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Abstract

We introduce (i) a general class of security proto-
cols with private channel as cryptographic prim-
itive and (ii) a probabilistic epistemic logic to
express properties of security protocols. Our
main theorem says that when a property ex-
pressed in our logic holds for an ideal proto-
col (where “ideal” means that the private chan-
nel hides everything), then it also holds when
the private channel is implemented using an en-
cryption scheme that guarantees perfect secrecy
(in the sense of Shannon). Our class of proto-
cols contains, for instance, an oblivious transfer
protocol by Rivest and Chaum’s solution to the
dining cryptographers problem. In our logic we
can express fundamental security properties of
these protocols. The proof of the main theorem is
based on a notion of refinement for probabilistic
Kripke structures.

1 Introduction

Cryptographic protocols are an important building block
for secure distributed systems. They often involve sev-
eral agents with conflicting security goals, which makes
the protocols difficult to design, let alone analyze. In many
cases, it is already a difficult task to describe precisely the
crucial security goals required of the protocols in question.

A common intuition concerning security protocols is that
their specifications concern what parties to the protocol
are permitted to know, and a recurrent thread in the lit-
erature (at least since [10, 11, 23]) has been the idea that
they should be specified using some type ofepistemic logic
which can express properties like “agentA knows mes-
sagem” or “agentB has not learned messagem” or “for
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agentC it is conceivable thatϕ is true”. Since proba-
bilistic mechanisms play a key role in hiding information
in security protocols, there has also been work (e. g. [24])
which includes operators for probability, such as “agentA
knows thatϕ is the case with probability 3/4”. In this pa-
per, we use a logic—essentially that of Fagin and Halpern,
see [21]—that combines operators for knowledge and prob-
ability. As we illustrate by a number of examples, this
logic is particularly apt for specifying the security goalsof
multi-party protocols such as oblivious transfer protocols,
bit commitment schemes, or protocols for solving problems
like the dining cryptographers.

We also present a formal protocol model, in which we can
encode protocols such as the ones mentioned above. The
security primitive that we allow to be used in our protocols
is the transfer of a message over an ideal private channel,
from one agent to another. The semantics is such that a
transmission over a private channel does not reveal any-
thing about the message transferred to anyone other than
the intended recipient.

The main contribution of our work is the following. We
show that any implementation of a given protocol specified
in our model where each transmission of a message over
an ideal private channels is replaced by a broadcast of the
message encrypted by an information-theoretically secure
encryption scheme (in the sense of Shannon, [34]) satis-
fies exactly the same properties of our logic as the given
protocol. In other words, all the security properties of an
“ideal” protocol are preserved under implementations us-
ing information-theoretically secure encryption. Note that
this means we are modelling a passive adversary.

Our result does not relieve us from designing secure pro-
tocols, but it makes verification a much simpler task. One
only needs to check that an “ideal” version of a protocol is
secure. It then follows that implementations are secure as
well. In particular, this result provides an abstraction that
enables us to reduce the size of the state space that needs to
be analyzed in epistemic logic model checking analyses of
security protocols, see, for instance, [29].
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Related work. There is a whole range of work on logics
for specifying cryptographic protocols, starting with Bur-
rows, Abadı́, and Needham’s BAN logic [11] and many
follow-ups, for instance [23, 9]; see [35] for a survey. Our
definition of semantics for our protocol model is in the
spirit of work on epistemic update, see, e. g., [28, 22, 7, 27].
This has also been applied to cryptographic protocols,
see, e. g. [25, 26], but not aiming at preservation results.
While all the logics just mentioned are inspired by modal
logic, there is also a body of work which is inspired by
Hoare logic, starting with a paper by Durgin, Mitchell, and
Pavlovic [19, 20]. One of the more recent papers is [18].

There is a recent body of research that is concerned with re-
lationships between abstract and cryptographic models of
security protocols. One thread, starting with the seminal
work of Abadi and Rogaway [3], deals with the justification
of the abstract model of encryption in case of passive ad-
versaries. This work has later been extended in different di-
rections, including cryptographic justifications of abstract
models in presence of active adversaries [30, 31, 17, 16].

At a lower level of abstraction is work that models cryp-
tographic primitives and protocols as networks of proba-
bilistic polynomial-time Turing machines, and uses the ap-
proach of simulation-based security [12, 14, 32, 5, 6]. In
[13], oblivious transfer has been studied in a quite formal
way in this framework.

Our treatment of private channels is in the spirit of body of
work that deals with relationships between notions of pro-
cess at various levels of abstraction. E. g., Abadi, Fournet,
and Gonthier [2] refine processes using a secure channel
primitive to a lower level calculus with an abstract model
of encryption and active adversaries. Their notion of cor-
rectness is a type of observational equivalence of processes.
Adão and Fournet [4] and Abadi et al. [1] follow a simi-
lar approach, but their low-level target structures are prob-
abilistic polynomial-time Turing machines, that is, they
work in a computational setting.

Structure of the paper. In Sect. 2, we give motivating
examples, Sect. 3 contains the main definitions, that is, the
definition of our protocol model and our epistemic logic,
Sect. 4 presents the preservation theorem, and in Sect. 5,
we outline its proof. Sect. 6 is a short conclusion.

2 Motivating Examples

In this section, we give two examples that motivate our re-
sults. We discuss an oblivious transfer protocol described
by Rivest, [33], which is based on the BBCS quantum
cryptographic protocol by Bennett, Brassard, Crépeau, and
Skubiszewska, see [8], and Chaum’s protocol for the dining
cryptographers, see [15].

2.1 Rivest’s Oblivious Transfer Protocol

In this protocol, which we callROT protocol, Alice (A) and
Bob(B) and a trusted third party Ted(T ) are involved. Al-
ice is given two distinct messagesm0,m1 ∈ {0, 1}k. Bob
choosesc ∈ {0, 1} and wants to obtainmc from Alice. The
protocol should be such that (ROT1) Alice does not learnc
and (ROT2) Bob does not learn anything aboutm1−c. By
(ROT0), we denote the correctness of the protocol, namely
that Bob gets the desired message. To achieve all this, a
trusted third party, Ted, is used.

The protocol works in four phases:

1. Setup. Ted choosesr0, r1 ∈ {0, 1}k randomly and
sends these values to Alice. Ted choosesd ∈ {0, 1}
and sendsd andrd to Bob.

2. Request.Bob computese = c ⊕ d, where⊕ denotes
exclusive or, and sendse to Alice.

3. Reply.Alice computesf0 = m0 ⊕ re andf1 = m1 ⊕
r1−e and sendsf0 andf1 to Bob.

4. Result.Bob computesm = fc ⊕ rd.

One can easily prove that (ROT0) is the case and that
(ROT1) and (ROT2) hold if Ted sends his messages over
private channels during the setup phase.

One can also prove that (ROTA) Ted will not learn anything
aboutm0 norm1, provided Alice uses a private channel,
and (ROTB) he will not learn anything aboutc, provided
Bob uses a private channel.

2.2 The Dining Cryptographers

In this protocol, which we callCDC protocol, there are
three cryptographers,C0, C1, andC2, sitting at a dinner
table, and just done with their meals, ready to pay. The
waiter tells them their bill has already been paid for. It is
immediately clear to them that either one of them has paid
the bill (and thus treated the two others) or their national
security agency (NSA) has paid for their expenses. They
are curious and want to find out more, but if two of them
were treated by the third they do not want his identity to
be revealed. So the protocol should be such that (CDC0)
each cryptographer finds out whether one of them has paid
or whether it was the NSA, but (CDC1) if any one of the
cryptographers has paid, the two others should not learn his
identity.

Let us assume that we have a variablepi ∈ {0, 1} for every
one of the three cryptographers and thatpi = 1 iff Ci paid
for the dinner. So either all of thepi’s are0 (the NSA has
paid) or exactly one of thepi’s is 1.

The protocol Chaum suggested works as follows.
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1. Bit Sharing. For every i < 3, cryptographerCi

chooses a random bitri ∈ {0, 1} and sends it to his
right neighbor,Ci+1 mod3.

2. Public Announcement.For everyi < 3, cryptographer
Ci computesbi = pi⊕ri⊕ri−1 mod3 and announcesbi
publicly. Observe that he knowsri−1 mod3 since this
is the bit he received from his left neighbor.

3. Result.Everyone computesp = b0 ⊕ b1 ⊕ b2.

One can prove thatp = 0 iff the NSA has paid, that is,
(CDC0) holds, and that (CDC1) holds provided during bit
sharing the cryptographers use private channels to commu-
nicate with each other.

What we will show for both protocols is that if the private
channels (needed in the setup and the bit sharing phase,
respectively, and potentially when Alice and Bob commu-
nicate) are implemented by any information-theoretically
secure encryption scheme, then the resulting systems sat-
isfy the required properties for both protocols. In fact, our
result is much more general: We will show the same for
any protocol in our model and for any property specified in
a specific logic of knowledge and probability.

3 Protocol Model and Specification Logic

In this section, we describe our protocol model and our
epistemic specification logic. The definition of the seman-
tics of our protocol model uses the concept of updates for
epistemic logics and thus needs the specification logic. (We
note that the update semantics could be justified with re-
spect to a standard operational semantics (cf. [28]): we
work directly with the update semantics here since this is
convenient for the proof of refinement.)

3.1 Protocols

For the purpose of this paper, aprotocol variableis a vari-
able in the ordinary sense, but each such variable has a fixed
domain. Whenv stands for a variable, we write dom(v)
for its domain. We assume that all domains are subsets of
a setU , the universe. A variable assignment for a set of
protocol variablesV is a functionα : V → U such that
α(v) ∈ dom(v) for eachv ∈ V .

A protocolis a tuple

P = 〈Agts, Vinp, Vintr, ι,Θ〉 (1)

where

• Agts is a set ofagents,
• Vinp is a set of protocol variables, theinput variables,
• Vintr is a finite set of protocol variables, theintroduced

variables, with Vinp ∩ Vintr = ∅,

• ι : Agts→ Vinp is a function that determines for every
agent the setι(A) of input variables that it can access
initially, and

• Θ is theprotocol textto be described next.

A protocol textis simply a sequenceA0 : γ0, A1 : γ1, . . . ,
Ar−1 : γr−1 where theAi’s are agents and theγi’s are com-
mands to be specified in the next paragraph. An expression
of the formAi : γi should be understood as agentAi carries
out commandγi.

There are four types ofcommands. Eachreadsand intro-
ducesa set of variables. First, abroadcastis of the form
broadcast(v) wherev is any protocol variable. This
command readsv and introduces no variables. The in-
tuitive meaning is that the value ofv is broadcast to all
agents. Second, atransmissionover a private channel is of
the formv → B.v′ whereB is an agent andv andv′ are
protocol variables. Here, the intuitive meaning is that the
value of variablev is sent toB securely and stored inv′.
This command readsv and introducesv′. Third, anexpres-
sion is of the formv = f(v0, . . . , vs−1) wherev and the
vi’s are protocol variables andf is any function with the
right domain and range. This command readsv0, . . . , vs−1

and introducesv. Fourth, arandomizationis of the form
randomize(v) for some protocol variablev. This com-
mand reads nothing and introducesv.

When describing protocols one often writes something like
“Alice sendsv to Bob”, which in our framework cannot be
modelled directly. We would have to use a further variable
v′ accessible to Bob where the value ofv would be stored.
This is the reason we also allow the following short form
of transmission as syntactic sugar:v → B. A protocol
where such a command occurs should be viewed as a pro-
tocol wherev → B.v′ is executed for a new variablev′ and
where every later occurrence ofv in a command executed
byB is replaced byv′. Clearly, if more than one such com-
mand occurs, the described transformation of the protocol
has to be performed several times, for each such command
in turn.

Given a protocol as above, agentA can accessa variablev
at stepi if

• v ∈ ι(A) or
• there existsj < i such thatγj is

– broadcast(v),
– v′ → A.v for some variablev′,
– v = f(v0, . . . , vs−1) for variablesvk and an ap-

propriate functionf andAj = A, or
– randomize(v) andAj = A.

A protocol text is said to bewell-formedif each command
(1) reads only variables that are accessible to the agent per-
forming the command at that point, (2) every variable in-
troduced is inVintr, and (3) no variable is introduced more
than once. We only consider protocols with well-formed
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protocol texts.

To illustrate the protocol notations we first reconsider
Rivest’s oblivious transfer protocol. A compact description
of a protocol in our sense corresponding to the description
in Subsection 2.1 is depicted in Figure 3.1 on the left. The
agents, their input variables, their domains and initial ac-
cess are indicated in the headline, the introduced variables
are implicit. Semicolons are replaced by new lines. Ob-
serve thatrd is a variable and different from the variable
r0 even ifd = 0. Only two functions are used,⊕ (in infix
notation), which stands for ‘exclusive or’, andite(·, ·, ·).
The latter returns its second or third argument depending
on its first argument, that is,ite(d, x0, x1) = xd.

Note that the description of the ROT protocol must be
changed if Alice and/or Bob are assumed to use private
channels for the communication between each other.

Next, we reconsider Chaum’s solution to the dining cryp-
tographers problem. A corresponding protocol in our sense
is depicted in Figure 3.1 on the right. Note that the values
e0, e1, ande2 are the same, but since we restrict ourselves
to well-formed protocols, we have to use different vari-
ables. (In our context, the variables are not really needed,
which will be explained later.)

3.2 Epistemic Structures

The idea of the semantics of our protocols and the com-
mands from which they are composed is that they trans-
form an initial state of mutual information of the agents
into a new state of mutual information. The transformation
corresponding to a protocol is just the result of composing
the sequence of transformations corresponding to its com-
mands. The following definition describes the semantic ob-
jects used to represent these states of mutual information,a
type of Kripke structure representing knowledge and prob-
ability.

An epistemic structureis a tuple

S = 〈Agts,W, {∼A}A∈Agts , C, {Pc}c∈C , V, π〉 (2)

where

• Agts is a finite set of agents,
• W is a finite set of worlds,
• ∼A is an equivalence relation onW , the indistin-

guishability relationfor A, for eachA ∈ Agts,
• C ⊂ 2W is a partition ofW into cells,
• Pc : 2c → [0, 1] is a (discrete) probability measure on
c, for eachc ∈ C,

• V is a set of protocol variables,
• π : W → V → U is a function that assigns to each

worldw an assignmentπ(w) to the protocol variables.

We restrict attention to finite structures in order to avoid
measure-theoretic concerns. For a worldw, we write
cell(w) for the elementc ∈ C with w ∈ c.

3.3 The Specification Logic

As indicated above, part of the definition of the semantics
of the protocol uses some aspects of the specification logic.
This is why we next turn to the specification logic.

3.3.1 Syntax and Semantics.

Given a setAgts of agents and a set of variablesV , the
languageLPK(Agts)(V ) is defined by:

• for each variablev ∈ V and eacha ∈ dom(v), v = a
is an atomic formula; if dom(v) = {0, 1}, thenv = 1
may be written asv andv = 0 may be written as¬v,

• if ϕ andψ are formulas, then¬ϕ andϕ ∨ ψ are for-
mulas,

• for each variablev and variablesv0, . . . , vs−1 and
functionf : dom(v0) × · · · × dom(vs−1) → dom(v),
the expressionv = f(v0, . . . , vs−1) is an atomic for-
mula;

• for everyA ∈ Agts, if ϕ is a formula, thenKAϕ is a
formula,

• for everyA ∈ Agts and real numberr ∈ [0, 1], if ϕ is
a formula, then PrAϕ = r is a formula.

As usual, we use abbreviations for boolean constants and
connectives such as⊤, ∧, and→, but alsoPAϕ, which
stands for¬KA¬ϕ.

Before we define the satisfaction relation, we introduce
some more terminology. Letc be any cell andX,S ⊆ W .
Then we write Pc(X) for Pc(X∩c) and, similarly, provided
Pc(S ∩ c) 6= ∅, we write Pc(X | S) for the conditional
probability Pc(X ∩ c | S ∩ c).
The relation of satisfaction is now defined as follows:

• S , w |= v = a if π(w)(v) = a;
• S , w |= ¬ϕ if not S , w |= ϕ;
• S , w |= ϕ ∨ ψ if S , w |= ϕ or S , w |= ψ;
• S , w |= v = f(v0, . . . , vs−1) if π(w)(v) =
f(π(w)(v0), . . . , π(w)(vs−1));

• S , w |= KAϕ if S , w′ |= ϕ for all w′ ∈ W such that
w′ ∼A w;

• S , w |= PrAϕ = r if Pcell(w)([ϕ]S | IA(w)) = r
where[ϕ]S = {v ∈ W | S , v |= ϕ} andIA(w) =
{v ∈ cell(w) | w ∼A v}.

3.3.2 Examples.

Although we have not defined the semantics of our pro-
tocol model yet, we can specify properties of our running
examples. We just have to imagine that the execution of a
protocol yields an appropriate epistemic structure.

We start with the ROT protocol. First, we would like to
specify (ROT0), namely that after the protocol has been
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T ;A(m0,m1 : {0, 1}k);B(c : {0, 1})
—Setup
T : randomize(r0)
T : randomize(r1)
T : r0 → A
T : r1 → A
T : randomize(d)
T : rd = ite(d, r0, r1)
T : d→ B
T : rd → B
—Request
B : e = c⊕ d
B : broadcast(e)
—Reply
A : re = ite(e, r0, r1)
A : f0 = m0 ⊕ re
A : r1−e = ite(e, r1, r0)
A : f1 = m1 ⊕ r1−e

A : broadcast(f0)
A : broadcast(f1)
—Result
B : gc = ite(c, f0, f1)
B : mc = gc ⊕ rd

Ci(pi : {0, 1}), i < 3
—Bit Sharing
C0 : randomize(r0)
C0 : r0 → C1

C1 : randomize(r1)
C1 : r1 → C2

C2 : randomize(r2)
C2 : r2 → C0

—Public Announcement
C0 : b0 = r0 ⊕ r2 ⊕ p0

C0 : broadcast(b0)
C1 : b1 = r1 ⊕ r0 ⊕ p1

C1 : broadcast(b1)
C2 : b2 = r2 ⊕ r1 ⊕ p2

C2 : broadcast(b2)
—Result
C0 : e0 = b0 ⊕ b1 ⊕ b2
C1 : e1 = b0 ⊕ b1 ⊕ b2
C2 : e2 = b0 ⊕ b1 ⊕ b2

Figure 1: Formal descriptions of the ROT (left) and the CDC protocol (right)

executed Bob knows the messagemc:

∧
z∈{0,1}

c = z →
∧

a∈{0,1}k

(mz = a→ KB(mz = a))

 .

Observe that for this to be true, the last two steps of the pro-
tocol can be left out, because the semantics of the knowl-
edge operator implies that Bob knows the value as soon as
he has some information from which the value can be de-
duced. Also note thatc is a protocol variable andz is just
a meta variable representing0 and1 in different places of
the formula.

We leave the formalization of (ROT1) to the reader and turn
to (ROT2), which says that Bob does not know anything
aboutm1−c except for the fact that it is different frommc:

∧
z∈{0,1}

c = z →
∧

a∈{0,1}k

(a 6= mz → PB(m1−z = a))

 .

We can modify this example slightly. Let us assume that
m0 andm1 are not chosen non-deterministically, but ran-
domly with equal probability, that is, every pair(m0,m1)
is chosen with probability1/(2k(2k − 1)). Then we can
make a stronger statement about what we expect from the
protocol. (ROT0) and (ROT1) do not change, but (ROT2)
does:

∧
z∈{0,1}

c = z →
∧

a∈{0,1}k

(a 6= mz →(
PrB(m1−z = a) =

1
2k − 1

)))
.

Next, we look at CDC. We first express (CDC0):∧
i<3

(KCi(p0 ∨ p1 ∨ p2) ∨ KCi¬(p0 ∨ p1 ∨ p2)) .

The other property, (CDC1), can be expressed by

∧
i<3

pi →
∧
j 6=i

∧
k 6=j

PCjpk

 .

As a further example, let us consider the following vari-
ation. Instead of three, we assume there are four agents,
C0, . . . ,C3. That anyone should be so generous as to pay
for everyone is a complete surprise, but suppose that it is
common knowledge thatC2 andC3 always share costs by
flipping a coin to decide who pays on a given occasion.
These assumptions would be represented by an initial epis-
temic structureSDC4 with four cells,{NSA}, {0}, {1},
and {2, 3} where for the first three the probability mea-
sure assigns1 to the only non-empty event and where for
c = {2, 3}, we have Pc({2}) = Pc({3}) = 1/2. Thus, we
have
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pNSA ∨ p0 ∨ p1 ∨ (Pr(p2) = 1/2 ∧ Pr(p3) = 1/2))

before the execution of the protocol, where, for simplicity,
we usepNSA for

∧
j<4 ¬pj . After running the protocol, we

now require more specific properties forC0 andC1:∧
i<2

(¬pi → (KCi(pNSA) ∨ ϕi))

where

ϕi = PCi(p1−i) ∧
PCi (PrCi(p2) = 1/2 ∧ PrCi(p3) = 1/2)) .

3.4 Protocol Execution

Protocols are executed starting at an initial epistemic struc-
ture, and transform this structure into a new structure. Not
all protocols can be executed on all structures. A protocol
P is fit for an epistemic structureS if it has the same set
of agents, all the initial variables ofP are variables ofS ,
and none of the introduced variables ofP is a variable of
S .

Each of the commands of a protocol acts as a transformer of
epistemic structures. We express the transformation using
the following notion. Anactionis a tuple

A = 〈Agts, E, V,Φ, {∼A}A∈Agts , {Pϕ}ϕ∈Φ , V
′, ρ〉 (3)

where

• Agts is a set of agents,
• E is a (finite) set ofevents,
• V is a set of protocol variables,
• Φ is a set of mutually exclusive conditions in the vari-

ables fromV that have semantics in the structure to be
updated,

• ∼A is an equivalence relation onE, for everyA ∈
Agts,

• Pϕ is a distribution onE, for everyϕ ∈ Φ,
• V ′ is a set ofnewprotocol variables disjoint fromV ,
• ρ : E → V ′ → U is an interpretation of the new vari-

ables.

An action isfit for an epistemic structureS if it has the
same set of agents,V is a subset of the variables ofS and
V ′ is disjoint from the variables ofS . We writeS , w→A

e if there existsϕ ∈ Φ such thatS , w |= ϕ and Pϕ(e) > 0.

Given an epistemic structure

S = 〈Agts,W, {∼A}A∈Agts , C, {Pc}c∈C , V, π〉
and an action

A = 〈Agts, E, VΦ,Φ,
{∼A

A

}
A∈Agts

,
{

PA
ϕ

}
ϕ∈Φ

, V ′, ρ〉
fit for S , theupdateof S with respect toA is the struc-
ture:S ×A with components

〈Agts,W ′, {∼′
A}A∈Agts , C

′,
{

P′c
}

c∈C
, V ∪ V ′, π′〉

where

• W ′ = {(w, e) | w ∈ W andS , w →A e},
• C′ = {c×A | c ∈ C} wherec×A = {(w, e) | w ∈
C andS , w→A e},

• (w, e) ∼′
A (u, d) if w ∼A w ande ∼A

A d,
• P′c×A((w, e)) = Pc(w) × PA

ϕ (e), whereϕ ∈ Φ with
S , s |= ϕ,

• π′((w, e)) = π(w) ∪ ρ(e).
We can now describe the semantics of the com-
mands that we allow in our protocols. The command
A : randomize(v) corresponds to the action defined by:

• E = dom(v),
• V = ∅,
• Φ = {⊤},
• ∼A= {(a, a) | a ∈ dom(v)} and∼B= dom(v) ×

dom(v) for B ∈ Agts\ {A},
• P⊤ is the uniform distribution on dom(v),
• V ′ = {v},
• ρ(a)(v) = a for everya ∈ dom(v).

The commandA : v = f(v0, . . . , vs−1) corresponds to the
action defined by:

• E = dom(v),
• V = {v0, . . . , vs−1},
• Φ = {f(v0, . . . , vs−1) = a | a ∈ dom(v)},
• ∼A= {(a, a) | a ∈ dom(v)} and∼B= dom(v) ×

dom(v) for B ∈ Agts\ {A},
• Pf(v0,...,vs−1)=a(a) = 1 and zero everywhere else,
• V ′ = {v},
• ρ(a)(v) = a.

The commandA : v → B.v′ corresponds to:

• E = dom(v),
• V = {v},
• Φ = {v = a | a ∈ dom(v)},
• ∼B= {(a, a) | a ∈ dom(v)} and∼C= dom(v) ×

dom(v) for C ∈ Agts\ {B},
• Pv=a(a) = 1 and zero everywhere else,
• V ′ = {v′},
• ρ(a)(v′) = a.

Finally,A : broadcast(v) corresponds to:

• E = dom(v),
• V = {v},
• Φ = {v = a | a ∈ dom(v)},
• ∼B= {(a, a) | a ∈ E} for all B ∈ Agts,
• Pv=a(a) = 1 and zero everywhere else,
• V ′ = ∅,
• ρ(a) = ∅.

Finally, it is easy to define the semantics of a protocol.
Given an initial epistemic structureS and a protocolP
fit for S , let A0, . . . ,Ar−1 be the sequence of actions cor-
responding to the protocol text. We then writeS [P] for
the epistemic structureS ×A0 × · · · ×Ar−1 and call this
the result of executingP on S . (It is straightforward to
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check that ifP is fit for S , then the actionA0 is fit for
S and for eachj ∈ {1, . . . , r − 1} the actionAj is fit for
S × A0 × · · · × Aj−1.) When we writeS [P] |= ϕ we
mean thatS [P], w |= ϕ holds for every worldw of the
structureS [P].

4 Implementing Private Channels via
Encryption Schemes and Main Result

We are now in a position to formally present the main the-
orem of the paper, which states that secure transmission
operations can be safely implemented by a broadcast of
encrypted messages, provided that the encryption keys are
securely distributed to the intended recipients. Safety here
will mean that satisfaction of formulas of the logic is not
affected by this replacement.

A shared key encryption schemefor a space of messages
Msg is a tupleE = 〈K,G,PK , E,D〉 whereK is a finite
set ofkeys, G is a process for randomly generating keys,
PK is a discrete probability measure onK such that the
probability that the processG will generate a keyk ∈ K is
PK(k), andE : K × Msg → Msg andD : K × Msg →
Msg are, respectively, encryption and decryption opera-
tions, such thatD(k,E(k,m)) = m for all k ∈ K and
m ∈ Msg .

We say that the encryption scheme ispossibilistically se-
cureif for each pair of messagesm,m′ ∈ Msg and keyk ∈
K, there exists a keyk′ such thatE(k,m) = E(k′,m′).
In other words, each ciphertextE(k,m) could have come
from any plaintextm′. However, thea priori probabil-
ity that E(k,m) was produced from plaintextm′ might
be low, so possibilistically secure encryption schemes may
still be subject to statistical attacks. A condition that elim-
inates such attacks is Shannon’sperfect secrecyproperty
[34]. The encryption scheme is defined to have this prop-
erty if for all messagesm,m′ ∈ Msg , we have PK({k′ ∈
K | E(k,m) = E(k′,m)}) = PK({k′ ∈ K | E(k,m) =
E(k′,m′)}). That is, using a randomly generated key, a
messagem′ is as likely to be encrypted toE(k,m) as is
the messagem itself.1

In order to enable use of an encryption schemeE in pro-
tocols, introduce commandsx = E(k,m), x = D(k,m),
andgenerate(k). Semantically, the first two of these
correspond to assignment actions defined just as above,
and the last corresponds to an action that is identical to
randomize(k) except that the distribution PK is used
rather than the uniform distribution (if it differs).

If P is a protocol, letP∗ be obtained fromP by substi-
tuting for each secure transmission command of the form

1This is one of several equivalent formulations presented in
[34].

A : m→ B.v occurring inP the sequence

A : e = E(ka,m)
A : broadcast(e)
B : v = D(kb, e)

(4)

and prepending

A : generate(ka)
A : ka → B.kb

(5)

to the protocol where an appropriate encryption scheme
and a fresh set of variableska, kb, e, d is used for each se-
cure transmission command.

Note that (5) describes the process in symmetric key en-
cryption that is typically carried out before the actual en-
cryption takes place: the principals involved in the com-
munication exchange a secret key. The actual encryption
of the plaintext and the transmission of the ciphertext are
described by (4).

Note also that in (5) it is not necessary thatA generates the
key and sends it toB. Alternatively, one could also use

B : generate(kb)
B : kb → A.ka .

(6)

Finally, note that instead of prepending (5) we could also
modify the epistemic structure we start with. For each se-
cure transmission command as above, we could add a vari-
ablek to the set of protocol variablesV instead of using the
two variableska andkb, make surek is assigned a value in
a random fashion according to the distribution on the key
space, and makek accessible toA andB only. We could
then replace (4) by

A : e = E(k,m)
A : broadcast(e)
B : v = D(k, e) .

(7)

Theorem 1 (preservation theorem)Let S be an epis-
temic structure such thatP is fit for S . ThenP∗ (as
obtained above) is is fit forS and for each formulaϕ ∈
LPK(Agts) we haveS [P] |= ϕ iff S [P∗] |= ϕ, provided
either

1. the encryption schemes used are possibilistically se-
cure andϕ does not contain probability operators, or

2. the encryption schemes used satisfy the perfect se-
crecy condition.

Intuitively, this result states that when they runP∗ and in-
formation is sent in an encrypted broadcast form, visible to
all agents, rather than through private channels, the agents
to the protocol (and others) do not learn anything about the
variables ofS andP that they would not have learnt when
runningP. Note that the result concerns security against
passive adversaries, who intercept the broadcast communi-
cations, but have no powers to prevent message delivery or
inject false messages.
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5 Refinements and Proof of Main Theorem

In this section we outline the proof of Theorem 1; we re-
strict attention to the probabilistic case. The main ingredi-
ent of the proof is the notion of refinement between epis-
temic structures.

5.1 Refinements

We start with the definition of refinements. LetS be an
epistemic structure as usual and let

T = 〈Agts,W ′, {∼′
A}A∈Agts , C

′,
{

P′c
}

c∈C
, V ′, π′〉

be another epistemic structure with an identical set of
agentsAgts. A refinement mappingfromS toT is a func-
tion r : W →W ′ such that

R1. V ′ ⊆ V ;
R2. π(w)(v) = π′(r(w))(v) for all w ∈W andv ∈ V ;
R3. if cell(w) = cell(w′) thencell′(r(w)) = cell′(r(w′)),

for w,w′ ∈ W ;
R4. if w ∼A w′ thenr(w) ∼′

A r(w′), for w,w′ ∈ W and
A ∈ Agts;

R5. forw ∈ W andw′ ∈ W ′ andA ∈ Agts, if r(w) ∼′
A

w′ then there existsw′′ ∈ W such thatw ∼A w′′ and
r(w′′) = w′;

R6. P′cell′(r(w))(w
′) = Pcell(w)(r−1(w′)) for w ∈ W and

w′ ∈ cell′(r(w)).
R7. forw ∈ W ,A ∈ Agts, andw′ ∈ IA(r(w)),

P′cell′(r(w))(w
′ | IA(r(w)))

= Pcell(w)(r−1(w′) | I ′A(w))

whereIA(w) = {w′′ ∈ cell(w) | w′′ ∼A w} and,
similarly, I ′A(r(w)) = {w′′ ∈ cell(w) | w′′ ∼′

A

r(w)}.

We say thatS is a refinementof T if there exists a re-
finement mappingr from S to T . In this case, we write
S �r T , or S � T for short.

5.2 Basic Facts about Refinements

We state some basic facts about refinements, after which
we can describe in more detail how the proof of Theorem 1
is structured.

It is straightforward to check that “being a refinement of”
is a transitive relation:

Lemma 1 (transitivity) AssumeS , T , andU are epis-
temic structures such thatS � T and T � U . Then
S � U .

Refinement is also easily seen to be preserved under appli-
cation of actions:

Proposition 1 (refinement and actions)LetS andT be
epistemic structures such thatS � T and letA be an
action fit forT . ThenA is fit forS andS×A � T ×A .

The following result states that formulas over the variables
of the target structure are preserved by refinement map-
pings.

Proposition 2 (preservation by refinement) LetV be the
set of variables of the epistemic structureT and assume
S �r T . Then for all worldsw of S and formulasϕ ∈
LAgts(V ),

S , w |= ϕ iff T , r(w) |= ϕ .

Sketch of proof The proof is an induction on the structure
of ϕ. �

5.3 Sketch of the Proof of Theorem 1

In view of Proposition 2, to prove Theorem 1 it suffices to
showS [P∗] � S [P]. We will prove this using an inter-
mediate protocol. LetP# be the protocol obtained from
P by substituting for each secure transmission command
of the formA : m→ B.v occurring inP the sequence

A : generate(ka)
A : ka → B.kb

A : e = E(ka,m)
A : broadcast(e)
B : v = D(kb, e)

(8)

with ka, kb, E, andD as above. We show thatS [P∗] �
S [P#] (see Subsection 5.4) andS [P#] � S [P]
(see Subsection 5.5), which, by Lemma 1, then implies
S [P∗] � S [P].

5.4 Commutation Rules

We start with a fairly general result on the effect of revers-
ing the order of two consecutive actions.

An action as in (3) haspropositional preconditionsif all
ϕ ∈ Φ are boolean combinations of atomic propositions of
the formx = y wherex andy are variables or constants.

Actions A and B are concurrently fit for an epistemic
structureS if A andB are fit forS , actionA is fit for
S ×B, andB is fit for S ×A .

Lemma 2 (commutation rule) Let A andB be any ac-
tions with propositional preconditions such thatA andB
are concurrently fit forS . Then

S ×B ×A � S ×A ×B .

Sketch of proof The worlds ofS×B×A andS×A×B
have the forms((w, b), a) and((w, a), b), respectively, and
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the mapping((w, b), a) 7→ ((w, a), b), can be shown to be
a refinement. �
There are two important consequences of Lemma 2:

Lemma 3 (rule for randomization) Let A be any
action and let B be the action corresponding to
A : generate(k) such thatA and B are fit for S
andS × A , respectively. ThenB andA are fit for S
andS ×B, respectively, andS ×B×A � S ×A ×B.

Lemma 4 (rule for private channel) Let A be any ac-
tion corresponding to a protocol command that does not
introduce the protocol variablev andB be the action cor-
responding toA : v → B.v′ such thatA andB are fit for
S andS ×A , respectively. ThenB andA are fit forS
andS ×A , respectively, andS ×B×A � S ×A ×B.

From Lemmas 1, 3 and 4 and Proposition 1, we obtain by
induction:

Proposition 3 For S andP as in Theorem 1,S [P∗] �
S [P#].

5.5 Implementing Secure Channels

We next note that implementing secure channels can be
dealt with:

Proposition 4 (implementing a private channel) Let A
be the action corresponding toA : m→ B.x and letA ∗ be
the action sequence corresponding to (8) when cryptogra-
phy is interpreted using an encryption schemeE . Suppose
S �r T .

Then ifE satisfies the perfect secrecy property, then there
existss such thatS ×A ∗ �s T ×A .

Sketch of proof Since the actionA is deterministic, the
worlds ofT [A ] andT are in 1-1 correspondence, so we
may use the same symbolw to refer to a world ofT and the
world (w, e) representing the effect of having performed
the actionA : m→ B.x onw. Similarly, all actions corre-
sponding to commands inA ∗ exceptgenerate(ka) are
deterministic, so ifw is a world ofS andk is a key then
we may writew + k to refer to the world ofS [A ∗] pro-
duced when the random choice forka is k. Using these
identifications, define the mappings by s(w + k) = r(w).
This can be shown to be a refinement mapping. �
From the previous proposition and Proposition 1, we obtain
by induction:

Proposition 5 For S andP as in Theorem 1,S [P#] �
S [P].

6 Conclusion

We have introduced a model for security protocols as
well as an appropriate epistemic logic for specifying se-
curity properties of such protocols, and proved that a no-
tion of implementation that transforms secure channels
into encrypted broadcasts preserves these epistemic speci-
fications, provided information-theoretic secure encryption
schemes are used.

The related work on the relations between abstract and con-
crete models of protocols mentioned in the introduction is
largely concerned with showing that implementations keep
secrets from an active adversary. By contrast, our work is
concerned with the preservation of a richer class of prop-
erties (involving also trusted principals) expressible inthe
logic of knowledge and probability. On the other hand, we
consider only passive adversaries, and our notion of imple-
mentation uses a less realistic type of cryptographic primi-
tive and does not take computational complexity concerns
into account. We hope to address this concern in future
work.
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