3 Sequential voting rules and
correspondences

We start by recalling briefly some necessary background
on voting rules and correspondences (for more details see
for instance [4]). LetA = {1, ...,N} be a finite set ofvot-
ers andX a finite set ofcandidates. A profile w.r.t. A
andX is a collection ofN individual linear preference re-
lations overX : P = (V1, ...,VN). Let PA ,X be the set of
all preference profiles forA andX . A voting correspon-
dence C: PA ,X → 2X \ { /0} maps each preference profileP
of PA ,X into a nonempty subsetC(P) of X . A voting rule
r : PA ,X → X maps each preference profileP of PA ,X into
a single candidater(P). The correspondence that elects the
candidates that are ranked first by the largest number of
voters is theplurality correspondence. When there are only
two candidates{x,y}, themajority correspondencema j is
defined byma j(P) = {x} (resp. {y} if more voters inP

preferx to y (resp.y to x), andma j(P) = {x,y} in case of
tie.

Given a profileP, x∈ X is aCondorcet winner(resp.weak
Condorcet winner) if it is preferred to any other candidate
by a strict (resp. non-strict) majority of voters: for ally 6= x,
#{i : x≻i y}> N

2 (resp.≥ N
2 ). A Condorcet-consistentrule

(resp. correspondence) is a voting ruler (resp. correspon-
denceC) such that whenever there exists a Condorcet win-
nerx for the profileP thenr(P) = x (resp.C(P) = {x}).
These definitions of voting rules are not concerned with
how the votes are elicited from the voters. As in [7]
we distinguish between the voting rule and aprotocol
(which determines which relevant information is elicited,
and when, from the voters) that implements it. The
deterministic communication complexity of a voting ruler
is the worst-case number of bits sent in the best protocol
implementingr. See [7] for a communication complexity
study of various voting rules.

From now on, we assume that the set of candidates is a
multi-issue domainX = D1 × ...×Dp. Sequential vot-
ing consists in applying “local” voting rules or correspon-
dences on single issues, one after the other, in such an order
that the local vote on a given issue can be performed only
when the local votes on all its parents in the graphG have
been performed. Note that, unlike in [5, 6, 10], we do not
assume that issues are binary. We now define our crucial
domain restriction:

Definition 1 Given a linear orderO = x1 > ... > xp on
I , we define Legal(O ) as the set of all profiles P=
(V1, . . . ,VN) such that each Vi followsO .

We might wonder how strong this restriction is. First of all,
note that it is much less demanding than separability. Sec-
ond, it can be generalized by partitioning the set of issues
into subsetsI1, . . . , Iq such thatIi is preferentially indepen-
dent of Ii+1∪ . . .∪ Iq given I1∪ . . .∪ Ii−1. Obviously, all
profiles are of this form, the worst case beingq= 13. How-
ever, we can assume without loss of generality (and we will
do so in the remainder of the paper) that each cluster consist
of a single issue (if this were not the case from the begin-
ning, then each clusterIi can be considered as a new single
issue, with domainDIi = ∏x j∈Ii D j .)

Definition 2 Let O = x1 > ... > xp be a linear order
on I , and (r1, . . . , rp) a collection of deterministic voting
rules (one for each issuexi). Thesequential voting rule
Seq(r1, . . . , rp) is defined on all profiles followingO as fol-
lows: for any P= (V1, ...,VN) in Legal(O ):

3The smaller the size of the subsets, the cheaper the protocol:
the communication cost of the protocol for computing a sequential
rule using such decomposition into clusters is∑q

i=1 ∏x j∈Ii |D j |.
The protocol is guaranteed to remain cheap (that is, polynomial) if
there exists a constantK (independent from the number of issues
and voters) such that|Ii | ≤ K for every clusterIi .
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• x∗1 = r1(V
x1
1 , . . . ,Vx1

N );

• x∗2 = r2(V
x2|x1=x∗1
1 , . . . ,V

x2|x1=x∗1
N );

• . . .

• x∗p = rp(V
xp|x1=x∗1,...,xp−1=x∗p−1
1 , . . . ,V

xp|x1=x∗1,..,xp−1=x∗p−1
N )

Then Seq(r1, . . . , rp)(P) = (x∗1, . . . ,x
∗
p).

Example 4 Let N = 12, I = {x,y} with Dx = {x, x̄} and
Dy = {y, ȳ}, and P= (V1, . . . ,V12) the following 12-voter
profile:

V1,V2,V3,V4 : xy≻ x̄y≻ xȳ≻ x̄ȳ
V5,V6,V7 : xȳ≻ xy≻ x̄y≻ x̄ȳ
V8,V9,V10 : x̄y≻ x̄ȳ≻ xy≻ xȳ
V10,V11 : x̄y≻ x̄ȳ≻ xȳ≻ xy

All these linear preference relations follow the orderx > y.
Hence, P∈ Legal(x > y).

Take rx and ry both equal to the majority rule, together with
a tie-breaking mechanism which, in case of a tie between
x andx̄ (resp. between y and̄y), elects x (resp. y). The
projection of P onx is composed of 7 votes for x and 5 for
x̄, that is, Px

i is equal to x≻ x̄ for 1≤ i ≤ 7 and tox̄≻ x
for 8≤ i ≤ 12. Therefore x∗ = rx(Px

1 , . . . ,Px
12) = x: thex-

winner is x∗ = x. Now, the projection of P ony givenx = x
is composed of 7 votes for y and 5 forȳ, therefore y∗ = y,
and the sequential winner is now obtained by combining
thex–winner and the conditionaly-winner givenx = x∗ =
x, namely Seq(rx, ry)(P) = xy.

In addition to sequential rules, we definesequential cor-
respondencesin a similar way: if for eachi, ci is a cor-
respondence onDi , then Seq(c1, . . . ,cp)(P) is the set of
all (x1, . . . ,xp) s.t. x1∈ c1(P

x1
1 ,. . .,Px1

N ), and for all i ≥ 2,

xi∈ci(P
xi |x1=x1,..,xi−1=xi−1
i , ..,Pxi |x1=x1,..,xi−1=xi−1

N ).

It is important to remark that, in order to compute
Seq(r1, . . . , rp)(P), we do not need to know the linear pref-
erence relations V1, . . . , VN entirely: everything we need
is the local preference relations: for instance, ifI = {x,y}
andG contains the only edge(x,y), then we need first the
unconditional linear preference relations onx and then the
linear preference relations ony conditioned by the value
of x. In other words, if we know the conditional pref-
erence tables (for all voters) associated with the graphG,
thenwe have enough information to determine the sequen-
tial winner for this profile, even though some of the pref-
erence relations induced from these tables are incomplete.
This is expressed more formally by the following fact (see
Observation 4 in [11]): letI = {x1, . . . ,xp}, G an acyclic
graph overI , and P = (V1, . . . ,VN), P′ = (V ′

1, . . . ,V
′
N)

two complete preference profiles such that for alli =
1, . . . ,N we haveVi ∼G V ′

i . Then, for any collection of lo-
cal voting rules(r1, . . . , rp), we haveSeq(r1, . . . , rp)(P) =

Seq(r1, . . . , rp)(P′). (A similar result holds for correspon-
dences.) This implies that applying sequential voting to
two profiles corresponding to the same collection of CP-
nets will give the same result.

We may now wonder whether a Condorcet winner (CW),
when there exists one, can be computed sequentially. Se-
quential Condorcet winners (SCW) are defined similarly as
for sequential winners for a given rule: the SCW is the se-
quential combination of “local” Condorcet winners.

Definition 3 LetO = x1 > ... > xp be a linear order onI ,
and P∈ Legal(O ). (x∗1, . . . ,x

∗
p) is a sequential Condorcet

winnerfor P if and only if

• ∀x′1 ∈ D1, #{i,x∗1 ≻x1
i x′1}> N

2 ;

• for every k > 1 and ∀x′k ∈ Dk,

#{i,x∗k ≻xk|x1=x∗1,...,xk−1=x∗k−1
i x′k}> N

2 .

Clearly, the existence of a SCW is no more guaranteed than
that of a CW, and there cannot be more than one SCW. We
have the following positive result in [11] (Proposition 3):
if (x∗1,x

∗
2, . . . ,x

∗
p) is a Condorcet winner forP, then it is a

sequential Condorcet winner forP. (Note that the converse
fails). An important corollary of this result is the following:

Theorem 3.1 If every ri is Condorcet-consistent then
Seq(r1, . . . , rp) is Condorcet-consistent.

Therefore, the output of a sequential voting rule will be
the Condorcet winner when there exists one, provided that
each local ruler i is Condorcet-consistent. This applies in
particular to sequential majority on domains composed of
binary issues, which was already known in the particular
case when all voters have separable preferences (see [10]).
This allows us to claim thatthe restriction to legal profiles
(with respect to some orderO ) allows for escaping multiple
election paradoxes, at least the version of the paradox that
deals with Condorcet winners failing to be elected. For the
version of the paradox concerned with electing a Condorcet
loser, a sequential voting rule will not elect a Condorcet
loser, provided that each of its local rules never elects a
Concorcet loser:

Theorem 3.2 If there exists i≤ p s.t. ri never elects a Con-
dorcet loser, then Seq(r1, . . . , rp) never elects a Condorcet
loser.

For sequential majority on multiple referenda, we have a
slightly more significant result:

Theorem 3.3 Let c1, . . . ,cp all equal to the majority cor-
respondence on binary domains. For anyO -legal profile
P and any~d ∈ Seq(c1, . . . ,cp)(P), there exist p outcomes
~x1, . . .~xp∈ X such that~d weakly Condorcet-dominate~xi for
all i ≤ p.

This boundp is actually tight, see the next example for
p = 3; it can be generalized top≥ 3.
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Example 3.4 Consider three votes

V1 :011213≻ 011203 ≻ 010203≻ 010213

≻ 111213 ≻ 110213 ≻ 111203 ≻ 110203;

V2 :110213≻ 110203 ≻ 010203≻ 010213

≻ 111213 ≻ 011213 ≻ 111203 ≻ 011203;

V3 :111203≻ 110203 ≻ 010203≻ 011203

≻ 111213 ≻ 110213 ≻ 010213 ≻ 011213.

Let P = (V1,V2,V3), then the sequential majority elects
111213 from P, which only weak Condorcet-dominates
three candidates —110213,111203, and011213.

4 Properties of sequential voting rules

We start be recalling a few important properties that voting
rules may (or may not) satisfy. A voting rule satisfies

• anonymity if it is unsensitive to any permutation of
the voters;

• homogeneityif for any voteV and anyn∈N, r(V) =
r(nV).

• neutrality if for any profileP and any permutationM
on candidates,r(M(P)) = M(r(P)).

• monotonicity if for any profilesP = (V1, . . . ,VN) and
P′ = (V ′

1, . . . ,V
′
N) s.t. eachV ′

i is obtained fromVi by
raising onlyr(P), we haver(P′) = r(P).

• consistencyif for any two disjoint profiles (that is,
given, by two disjoint electorates)P1,P2 s.t. r(P1) =
r(P2), thenr(P1∪P2) = r(P1) = r(P2).

• participation if for any profile P and any voteV,
r(P∪{V}) >V r(P).

• consensus(or efficiency) if for any profile P =
(V1, . . . ,VN), there is no candidatec s.t. c >Vi r(P)
for all i ≤ N.

Since sequential voting rules are sequential composition of
multiple local rules, we may wonder whether the properties
of local rules carry on to their sequential composition, and
vice versa. In this paper, we focus on the above properties.
We only give results on voting rules, but most of the them
can be easily extended to correspondences.

4.1 From sequential rules to local rules

Notice that decomposable voting rules are defined over le-
gal profiles, therefore, when we say a decomposable vot-
ing rule satisfies a property involving several profiles, it
means that it holds for alllegal profiles. This applies to

neutrality and monotonicity. Indeed, the usual definition of
neutrality (and similarly for efficiency) is not directly ap-
plicable to sequential voting rules, because permuting two
alternatives in aO -legal profile may result in a profile that
is notO -legal. Therefore, the definition that we take is a
straightforward generalization of s-neutrality as definedin
[2]: a sequential voting ruleSeq(r1, . . . , rp) on Legal(O )
is neutral4 if for any permutationM and anyO -legal pro-
file P, if M(P) is O -legal, then M(Seq(r1, . . . , rp)(P)) =
Seq(r1, . . . , rp)(M(P)). Things are similar for monotonicity
of sequential voting rules (and we omit the definition).

Theorem 4.1 If Seq(r1, . . . , rp) satisfies anonymity (resp.
homogeneity, neutrality, consistency, participation, con-
sensus), then for any1≤ i ≤ p, ri also satisfies anonymity
(resp. homogeneity, neutrality, consistency, participation,
consensus).

Monotonicity transfers to the last local rule only. This
seemingly strange results is mainly caused by our restric-
tion to legal profiles.

Theorem 4.2 If Seq(r1, . . . , rp) satisfies monotonicity, then
rp also satisfies monotonicity.

Since the way to obtain a new legal profileP′ from P by
just raising one candidate can only affect the conditional
orders onDp, we consider now a stronger monotonicity by
allowing multiple candidates to be raised simultaneously.

Definition 4.3 A voting rule r isstrongly monotonic if for
any profile P, any Y⊆ X , and any P′ obtained from P by
only raising the candidates in Y while keeping their relative
position unchanged, we have r(P′) ∈ r(P)∪Y.

Let Y = {r(P)}, we immediately know ifr is strongly
monotonic, then it is also monotonic. The next theorem
shows that strong monotonicity can be transfers to every
local rule (note that the definition of strong monotonicity
for sequential rules is conditioned by the profile obtained
after permutation isO -legal, exactly as for monotonicity.

Theorem 4.4 If Seq(r1, . . . , rp) satisfies strong monotonic-
ity, then for any1≤ i ≤ p, ri also satisfies strong mono-
tonicity.

4.2 From local rules to sequential rules

Then we give results on whether the sequential composition
of local rules inherit a given property satisfied by all local
rules. Here are the positive results:

Theorem 4.5 If for all 1 ≤ i ≤ p, ri satisfies anonymity
(resp. homogeneity, consistency, strong monotonicity), then
Seq(r1, . . . , rp) also satisfies anonymity (resp. homogeneity,
consistency, strong monotonicity).

4We choose to call this property of sequential voting rulesneu-
trality rather thans-neutrality; it is not ambiguous, provided that
O is fixed.
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The next theorem shows that the converse of Theorem 4.2
also holds.

Theorem 4.6 If r p satisfies monotonicity, then
Seq(r1, . . . , rp) also satisfies monotonicity.

On the other hand, three important properties cannot be
lifted from local rules to their sequential composition: neu-
trality, consensus, and participation. In the case of con-
sensus, this was remarked by several authors in the more
specific case of multiple referenda with separable prefer-
ences: in [13] it is proven that if there are at least three
binary issues (or two binary issues and an even number of
voters) then the parallel composition of the majority rule is
not efficient (although the majority rule is, of course, effi-
cient). We first give the following result, about neutrality
and consensus. Part of it is a corollary of Theorems 1 and
2 in [2].

Theorem 4.7 Let r1, . . . , rp, p≥ 2 be plurality rules and
|Di | ≥ 2 for all i ≤ p. If there exists i≤ p s.t. |Di |> 2, then
Seq(r1, . . . , rp) does not satisfy neutrality, nor consensus.

The next example shows that participation cannot be lifted
from local rules to their sequential composition.

Example 4.8 LetN 1,N 2 be two CP-nets on{01,11,21}×
{02,12} s.t. inN 1

01≻N1
11≻N1

21,01 : 02≻N1
12,11 : 12≻N1

02,21 : 12≻N1
02,

in N 2, x1 and x2 are independent, and11 ≻N2
21 ≻N2

01,02 ≻N2
12.

ClearlyN 2 6|= 1112≻ 0102, therefore, there exists a vote V2

consistent withN 2, and0102 ≻V2 1112, for example
V2 : 2102≻ 2112 ≻ 1102 ≻ 0102 ≻ 1112 ≻ 0112

Let r1 be the scoring rule with score vector(3,2,0), r2 be
the plurality rule. Obviously both r1, r2 satisfy participa-
tion. We consider a profile P= (V1,V3) s.t. V1 and V3

are consistent withN 1. Then Seq(r1, r2)(P) = 0102 and
Seq(r1, r2)(P∪ {V2}) = 1112. But 0102 ≻V2 1112. Hence
Seq(r1, r2) does not satisfy participation.

The following table summarizes the results of this Section.

Criteria Global to local Local to global
Anonymity Y Y

Homogeneity Y Y
Neutrality Y N

Monotonicity Only rp Only rp

Consistency Y Y
Participation Y N
Consensus Y N

Strong monotonicity Y Y

5 Multiple referenda

In this section, we focus on the case where all issues are
binary (i.e., multiple referenda). Clearly, ifSeq(r1, . . . , rp)

is “reasonable” to some extent to be defined, then eachr i

should be the majority rule. We give below a character-
ization of sequential majority that generalizes May’s the-
orem [12] to multi-issue domains. It is more natural to
consider the sequential composition of majority rules as a
correspondence, namelySeq(c1, . . . ,cp), where eachci is
the majority correspondence for two candidates. Notice if
the number of voters is odd, then sequential majority out-
puts a single winner, which obviously is not necessarily
the case where the number of voters is even: for instance,
let us consider 2 voters, with respective preference orders
xy≻ xȳ≻ x̄y≻ x̄ȳandx̄y≻ x̄ȳ≻ xȳ≻ xy. The profile is legal
for x > y, and the outcome of sequential majority consists
here of the set of three alternatives{xy,xȳ, x̄y}.
First we make an observation on the neutrality of each
ci . Our aim is to find a necessary and sufficient con-
dition for eachci to be neutral, based on some obser-
vations onSeq(c1, . . . ,cp). Recall that in Theorem 4.1
it has been proved that ifSeq(c1, . . . ,cp) is neutral then
ci is neutral. But this is not a necessary condition (and
we will prove that if p ≥ 3 then the sequential majority
is not neutral, see Theorem 5.8). Fortunately, for multi-
ple referenda, we can find a suitable condition. Denote
MR the permutation onX that exchanges(d1, . . . ,dp) to
(d1, . . . ,dp), for exampleMR(011203) = 110213. We say
thatSeq(c1, . . . ,cp) is insensitive to MR if for any legal pro-
file P, MR(Seq(c1, . . . ,cp)(P)) = Seq(c1, . . . ,cp)(MR(P)).
The next theorem says that a decomposable voting corre-
spondence is insensitive toMR iff its local correspondences
are neutral.

Theorem 5.1 ci is neutral for all i ≤ p if and only if
Seq(c1, . . . ,cp) is insensitive to MR.

The next theorem characterizes sequential composition of
majority correspondences.

Theorem 5.2

1. On the domain of all profiles that consists of odd num-
ber of votes, a decomposable voting correspondence
Seq(c1, . . . ,cp) is the sequential majority correspon-
dence if and only if Seq(c1, . . . ,cp) satisfies anonymity,
strong monotonicity, and is insensitive to MR.

2. A decomposable correspondence C= Seq(c1, . . . ,cp)
is the sequential majority correspondence if and only
if it satisfies anonymity, strong monotonicity, con-
sistency, and insensitivity to MR, and if whenever
|C(P)| ≥ 2 for some profile P, then|P| is even.

Remark that the sets of properties in 1. and 2. are minimal
(for instance, in 1., all three properties are required). Tosee
the property set in 2. is minimal, we present examples for
removing each condition. Anonymity is obvious.

– For strong monotonicity, let eachci be the correspon-
dence that select a minority. Thenci is consistent and neu-
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tral, soC satisfies consistency by Theorem 4.5,C is in-
sensitive toMR by Theorem 5.1. Clearly when|P| is odd,
|C(P)| = 1. SoC satisfies the other four conditions, and
is not the sequential composition of majority correspon-
dences.

–For consistency, letci be majority correspondence if|P|
is odd, otherwise it is trivial (always outputsDi). Since
majority and trivial correspondence are both neutral and
strong monotonic, we knowC satisfies strong monotonic-
ity and is insensitive toMR by Theorem 4.5. Notice when
|P| is odd,C is the sequential composition of majority cor-
respondence, we knowC satisfies the four properties other
than consistency.

–For insensitiveness toMR, we simply letci(P) = 0i for all
P, it is easy to checkC satisfies other four properties.

–For |C(P)| ≥ 2⇒ |P| is odd, we consider the trivial cor-
respondenceC(P) = X for all P. By simple calculation we
know all the other four properties holds.

So the property set in 2. is minimal. Similar examples show
the property set in 1. is also minimal.

Recall that Theorem 4.7 says that if some|Di |> 2, then the
sequential composition of local rules satisfying neutrality
(resp. consensus) might not satisfy neutrality (resp. con-
sensus). We may wonder how about if|Di | = 2 for all i.
Notice first that plurality and majority coincides on binary
domains. We observe that whenp = 2, sequential majority
is neutral.

Theorem 5.3 Let c1,c2 be equal to the majority corre-
spondence on binary domains. Then Seq(c1,c2) is a neutral
correspondence.

Then we are interested inp≥ 2. In [2], two theorems were
provided to characterize the neutrality and consensus (i.e.
Pareto optimality) of voting rules over separable profiles.

Theorem 5.4 (Theorem 1 in [2]) Over separable profiles,
if at least one of the following two conditions holds

1. |p≥ 3| and|Di | ≥ 2 for all i ≤ p, or

2. p= 2, |D1| ≥ 2, |D2| ≥ 2, and|D1| ≥ 3 or |D2| ≥ 3.

then the only sequential voting rule satisfying consensus is
the dictatorship,

Theorem 5.5 (Theorem 2 in [2]) Suppose p≥ 2, |Di | ≥ 2
and ri satisfies consensus for all i≤ p, if Seq(r1, . . . , rp) is
neutral over the set of all separable profiles, then it must be
a dictatorship.

It is easy to check that if we extend the domain of the rules
to all O -legal profiles, the theorems still hold. This obser-
vation sheds some light on decomposable voting rules sat-
isfying neutrality or consensus, as the following corollaries
show.

Corollary 5.6 Scoring rules, Bucklin, Maximin, Copeland
and Ranked pairs are not decomposable over combinato-
rial domains other than p= 2 and|D1|= |D2|= 2.

Corollary 5.7 If p≥ 3, then the sequential composition of
plurality on p binary domains does not satisfy neutrality,
nor consensus.

This corollary together with Theorem 4.7 and Theorem 5.3
tells us that the only neutral sequential plurality rule is the
one on a 2×2 domain.

Theorem 5.8 A sequential composition of plurality rule is
neutral iff p= 2 and|D1|= |D2|= 2.

We can also prove that forp≥ 3, if a decomposable voting
rule satisfies neutrality, then it is not Condorcet-consistent.
Notice that since a Condorcet-consistent rule does not nec-
essarily satisfy consensus, this result is not a corollary of
Theorem 5.4 or Theorem 5.5. Since this paper mainly dis-
cusses multiple referenda, we do not give this result for-
mally.

Remember that in Theorem 5.5, eachr i satisfying con-
sensus is required for the dictatorship. We may wonder
what we can learn if we assume only the neutrality of
Seq(r1, . . . , rp). The next theorem says that for multiple
referenda, if a voting rule satisfies decomposability and
neutrality, then the winner of a profile, or its complement,
should be ranked first by at least one of the voters. Here the
complement ¯x= (d̄1, . . . , d̄p) of x= (d1, . . . ,dp) means that
d̄ j 6= d j for all j ≤ p. Notice that we are talking about mul-
tiple referenda where|Di |= 2, x̄ is uniquely determined.

Theorem 5.9 If a sequential voting rule Seq(r1, . . . , rp) on
a domain consisting of binary issues satisfies neutrality,
then for any preference profile P= {V1, . . . ,VN} following
O ,~x= Seq(r1, . . . , rp)(P) or~x must be top ranked in at least
one of{V1, . . . ,VN}.

We end this section with some considerations on manipu-
lability. We know that the majority rule for 2 candidates
is not manipulable. What about sequential majority? We
know from [10] that if all voters have separable prefer-
ences, then sequential majority is non-manipulable. Does
this extend to legal profiles in which some voters have non-
separable preferences? Unfortunately, it does not:

Theorem 5.10 Sequential majority is manipulable.

This is easily seen on this counterexample with two binary
issuesx andy: voter 1 has the preference relationxy≻ x̄y≻
xȳ≻ x̄ȳ, voter 2 hasxȳ≻ xy≻ x̄y≻ x̄ȳ and voter 3 has ¯xy≻
x̄ȳ≻ xȳ > xy. The profile is inLegal(x > y). If 1 knows
the preferences of 2 and 3 then he has no interest to vote
sincerely on issuex, even though his preference relation is
separable: if he votes sincerely, then he votesxand then the
outcome isxȳ. If he votes for ¯x instead, then the outcome
is x̄y, which is better to him.
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As a corollary of this result, strategyproofness does not
transfer from the local level to the global level.

6 Discussion

We have shown that the sequential composition of local
voting rules allows for escaping usual multiple election
paradoxes, under a domain restriction much weaker than
separability. Moreover, these sequential rules have a cheap
communication complexity. We have established many re-
sults concerning the transfer (or the failure of transfer) of
important properties from local rules to/from their sequen-
tial composition.

Interestingly, our work has benefited from several previ-
ous streams of work that were almost unrelated: on the
one hand, social choice, and on the other hand, conditional
preferential independence, initially developed in the liter-
ature of multiattribute decision making and now widely
used in artificial intelligence (with CP-nets). The initial
motivation of our work was also inspired by the notion of
cheap protocol, as defined in the literature on communica-
tion complexity.

An important aspect of multiple election paradoxes that
would deserve more attention is the role ofknowledge.
What makes our protocols interesting is the conjunction of
two properties: they arecheap(in terms of communication
complexity) andepistemically safe: our domain restriction
ensures that each time an elicitation query is asked to the
voters, the votersknowthe answer, that is, they have all the
necessary information needed to give the answer. Multi-
ple election paradoxes, where voters experience regret af-
ter voting for a given issue when learning the outcome of
other issues, is to a large extent due to the fact that voters
are asked to cast a vote about a given issue whereas they
don’t knowtheir true preference, the latter depending on the
value of some other issues. This, of course, is guaranteed
with separability, but this assumption is far too demanding.
We believe that our restriction to legal profiles constitutes a
reasonable sufficient condition for the existence of a cheap
and epistemically safe protocol. However it is notneces-
sary, because we may consider sequential rules where the
order in which the issues are considered depends on the
value of some previously decided issue; these rules would
work for a more general class of profiles. Looking for a
sufficient and necessary condition is left for further study,
as well as a formalization of epistemically safe protocols
within epistemic logic.
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Appendix 1: conditional preference networks
(CP-nets)

Let I ba a finite set of variables, and for eachxi ∈ I , let Di be a
finite value domain. LetX = ∏xi∈I Di .

A CP-net overI is a pairN = 〈G,CPT〉, whereG is a directed
graph overI andCPT is a set of conditional preference tables
{CPT(xi) : xi ∈ I }. Each conditional preference tableCPT(xi)
associates a total order≻i

~u over Di , with each instantiation~u of
xi ’s parentsPar(xi) = U , wherePar(xi) denote the parents ofxi
in G.

For instance, letI = {x,y,z}, all three being binary, and assume
that preference of a given agent over 2I can be defined by
a CP-net whose structural part is the directed acyclic graph
G = {(x,y),(y,z),(x,z)}; this means that the agent’s preference
over the values ofx is unconditional, preference over the values
of y (resp. z) is fully determined given the value ofx (resp. the
values ofx andy).

Example 5 Let N = 12, I = {x,y} with Dom(x) = {x, x̄} and
Dom(y) = {y, ȳ}, and P= (V1, . . . ,V12) the following 12-voter
profile:

V1,V2,V3,V4 : xy≻ x̄y≻ xȳ≻ x̄ȳ
V5,V6,V7: xȳ≻ xy≻ x̄y≻ x̄ȳ
V8,V9,V10: x̄y≻ x̄ȳ≻ xy≻ xȳ
V11,V12: x̄y≻ x̄ȳ≻ xȳ≻ xy

All these linear preference relations are compatible with the
graph G over{x,y} whose single edge is(x,y); equivalently,
they follow the orderx > y: for all voters, the preference onx is
unconditional and the preference ony may depend on the value
of x.

The corresponding conditional preference tables are:

voters 1,2,3,4 voters 5,6,7 voters 8,9,10 voters 11,12

x≻ x̄
x : y≻ ȳ
x̄ : y≻ ȳ

x≻ x̄
x : ȳ≻ y
x̄ : y≻ ȳ

x̄≻ x
x : y≻ ȳ
x̄ : y≻ ȳ

x̄≻ x
x : ȳ≻ y
x̄ : y≻ ȳ

The conditional preference statements contained in these tables
are written with the following usual notation: for instance, in a
CP-netN , x1x2 : x3 ≻ x3 means that whenx1 is true andx2 is
false thenx3 = x3 is preferred tox3 = x3 ceteris paribus, that is,
for any fixed values of the other variablesx4, . . . ,xp.

Formally in CP-netN , for anyxi ∈ I , the conditional indepen-
dence in CP-net leads to the following preference relations. De-
fine first

≻xi = {~u~zx≻N ~u~zy: x≻i
~u y,~z∈ ∏

x j 6∈Par(xi)
D j}.

Write ≻N =
S

xi
≻xi the union of all relations≻xi encoded in

CPT(xi). Notice we require≻N be a linear order, so≻N is
transitive. Therefore the full preferential information encoded in

N is thetransitive closureof≻N , namely≻N =≻N . It has been
proved [3] that ifG is acyclic, then≻N is consistent, namely for
any~x,~y, at most one of~x≻N ~y and~y≻N ~x holds.

In the paper we make the classical assumption thatG is acyclic.
A CP-netN induces a preference ranking onX : N |=~x≻~y iff
~x≻N ~y. Notice for any~x≻N ~y,~x and~y differs only in one issue,
and~z≻N ~w is obtained through a transitive sequence of relations

~z≻N ~x1,~x1 ≻N ~x2, . . . ,~xm−1 ≻N ~xm,~xm ≻N ~w. So N |= ~x ≻
~y is thus equivalent to: There is a sequence of improving flips
from~y to~x, where an improving flip is the flip of a single issue~xi
“respecting” the preference tableCPT(xi) (see [3]). Note that
the preference relation induced from a CP-net is generally not
complete, as seen on the following example.

X Y Z

x≻ x̄
x : y≻ ȳ
x̄ : ȳ≻ y

x∨y : z≻ z̄
¬(x∨y) : z̄≻ z

Figure 1: A CP-net.

Example 6 Consider the example depicted in Figure 1.

≻x: xyz≻ x̄yz, xyz̄≻ x̄yz̄, xȳz≻ x̄ȳz, xȳz̄≻ x̄ȳz̄

≻y: xyz≻ xȳz, xyz̄≻ xȳz̄, x̄ȳz≻ x̄yz, x̄ȳz̄≻ x̄yz̄

≻z: xyz≻ xyz̄, xȳz≻ xȳz̄, x̄yz≻ x̄ȳz, x̄ȳz̄≻ x̄ȳz, illustrated as

Now,≻N is the transitive closure of≻x ∪≻y ∪≻z, illustrated by
the following diagram:

xyz
ր
ց

xȳz

xyz̄

ց
ր xȳz̄→ x̄ȳz̄→ x̄ȳz→ x̄yz→ x̄yz̄

To see how to generate xyz≻ x̄ȳz̄, we consider a three-step in-
creasing flip: in the first step,x is flipped according to x≻ x̄, thus
xȳz̄ is obtained; then in the second step,z is flipped according
to xȳ : z≻ z̄, thus leads to x̄yz; finally y is flipped according to
x : y≻ ȳ, reaching xyz.

An important property of such sequential voting rules and corre-
spondences is that the outcome does not depend onO , provided
thatG follows O . This can be expressed formally:

Observation 1 LetO = (x1 > .. . > xp) andO ′ = (xσ(1) > .. . >

xσ(p)) be two linear orders on V such that G follows bothO and
O ′. Then

Seq(r1, . . . , rp)(P) = Seq(rσ(1), . . . , rσ(p))(P)
and similarly for voting correspondences.

Example 7 Everything is as in Example 5, except that we don’t
know the voters’ complete preference relations, but only their cor-
responding conditional preference tables. These conditional pref-
erences contain strictly less information than P, because some
of the preference relations they induce are not complete: for in-
stance, the induced preference relation for the first 4 voters is
xy≻ x̄y≻ x̄ȳ, xy≻ xȳ≻ x̄ȳ, with xȳ andx̄y being incomparable.
However, we have enough information to determine the sequential
winner for this profile, even though some of the preference rela-
tions are incomplete. For instance, taking again the majority rule
for rx and ry, the sequential winner is xy for any complete profile
P′ = (V ′

1, . . . ,V
′
12) extending the incomplete preference relations

induced by the 12 conditional preference tables above.
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