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Abstract 

In this paper Boolean games are introduced as a class of two-player zero-sum games along 
with a number of operations on them. We argue that Boolean games can be interpreted as 
modelling the information structures of two-person zero-sum games. As such they comprise 
games of imperfect information. The algebra of Boolean games modulo strategic equivalence 
is then proven to be isomorphic to the Lindenbaum algebra of Classical Propositional Logic. 
A neat match between the game-theoretical notion of a winning strategy and a logical coun- 
terpart, however, calls for a refinement of the notion of validity. Pursuing this issue we finally 
obtain a logical characterization of determinacy for Boolean games. 
Keywords:  Zero-sum Games, Boolean Algebra, Classical Propositional Logic, Determinacy. 

1 I n t r o d u c t i o n  

One of the early issues in game theory was under which operations extensive games remain strate- 

gically equivalent. This question has a distinctly algebraic ring and gives rise to others, such as 

"what are viable operations on games?", "what is a feasible notion of strategic equivalence?" and, 

given satisfactory answers to these, "what kind of algebra do games constitute?". 

In this paper, these algebraic issues are apportioned a central place as they mediate a logical 

approach to some of the qualitative aspects of game theory. We will subsequently: 

(1) define inductively a class of two-person fully competitive games, which comprises both 

games of perfect and imperfect information; 

(2) introduce a viable notion of strategic equivalence; 

(3) prove the games constitute a Boolean algebra modulo this notion of strategic equivalence; 

(4) formulate a sound and complete calculus for winning strategies; 

(5) establish a correspondence with an appropriate classical propositional language and prove 

the Lindenbaum algebra of the respective logic to be isomorphic to the algebra of games; 

(6) generalize the logical notions of validity and satisfiability and show these refined concepts 

to correspond to game-theoretical ones; 
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(7) give a logical characterization of determined games which also applies to games of imperfect 

information. 

This opens up a line of research in which game-theoretical issues are at tended to with solely logical 

means. Our concerns are thus with the logical foundations of game theory and strategic reasoning 

rather than with the game-theoretical underpinnings of logic. It is in this respect that  our approach 

should be distinguished from game-theoretical semantics (cf., Hintikka [1973], Hintikka and Sandu 

[1997]), the employment of games in model theory (cf., Hodges [1993]), and logic games (cf., 

Lorenzen and Lorenz [1978]). It is far more reminiscent of the recent work by van Benthem (cf., 

van Benthem[1998], [1999], [2000]), although the formal development of our framework is different 

from any of the above. 

Both two-person zero-sum games and classical propositional logic have been studied extensively. 

As such, the merits of this paper should be sought mainly in the light it sheds on how logic, algebra 

and game-theory are intertwined. Moreover, the authors believe that  the present analysis provides 

the necessary foundations for a more extensive framework facilitating a logical theory of multi- 

player games. 

2 G a m e s  

The games we consider have {0, 1} as the set of players. With each player i E {0,1} we associate 

a set of atomic strategies Ai {a~,..  i = ., an , . . .} .  Let Ao N A1 = ~ and have A denote Ao tO A1. 

Relative to A we define inductively the set of games ~A. At the lowest level we distinguish two 

atomic games, 0 and 1. In the former, intuitively, player 1 loses and player 0 wins, no matter  

what. The constant outcome of this game we denote by the player that  wins, i.e., 0. In contrast, 

in 1 victory is player l ' s  and player 0 will have to content himself with a defeat. The outcome of 

this game we denote by 1. 

A molecular game a(g0,gl)  offers either player 0 or player 1, depending on whether a E Ao or 

a E A1, the choice between performing a or refraining from this course of action. The outcome of 

this game will be go or gl, respectively. 

Formally, games are introduced as sequences of atomic strategies and atomic games: 

D e f i n i t i o n  2.1 (Games) Let A be a set of atomic strategies and define the set of games ~ as 

the smallest set satisfying both: 

(i) {o, 1} g 

(ii) g0, gl • ~A &Or • A ~ (a, g0,gl) • @A 
The game (a, g0, gl) will in the sequel generally be denoted by a(go, gl). The subscript in ~A will 

usually be omitted. 

Note that ,  although in each game a player has a binary choice, we do not assume that  the players 

alternate. Consequently, n-ary choices for a player can be accounted for by having a player make 

n - 1 binary choices in a row. 
Molecular games are thought of as being played iteratively. First, one player plays a game 

a(g0, gl) by performing or refraining from doing a and her choice determines which of go and gl 

is played subsequently. This sequentiality can be made explicit by representing a game g • ~ as a 

tree. Interpreting movement to the left at a vertex labelled with a as performing a and going to 

the right as refraining from acting thus, the tree form of g = al(a°(1,  bl(1, 0)), b°(0,1)) could be 

depicted as in figure 2.1: 
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1 / % 0  1 

1 0 

Figure 2.1 

3 O p e r a t i o n s  o n  G a m e s  

We now introduce a total of four operations on games by means of which games can be constructed 

from smaller ones. 

D e f i n i t i o n  3.1 Let g and I) be games. Define + , . ,  - and ~ such that:  

(1) 0 + ~ : = ~  

l + [ J : =  1 

oL(go, g~) + [j := a(go + 2, gl + 2) 

(2) 0 . 2 : = 0  
t . O : = O  

a(~0, gl)-~ := a(g0-2, gl" 2) 

(3) O :=  1 
T :=O 

(a(go, gl)) := ~(~0,~1) 
(4) ~(0, 2,~) := 

(9(1, I),~) :---- [J 

• (~(go, gl), 2, e) := ~(~(g0, 2, e), ¢(gl, 2, ~)) 

Intuitively, the sum of two games, g + D, is the result of replacing any occurrence of the game 

0 in g by D. Conceiving games as trees, + makes that  the root of ~ will be attached to any leaf 

node of g labelled with 0 (cf. figure 3.1). 

1 0 

1 0 0 1 

1 0 

1 o 

Figure 3.1 

Taking the product of two games (g. 2) is similar to adding two games, be it that  through • it is 

every occurrence of I that  is being replaced by D. The complement of a game g, g, differs from g in 

that  all occurrences of I and 0 are interchanged. The operation ~ comes down to simultaneously 

adding one game and multiplying it with another. Hence, ~(g, D, ~) is the game that  is like g except 

that  each occurrence of 1 is replaced by an occurrence of [j and every occurrence of 0 by one of 

~. It be noted that  {a(1, 0) I a E A} U {0,1} is a set of generators in the algebra (OA, + , . ,  - ,  ¢) .  

No subset of {+, . ,  - } is functionally complete in this respect, although $ on its own is. 
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4 S t r a t e g i e s  &: S t r a t e g y  P r o f i l e s  

So far, only a few, informal, words have been spent on what strategies the players can adopt in 

playing the games introduced in Definition 2.1 and different options are still open in this respect. 

Here, we take the powerset of Ai, c.q. the set of characteristic functions on A, 2 A~, as the set of 

strategies for player i (i E {0, 1}). A strategy profile is the set-theoretic union of a s trategy s of 

player 0 and a strategy s ~ of player 1. Intuitively, when a player i adopts a strategy s E Si, i will 

perform a in a game a(g0, gl) if a E s, and refrain from acting thus otherwise. This conception of 

a strategy has some interesting consequences. 

D e f i n i t i o n  4.1 (Strategies) Define for each i E {0, 1} a set of strategies Si as well as a set of 

strategy profiles E as: 

Si := 2 Ai 

:= { s u s ' l s e S o & s '  eS1 } ( = 2  A) 

A strategy profile a E ~ can be regarded as determining a unique outcome value in {0,1} for 

each game. For 0 and 1 this outcome w~l invariably be 0 and 1, respectively. The outcome of 

a molecular game given a strategy profile a will, strictly speaking, again be a game. However, 

assuming that  players do not revise their strategies during play, a unique value in {0, 1} can be 

associated with each game g E ~ and each a E ~ through iteratively calculating the outcomes of 

the games that  will be outcomes if a is played. We thus obtain the strategic .form of a game g, 

which maps ~ onto {0,1}: 

D e f i n i t i o n  4.2 (Strategic Form) The strategic form of a game g is a function sf(g) : ~ ~ {0, 1}, 

defined such that  for all a E ~: 

sf(o)(o) := 0 
:= 1 

{ sf(g0)(a) if E a 
:= sf(gl)(a) otherwise 

We are now in a position to express the game-theoretical concept of a winning strategy. A strategy 

s is winning for a player i in a game i~ if, no mat ter  which strategy the other player plays, adopting 

s will result in a victory for i. 

D e f i n i t i o n  4.3 (Winning Strategy) Let i e {0,1}. For all g e ~ and s e Si: 

s is a winning strategy for i in I) : ~ Vs' E Sl-i : sf(g)(s U s') = i 

If two games have the same function from E to {0, 1) as their strategic form, they are in an 

important  sense equivalent. Though they may be different in many other respects, any pair of such 

games are quite indistinguishable from the perspective of a player that  has to settle for a strategy 

and who is only interested in whether she wins or loses the game. These concerns give rise to the 

following definition of strategic equivalence between games: 

D e f i n i t i o n  4.4 (Strategic Equivalence) For all I), I) E ~ : 

g _~ I): ~ sf(g) = sf(~) 

It  is important  to note tha t  our notion of a strategy profile is global in the sense that  sf(g)(a) 

is defined for all g E ~ and any cr E ~. This makes that  the strategic properties of any two games, 

however different, can be compared in a straightforward fashion. The behavior of the strategic 

forms of games under the algebraic operations is summarized in the following proposition: 
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Proposition 4.5 
sf(c~(1, 0))(a) = 1 

sf(g + ~)(~) = : 
~(~. b)(~) = : 

sf(:)(:) = : 

For all games th b • ~ and each strategy profile a • E: 

sf(l~)Ca) = 1 or sfCb)(a) = 1 

sfCg)(o') = I & sfCb)(a) = I 

sf(g)(~) = 0 

We merely mention that  ~9(1~, [10, b:) ~ (g" b0) + (g" b:). Hence, from a strategic perspective, 

can be dispensed with. 

A more important consequence of both Proposition 4.5 and the choice of strategy profiles 

as subsets of A is tha t  the set of games can be proved to constitute a Boolean algebra modulo 
strategic equivalence. Strategic equivalence partitions G. Let [g] denote {bll~ =- b} and set 

~5__- := {[g] ] ~I • ~5}. The operations +, • and - can be raised to operations on equivalence classes 

of games, -{--, • and - ,  in such a way tha t  [1t] + [hi = [1~ + b], [1~] • [b] = [{t" b], and [g] = ~]. We 

now obtain the following theorem. 

T h e o r e m  4.6 ( ~ ,  "k, ", - ,  [0], [1]) is a Boolean algebra. 

5 A C a l c u l u s  for W i n n i n g  S t r a t e g i e s  

In this section we introduce a sound and complete system to derive winning strategies by mere 

symbolic manipulation. To this end we first introduce the notion of a partial strategy profile. 

Formally, a partial strategy profile is a pair of disjoint strategy profiles (a, r) E E x E. Intuitively, 

the first entry denotes the atomic strategies that  are to be played, the second entry the atomic 

strategies that  are to be refrained from. The partiality of a partial strategy profile lies in the fact 

that  it does not in general determine for each atomic strategy whether it should be played or rather 

not. 

D e f i n i t i o n  5.1 (Partial Strategy Profiles) Define the set of partial strategy profiles ~" as: 
E" := {(a , r )  e 51 x ~ l a n r  = o }  

Partial strategies can be ordered in accordance with their measure of specification. Let _U be 

such that  for all (a,r),(a' ,r ')  E 51": (a,r) g (a',r') : ~ a g a' & r  C_ r'. (g ' ,g_)  is then 

a partially ordered set in which (g,  0 )  is the least element in the order, and, letting ~ denote 

A\a, each (a ,g)  a maximal element. If (a , r )  E (a ' , r ' ) ,  we say that  ( a ' , r ' )  extends (a,r). The 

definition of the strategic form of a game can be conservatively extended to a partial function from 

pa tial strategy profiles to {0, 1}. The partial strategic form of a game 1~, Pf(ft), is defined for a 

partial strategy profile (a, r)  if it determines the same value for all maximal extensions of (a, r) 

and is undefined otherwise. 

D e f i n i t i o n  5.2 (Partial Strategic Form) The partial strategic form of a game g is a partial 

function Pf(l~) : E~r -+ {0,1} such that  for i • {0,1}: 

i if Vv • 51 : (a ,r)  E (v,V) ~ s f ( g ) ( v )  = i 

pf(l~)((a, r ))  := undefined otherwise 

Note that  the following proposition is an almost immediate consequence of the definitions: 

Proposition 5.3 Let i E {0, 1}. For all g • ~,  a • 51 and s • Si: 

(i) pf(l~)((a,g)) = i -',' > sfCl~)Ca) = i 
(ii) pf(g)((s, S/ \s))  = i -'. > s is a winning strategy for player i 
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We are now in a position to present the calculus and prove its soundness and completeness. 

Intuitively, (a, r)  IM It signifies that  the partial strategy profile (a, r)  guarantees player i a win in 

game ll- 

D e f i n i t i o n  5.4 ( [M ) Let i E {0, 1}. Define for all (a, r ) ,  (a', r ' )  E N=: 

AO°: (0, 0 ) I ~  0 AO': (0, ~)l id 1 

O, r) 1¼ g0 a ~ r (a, ~) 114 g~ a ~t ,7 
R1 i : R2 / : 

(,~ u {a},r)IIA ~(go, m) (a,r  U {0~})IIA Ot(~[O, ~1) 

.R3 i : 
(~ u {5} ,  r )  IIA ~ (~, r U {.~}) IIA 

(~, r)IM g 

R4 i : 
(a, r) 11,4 ~ a n r' = a' n r = a' n r' = z 

(aU~',r Ur')1¼ 

The derivability relation I~/~ C N~ x ~ is then given by closing the set of instances of axiom A0 i 

under Rli-R4 i. 

This system turns out to be both sound and complete with respect to the extended notion of 

the strategic form of a game. 

T h e o r e m  5.5 (Soundness E4 Completeness) Let i E {0, 1}. For all games g E ~ ,  (a , r )  E N~: 

(~,~) 1¼ g *=~ pf(g)((a,r))  = i 

P roof :  Soundness is proved by an induction on  the length of the derivation, whereas complete- 

ness can be proved by an induction on the complexity of g. 

As a corollary we obtain the following, which establishes the system as a calculus for winning 

strategies: 

Co ro l l a ry  5.6 Let i e {0,1}. For all g E ~5, s E Si: 

(s,~) [M g ¢=e. s is a winning strategy for i in g 

Another issue is how the derivability relations IM behave with respect to the game operators 

+,  -, - .  Derived rules for these can easily be obtained in the calculus, e.g., the following. Assume 

O ' N T  I -~- 0 "l n T T  ~ 0 "  N T  I = ,~ .  

Ai° :  (O, {a}) I~/~ c~(1, 0) A l l :  ({o~}, ~)  lid c~(1, 0) 

(~, ~)IIA g (o, ~)l~ 
R51 : R6 ° : 

O, ~) lid 0 + ~ (a, ~) ll,~ ~" 

(a, r)  l id g (~', r') 1¼ I1 (~, r) I H - i  g 
R7 z : R8 i : 

(,~ u ~',~ u r ' ) l id  g-~ (~,~) 1¼ ~ 
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6 Perfect & Imperfect  Information 

When setting out to play a Boolean game g, a player i has to decide for each atomic strategy a i E Ai  

whether to admit it to her strategy or not. Moreover, she has to stick to this choice throughout the 

game, even though a i may occur more than once in g. Within the Boolean framework there simply 

is no strategy s E Si  such that  i 's adopting it makes that  a (sub-)game ai(l~0,gl) is continued with 

go and another (sub-)game ai(bo, bl)  with bl. So, if atomic strategies are interpreted as (choices 

between) actual actions, it could be argued that  Boolean games comprise rather a restricted class 

of games, with only a limited number of real-world examples. 

Boolean games, however, also allow for an alternative and more comprehensive interpretation. 

Rather than denoting choices between two actual courses of action, the atomic strategies could be 

taken as labelling the sets of game-states the players cannot epistemically tell apart. Under this 

interpretation a player i is supposed to be incapable of distinguishing the state in which she has to 

decide on a course of action in ai(go, gl) from the one she is in when having to move in bi(b0, bl) if 

and only if a i = b i. We argue that ,  conceived thus, Boolean games provide a framework in which 

the information structures of finite fully competitive two-person zero-sum games can be modelled. 

Generally speaking, in games of imperfect information situations may arise in which some player 

is unable to distinguish the state she is actually in from a state that  she could have been in had the 

game been played differently. Players, caught as they are in their epistemic state, should settle on 

strategies that  prescribe the same course of action in any two states tha t  they cannot tell apart. 

In this way, imperrfect information res t r ic ts the  number of strategies available to a player. This 

complies with the interpretation of Boolean games in which atomic strategies are taken as labels 

of information states and strategies as sets of atomic strategies. Any two subgames c~(g0, gt) and 

c~(bo, bl) are then thought of as belonging to the same information set. Moreover, the Boolean 

notion of a strategy makes that  the player concerned has to make the same choice with respect to 

a in both of them. 

For an example, at (b°(1, 0), b°(0,1)) denotes a game in which 0 is ignorant as to which choice 

player 1 made with respect to a t. This particular game could be seen as representing (the in- 

formation structure of) the well-known and simple game of Matching Pennies (cf. Osborne and 

Rubinstein [1994], p.17). In this game the two players both put a penny with either heads or tails 

up. If they they both turned the same side up, player 1 collects both pennies and wins. Otherwise 

player 0 wins with a netto profit of one penny. Compare Figure 6.1, below. The left-hand graph 

depicts the game in traditional fashion. The outcome (-11) means a win for 1 and a loss for 0 and for 

the outcome (~1) vice versa. A dotted line between two vertices indicates they belong to the same 

information set. The right-hand picture is the corresponding Boolean representation, in which two 

vertices are labelled with the same atomic strategy if they are epistemically indistinguishable for 

the player concerned. 

(_11) (-~1) (-~1) (_11) 1 0 0 1 

Figure 6.1 

Boolean games can thus be seen to represent the information structure of a two-person zero- 

sum game in a remarkably neat and simple way. Games of perfect information can accordingly be 
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identified with those games in which the information sets are singletons, i.e., in which each atomic 

strategy a ~ A occurs at most once. A formal elaboration of the issues addressed in this section is 

given in Harrenstein [2001]. 

7 P r o p o s i t i o n a l  L o g i c  

The fact tha t  Boolean games modulo strategic equivalence constitute a Boolean algebra as well as 

the behavior of the operations +,  • and - ,  suggests that  there might be a connection with classical 

propositional logic. In this section, this impression is vindicated. A propositional language,/~, is 

introduced along with its logic. A conspicuous feature of the language is tha t  atomic strategies 

figure as propositional variables. We show that  the Lindenbaum algebra of the logic is isomorphic 

to the algebra of Boolean games, (¢~ ,  + ,  0, - ,  [0], [1]). 

D e f i n i t i o n  7.1 (Syntax of £) 
• Propositional variables: a E ¢0 = A 

• Formulae: ~ E 

The semantics of £ will not surprise anyone familiar with the propositional calculus. Two 

matters should nevertheless be drawn some attention to. First, stripping them to their bare 

essentials, valuations for £ are sets of propositional variables, or, alternatively, their characteristic 

functions with a (a )  = 1 ~ a E a. As the latter are identical to atomic strategies, the forcing 

relation, ~ ,  can be construed as holding between strategy profiles and formulae. The second point 

is that  we define the forcing relation relative to an ordering of the values 0 and 1. The idea behind 

this is tha t  here these values do not so much capture a notion of t ru th  as reflect the preferences 

of the two players over these values. Accordingly, we distinguish two total orderings over {0,1}, 

wl and wo. The former is such that  0 <~1 1 and mirrors the preferences of player 1, whereas in 

the latter 1 <~o 0, which accounts for player O's predilections. Informally, a, all ~ ~o betokens 

that  ~o has i's preferred value in a. Relativizing the semantics to an order wi, however, affects the 

behavior of the binary connectives V and A. In the order Wl, V and A are interpreted as join and 

meet as usual. In Wo this is exactly the other way round. 

D e f i n i t i o n  7.2 (Semantics) Let i 

a, w i ~ a  : .¢=#. a (a )  = i 

a, wo ~ ¢pA ¢ : '¢=¢" a, wo ~ ~o 

o',wl ~ A ¢  :¢==]> O',Wl ~¢p 

E {0, 1}. Define for each ~o E ~, and a E E, a, w / ~  ~o as: 

or ¢ 

& a, wo ¢ 
or a, l ¢ 

Logical consequence, r ~ ,  ~o is defined as usual and let ~ o ~  ¢ denote logical equivalence of ~o 

and ¢.  Observe that  a, wi ~ ~o iit a, wl - i  ~= ~o, whence also ~o ~o~, ¢ iif ¢ ~o~,_, ~o. Moreover, 

Each game g E ¢~ can now be associated with a formula ~o E ~. Let _L be any classical 

contradiction, e.g., a ° A -~a ° and T any classical tautology, e.g., a ° V -~a °, then define: 
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Def in i t ion  7.3 Define inductively for each g E 0 and c~ E A, form(g) E ¢' as: 

form(O) := _L 
form(l) := T 

form(c~(g0, gl)) := (a A form(g0)) V (-~a A form(gl)) 

Now we are in a position to prove that logical notion of equivalence coincides with its game- 

theoretical counterpart, i.e., strategic equivalence: 

T h e o r e m  7.4 Let i E {0, 1}. For each g E O, a E ~: 
(i) a, wi ~ form(g) ~ sf(g)(o') = 

(ii) form(g) ~ form([~) ~ g ~ I~ 

Proof." The proof of (i) is by induction on the complexity of g. As an immediate consequence 

of (i) we have (ii). 

To appreciate the full scope of this theorem, the reader realize that the mapping form : ~5 ~ ~li 

is one-one. Observe the following interactions between the operations on games and the logical 

constants: 

Proposition 7.5 Let i E {0,1}. For all g E O : 
form(a(1,0)) ~ , ,  a 

form(g + b) --=~, form(g) V form(k) 
form(g. Ij) . ~  form(g) ^ form(Ij) 

form(V) =--~ ~form(g) 

We can now prove that the Boolean algebra of (strategic forms) of games is isomorphic to the 

Lindenbaum algebra £ associated with the logical language £. Let [7~]wl := {¢ E ¢ [ ~ ~wl ¢} and 
define £ = (@~,,V,A,-,[±]~i,[T]~,),  with @~ = {[~]~ [~ E @}, and [~]~,V[¢]~ = [7~V ¢]~,, 

[7~]w,A[¢]w~ = [7~" ¢]~, and [7~]w, = [-~7~]w,. The proof is an easy check. 

T h e o r e m  7.6 Let f :  O_= ~ ~w, be such that .f([g]w,) = [form(g)]~, f ( + )  = V, f ( , )  = A and 

f ( - )  = - ,  then f is a~/isomorphism between ~5__- and £, i.e., 

f :  (O=, + , . ,  - ,  [0], [1]) ~ (¢,~,, V, A, - ,  [.L]wx, [T]w,). 

8 Relativized Validity and Satisfiability 

In the development of mathematical logic, also when related to the study of games, the semantical 

notions of validity and satisfiability play a prominentrole. From the standpoint of Boolean Games, 

however, validity and satisfiability as such are not particularly interesting. Validity of a formula 

with respect to an order wl signifies that the corresponding game cannot otherwise but result in 

a victory for player i. Satisfiability in wi, on the other hand, conveys that there is some strategy 

profile such that if it is played player i wins. This, however, may require the cooperation of the 

opponent, which she might be reluctant to offer. 

Strategic reasoning, it would seem, is rather about what a player can achieve relative to the 

strategies her opponent may choose. In £, the set of propositional variables O0 is divided in the 

set of atomic strategies of player 0, A0, and the those of player 1, A1. In semantic terms, what we 

are interested in is the possibilities of satisfying a formula given any fixed values, or rather given 
any values, for the atomic strategies of one of the players. 
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With these considerations at the back of our mind, the notions of satisfiability and validity are 

here generalized by parameterizing them with a subset A C @0. This opens up a whole spectrum of 

notions of validity and satisfiability, of which the traditional ones are borderline cases. Moreover, 

these relativized semantical notions are in a natural way correlated to some strategic concepts of 

Boolean games. 

D e f i n i t i o n  8.1 (Relativized Satisfiability and Validity) Let a ,-~a a '  : ~ Va • A : a (a )  = 

a~(a). Then define for any A C ¢0 and ~ • ~: 

is A-independently satisfiable in wi : ~ Va • ~, ~a t • ~ : a , . ~  a ~ & a~,wl ~ 7~ 

7~ is A-dependently valid in wi :~::::::~ : : ] a • ~ , V a ~ E Z :  a ~zx a' =:=~ a~,wi ~ 7~ 

Intuitively, A-independent satisfiability of a formula ~ pertains to the possibility to find, for any 

values for the propositional variables in A, a valuation a '  that  satisfies 7~ by only varying on the 

values of the propositional variables outside A. A formula 7~ is A-dependently valid if one can 

choose values for the proposition variables in A such that  ~ is satisfied in any valuation that  

respects tha t  choice. Note that  A-independent satisfiability implies satisfiability and that  validity 

implies A-dependent validity. The converse claims, however, do not hold in general. The following 

fact gives an impression of how relativized satisfiability and relativized validity relate to the more 

traditional notions of satisfiability and validity. 

Fac t  8.2 For all ~ • @, i • {0, 1}: 

(i) 7~ is satisfiable in wi 

(ii) 7~ is satisfiable in wi 

(ii) 7~ is valid in wi 

(iv) ~ is valid in wi 

7~ is g-independently satisfiable in wi 

is ¢0-dependently valid in wi 

is ~0-independently satisfiable in wl 

7~ is g-dependently valid in wi 

More in general, we also have the following proposition concerning the way relativized validity and 

satisfiability interact. Let ~ := ~o \A:  

P r o p o s i t i o n  8.3 For all 7~ E ~, A C ~o, i • {0, 1}: 
(i) ~ is A-dependently valid in wi ==~ ~ is A-independently satisfiable in wi 

(ii) 7~ is A-independently satisfiable in wi -.' ;- 7~ is not A-dependently valid in wt - i  

Proof." Consider arbi t rary 7~ E ¢,  A C ~0, i E {0,1}: 

(i) Assume 7~ be A-dependently valid in wi, i.e., some a E ~ is such that  for all a '  E ~, if 

a ~z~ a ~ then a ~, w~ ~ ~. Consider this a as well as an arbi t rary a ~ E E. Now define 

a* E E such that  for all a E ~0: 

{ a ( a )  if a e A 
a*(a)  := at(a ) if a • 

Clearly, a* ~zx a and by A-dependent validity of 7~ in wi, a*,wl ~ ~o. Moreover, a ~ ,-~X a*. 

Hence, a* is a proper witness to the A-independent satisfiability in wi of 7~. 

(ii) Consider the following equivalences: 

7~ is A-independently satisfiable in wi 

-: ;. for all a, there is a a '  such that  a ~zx a' & a' ,wi ~ ~o 

.'. for all a, there is a a '  such that  a "~zx a' & a ' ,w l - i  ~: 7~ 

there is no a such that  for all a' : a ~ a' ~ a ' , w l - i  ~ 

7~ is not A-dependently valid in wl-~ -~ 
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We argued tha t  the traditional logical concepts validity and satisfiability do not chime in 

particularly well with interesting strategic notions for Boolean games. Relativized validity and 

satisfiability fare considerably better in this respect. Relativized validity has for instance a natural 

game-theoretical counterpart in a player having a winning strategy in a Boolean game. 

Fact 8.4 For all g E ~ ,  i E {0,1}: 
i has a winning strategy in g -.' :::~. form(g) is Ai-dependently valid in wi 

Proof: Consider an arbitrary g E ~ and let i E {0,1}. 

=~: Assume player i have a winning strategy in g. Then some s E Si is such that  for all s ~ E Sl - i :  

sf(g)(s U s') = i. Consider this s and let a = s. Also consider an arbitrary a ~ E ~ such that  

a ~A~ a ' .  Obviously, there is an s" E S l - i  such tha t  a ~ = s U s". Since s is winning, we have 

sf(g)(a') = i. Whence, by Theorem 7.4, a' ,wi  ~ form(g). 

.¢=: Assume form(g) be Ai-dependently valid in w~. By definition there is a a E ~ such that  for 

all a '  E ~,  if a ~A~ a '  then a' ,wi  ~ ~o. Consider this a and let s = {a E A i [ a  E a} E Si. 

For arbitrary s' e S l - i ,  obviously, a ~A, s U s'. Hence s U s' ,wi ~ form(g). Applying 

theorem 7.4 (i) we finally have sf(g)(s U s') = i. q 

To what game-theoretical concept relativized satisfiability corresponds might be slightly more 

elusive. In any case, form(g) is Al_i-independently satisfiable in wi if whenever i knows her 

opponent's strategy she can choose her strategy to win the game. Of course, this holds whenever 

i has a winning strategy. This observation is a straight instance of Proposition 8.3(i), above. 

The converse of this proposition, it be noted, does not hold in general, but it does entertain 

an in t imate  connection with the game-theoretical notion of determinacy. A game is said to be 

determined if one of the players has a winning strategy. As matters turn out, the games for which 

the converse of Proposition 8.3 holds are exactly the games that  are determined. Hence we obtain 

the following theorem: 

T h e o r e m  8.5 For all g E ~ ,  i E {0, 1}: 

g is determined if and only if the following two claims are equivalent: 

(1) form(g) is Ai-dependently valid in wl 

(2) form(g) is Al_i-independently satisfiable in wi 

Proof: Consider an arbitrary game g E ~ as well as an arbitrary i E {0, 1}. 

~ :  Assume g to be determined. The (1) =~ (2) direction follows immediately from Proposi- 

tion 8.3(i). For the (2) =~ (1) direction, assume form(g) to be Al_i-independently satisfiable 

in wi. With determinacy of g and Fact 8.4, either (a) form(g) is Ai-dependently valid in wi, 

or (b) form(g) is Al_i-dependently valid in wl-i .  By the assumption and Proposition 8.3(ii), 

the latter cannot be. So, as not (b), (a): form(g) is Ai-dependently valid in wl. 

~ :  Assume (1) and (2) to be equivalent. First assume that  form(g) is Ai-dependently valid in 

wl. Then, with Fact 8.4, i has a winning strategy in g. Now assume that  form(g) is not 

Ai-dependently valid in wi. In this case, by assumption, form(g) is not Al_i-independently 

satisfiable in wi either. Applying Proposition 8.3(ii), form(g) is Ax_i-dependently valid in 

wl- i ,  and so 1 - i has a winning strategy in g. q 

As early as 1913 Zermelo (Zermelo [1913]) proved finite two-person strictly competitive games 
of perfect information to be determined. This result naturally propagates to Boolean games of 
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perfect information (cf. Section 6). Some games of imperfect information are determined as well 

but this fact does not hold in general. Theorem 8.5 also applies to these games and as such features 

a logical characterization of determinacy. 

9 Conc lus ion  

In this paper we introduced a framework of finite, two-person and fully competitive games, includ- 

ing a calculus enabling one to find winning strategies for the players. Within this framework both 

games of perfect information and games of imperfect information can elegantly be represented. 

Operations on games were defined and we demonstrated that  modulo a suitable notion of strategic 

equivalence these games constitute a Boolean algebra. We proved this algebra to be isomorphic to 

the Lindenbanm algebra of an appropriate propositional logic, thus facilitating a logical approach 

to game-theoretical issues. Finally, we generalized the concepts of validity and satisfiability and 

to these notions precise game-theoretical readings were attached. This enabled us to characterize 

determined games in logical terms. 
In the future we aim to extend the framework to multi-player games and to develop a logic 

corresponding to it. We expect this also to have interesting repercussions for the interpretations 
of established logical notions. 
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