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Abstract 

The relationship between Popper spaces (conditional probability spaces that satisfy some reg- 
ularity conditions), lexicographic probability systems (LPS's) [Blume, Brandenburger, and Dekel 
1991a; Blume, Brandenburger, and Dekel 1991b], and nonstandard probability spaces (NPS's) is 
considered. If countable additiVity is assumed, Popper spaces and a subclass of LPS's are equivalent; 
without the assumption of countable additivity, the equivalence no longer holds. If the state space is 
finite, LPS's are equivalent to NPS's. However, if the state space is infinite, NPS's are shown to be 
more general than LPS's. 

1 Introduction 

Probability is certainly the most commonly-used approach for representing uncertainty and conditioning 
the standard way of updating probabilities in the light of new information. Unfortunately, there is a 
well-known problem with conditioning: Conditioning on events of measure 0 is not defined. That 
makes it unclear how to proceed if an agent learns something to which she initially assigned probability 
0. Although conditioning on events of measure 0 may seem to be of little practical interest, it turns 
out to play a critical role in game theory (see, for example, [Blume, Brandenburger, and Dekel 1991a; 
Blume, Brandenburger, and Dekel 1991b; Hammond 1994; Kreps and Wilson 1982; Myerson 1986; 
Selten 1965]), the analysis of conditional statements (see [Adams 1966; McGee 1994]), and in dealing 
with nonmonotonicity (see, for example, [Lehmann and Magidor 1992]). 

There have been various attempts to deal with the problem of conditioning on events of measure 
0. Perhaps the best known, which goes back to Popper [1968] and de Finetti [1936], is to take as 
primitive not probability, but conditional probability. If # is a conditional probability measure, then 
#(VIU ) may still be undefined for some pairs V and U, but it is also possible that #(VIU ) is defined 
even if #(U) = 0. Another approach, which goes back to at least Robinson [1973] and has been 
explored in the economics literature [Hammond 1994], the AI literature [Lehrnann and Magidor 1992; 
Wilson 1995], and the philosophy literature (see [McGee 1994] and the references therein) is to consider 
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nonstandard probability spaces (NPS's), where there are infinitesimals that can be used to model events 
that, intuitively, have infinitesimally small probability yet may still be learned or observed. 

There is another approach to this problem, which uses sequences of probability measures to represent 
uncertainty. The most recent exemplar of this approach, which I focus on here, are the lexicographic 
probability systems ofBlume, Brandenburger, and Dekel [1991a, 1991b] (BBD fromnow on). However, 
the idea of using a system of measures to represent uncertainty actually was explored as far back as the 
1950s by Rtnyi [1956]. A lexicographic probability system is a sequence (g0, g l , . . . )  of probability 
measures. Intuitively, the first measure in the sequence, g0, is the most important one, followed by gl,  
g2, and so on. Roughly speaking, the probability assigned to an event U by a sequence such as (g0,/21) 
can be taken to be go(U) + Egl(U), where ¢ is an infinitesimal. Thus, even if the probability of U 
according to go is 0, U still has a positive (although infinitesimal) probability if gl(U) > 0. 

How are all these approaches related? This question, which is the focus of the paper, has been 
considered before. For example, Hammond [1994] shows that conditional probability spaces are 
equivalent to a subclass of LPS's called conditional LPS's if the state space is finite and it is possible 
to condition on any nonempty set. As shown by Spohn [1986], Hammond's result can be extended to 
arbitrary countably additive Popper spaces, where a Popper space is a conditional probability space 
that satisfies certain regularity conditions. The extension is nontrivial and, indeed, does not work 
without the assumption of countable additivity. Rtnyi [1956] and van Fraassen [1976] provide other 
representations of conditional probability spaces as sequences of measures, although not LPS's. Their 
results apply even if the underlying state space is infinite, but countable additivity does not play a role 
in their representations. (See Section 3 for further discussion of this issue.) 

I show that if the state space is finite, then LPS's are equivalent to NPS's, using a strong notion of 
equivalence. This equivalence breaks down if the state space is infinite; in this case, NPS's are strictly 
more general than LPS's (whether or not countable additivity is assumed). 

Finally, I consider the relationship between Popper spaces and NPS's, and show that NPS's are more 
general. (The theorem I prove is a generalization of one proved by McGee [1994], but my interpretation 
of it is quite different; see Section 5.) 

The remainder of the paper is organized as follows. In the next section, I review all the relevant 
definitions for the three representations of uncertainty considered here. Section 3 considers the relation- 
ship between Popper spaces and LPS's. Section 4 considers the relationship between LPS's and NPS's. 
Finally, Section 5 considers the relationship between Popper spaces and NPS's. I conclude with some 
discussion of these results in Section 6. 

2 Conditional, lexicographic, and nonstandard probability spaces 

In this section I briefly review the three approaches to representing likelihood discussed in the introduc- 
tion. 

2.1 Popper spaces 

A conditionalprobability measure takespairs U, V of subsets as arguments; g(V, U) is generally written 
g(VIU ) to stress the conditioning aspects. The first argument comes from some algebra .7 r of subsets 
of a space W; if W is infinite, .T is often taken to be a a-algebra. (Recall that an algebra of subsets of 
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W is a set of subsets containing W and closed under union and complementation. A o'-algebra is an 
algebra that is closed under union countable.) The question is what constraints, if any, should be placed 
on the second argument. I start with three minimal requirements, and later add a fourth. 

Definition 2.1: A Popper algebra over W is a set ~ x 7 of subsets of W x W such that (a) .~" is an 
algebra over W, (b) 7 is a nonempty subset of .Y" (not necessarily an algebra over W), and (c) .F t is 
closed under supersets in .7", in that if V E .~", V C W, and W E .F, then V' E .~'~. (Popper algebras 
are named after Karl Popper.) | 

Definition 2.2: A conditional probability space (cps) over (W, .~') is a tuple (W, .Y', .F ~, #) such that 
.7 r x .F ~ is a Popper algebra over W and ~ : .7 r x .7 r~ ~ [0, 1] satisfies the following conditions: 

CP1. iz(UIU ) = 1 if U E 7 .  

ce2.  ~(r6 u VmlU) =  (VllU) + #(VxlV) ifVl nV2 = O, U E .;;",andVl,V2 E .7". 

CP3. lz(VlU ) = #(V[X) x #(X]U) i f V  c_ X c_ U, U,X 6.7 c', V 6 .~'. 

A Popper space over (W, .7") is a conditional probability space (W, yr, ~,,/~) that satisfies an additional 
condition: i fU 6 .~' and/~(VIU) # 0 then V O U 6 yr,. If .F is a a-algebra and # is countably additive 
(that is, if #(UV/IU) = ~ 1  ]z(Vil U) if the V/'s are pairwise disjoint elements of Y and U 6 Y'), then 
the Popper space is said to be countably additive. Let Pop(W, .~') denote the set of Popper spaces over 
(W, Y); if ~" is a a-algebra, let Pope(W, .7") denote the set of countably additive Popper spaces over 
(W, ./v). The probability measure/~ in a Popper space is called a Popper measure, l 

The additional regularity condition on yr, required in a Popper space corresponds to the observation 
that for an unconditional probability measure #, if/z(V[U) # 0 then #(V O U) # 0, so conditioning on 
V N U should be defined. 

Popper [ 1968] was the first to consider formally conditional probability as the basic notion. Although 
his definition of conditional probability space is not quite the same as that used here. CP1-3 are 
essentially due to Rtnyi [1955]. De Finetti [1936] also did some early work, apparently independently, 
taking conditional probabilities as plimitive. Indeed, as Rtnyi [1964] points out, the idea of taking 
conditional probability as primitive seems to go back as far as Keynes [1921]. Van Fraassen [1976] 
defined what I have called Popper measures; he called them Popper functions, reserving the name Popper 
measure for what I am caUing a countably additive Popper measure. Hammond [1994] discusses the 
use of conditional probability spaces in philosophy and game theory, and provides an extensive list of 
references. 

2.2 Lexicographic probability spaces 

Definition 2.3: A lexicographic probability space (LPS) (of length cO over (W, .F) is a tuple (W, .F, if) 
where, as before, W is a set of possible worlds and .F is an algebra over W, and/ i  is a sequence of 
probability measures on (W, .F) indexed by ordinals < o~. (Technically,/~ is a function from the ordinals 
less than o~ to probability measures on (W, .~).) I typically write/i as (#0, #1 , . . . )  or as ( /~ :/~ < a). 
If.~ is a a-algebra and each of the probability measures in ~ is countably additive, then/~ is a countably 
additive LPS. Let LPS(W, .F) denote the set of LPS's over (W, .F); if.Y" is a a-algebra, let LP~(W, .F) 
denote the set of countably additive LPS's over (W, .F). When (W, .F) are understood, I often refer to 
/~ as the LPS. I 
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BBD define a conditional lexicographic probability space (CLPS) to be an LPS such that the 
probability measures in the sequence have disjoint supports; that is, there exist sets Ui E .7 such that 
#i(Ui) = 1 and the sets Ui are pairwise disjoint for i < a. Let a structured LPS (SLPS) be an LPS 
such that there exist sets Ui E .7 such that #i(Ui) = 1 and #i(Uj) = 0 f o r j  > i. (Spohn [1986] calls 
SLPS's dimensionally well-ordered families of probability measures; they are also the "probabilified 
ordinal conditional functions" (OCFs) briefly discussed in [Spolm 1988].) Let SLPS(W, .7) denote the 
set of  SLPS's over (W, .7); if .7 is a tr-algebra, let SLPS~(W, .7) denote the set of countably additive 
SLPS's over (W, .7). 

Clearly every CLPS is an SLPS; moreover, ff a is countable, then every countably additive SLPS is 
a CLPS: Given an SLPS/~ with associated sets Ui,i < a, define U~ = Ui - (t.Jj>iUj). (Clearly this is 
true even without the assumption of  countable additivity ff a is finite.) The sets U[ are clearly pairwise 
disjoint elements of  .7, and U~ is a support for #i. However, in general, CLPS's  are a strict subset of 
SLPS's, as the following example shows. 

Example 2.4: Consider a well-ordering of the interval [0, I], that is, an isomorphism from [0, 1] to 
an initial segment of  the ordinals. Suppose that the initial segment of the ordinals has length o~. Let 
([0, 1], .7, / i )  be an LPS of length a where .7 consists of  the Borel subsets of [0, 1]. Let #0 be the 
standard Borel measure on [0, 1], and let p# be the measure that gives probability 1 to r E, the/3th real 
in the well-ordering. This clearly gives an SLPS, since the support of/z0 is [0, 1] and the support of #8 
for 0 < / 3  < o~ is {rE}. However, this SLPS is not equivalent to any CLPS; there is no support o f#0  
which is disjoint from the supports of  ~ for all/3 with 0 < /3  < a. | 

The difference between CLPS's and SLPS's does not arise in the work of  BBD, since they consider 
only finite sequences of  measures. The restriction to finite sequences, in turn, is due to their restriction 
to finite sets W of  possible worlds. Clearly, if W is finite, then all CLPS's over W must  be finite, since 
the support of  each of  the measures must be disjoint. 

We can put an obvious lexicographic order <L on sequences (z0, z l , . . . )  of  numbers in [0, 1] of 
length a: (zo, z l , . . . )  < z  (Y0,//I , . . . )  if there exists/3 < ot such that z# </18 and z. r = Y'r for all 
7 </3.  That is, we compare two sequences by comparing their components at the first place they differ. 
(Even if o~ is infinite, because we are dealing with ordinals, there will be a least ordinal at which the 
sequences differ if they differ at all.) This lexicographic order will be used to define decision rules. 

BBD define conditioning in LPS's as follows. Given/~ and U E .~" such that #i(U) > 0 for some 
index i, let/.~IU = (/z~(-IU), #k~ ( ' IU) , . . . ) ,  where (k0, k l , . . . )  is the subsequence of all indices for 
which the probability of U is positive. Note that/ i]U is undefined if ##(U)  = 0 for all/3 < or. 

2.3 Nonstandard probability spaces 

It is well known that there exist non-Archimedeanfields--fields that include the real numbers as a 
subfield but also have infinitesemals, numbers that are positive but still less than any positive real 
number. The smallest such non-A.rchimedean field, commonly denoted .itS(e), is the smallest field 
generated by adding to the reals a single infinitesimal ~.l The hyperreals, nonstandard models of the 
reals which satisfy all the first-order properties that hold of the real numbers (see [Davis 1977]), are 

IThe construction of ~(e) apparently goes back to Robinson [1973]. It is reviewed by Hammond [1994] and Wilson 
[1995] (who calls ~(~) the extended reals). 
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also instances of  non-Archimedean fields. For most of this paper, I use only the following properties of 

non-Archimedean fields: 

. If .Lq* is a non-Archimedean field, then for all b E ~ *  such that - r  < b < r for some standard 
real r > 0, there is a unique closest real number a such that [a - b I is an infinitesimal. (Formally, 
a is the inf of  the set of  real numbers that are at least as large as b.) Let st(b) denote the closest 
standard real to b; st(b) is sometimes read "the standard part of  b". 

2. If  st(e/~') = 0, then ae < e' for all positive standard real numbers a. (If ae were greater than E', 
then E/c ~ would be greater than l / a ,  contradicting the assumption that st(e/e ~) = 0.) 

Given a non-Archimedean field ~t~., a nonstandardprobability space (NPS) over (W, ~)  (with range 
~t~.) is a tuple (W, .T', #),  where W is a set of possible worlds, .Y" is an algebra of  subsets of  W, and # 
assigns to sets in .7 r an element of ~ *  such that # (W)  = 1 and ~(U O V) = #(U)  + ~(V) if U and V 
are disjoint. If  W is infinite, we may also require that .Y" be a a-algebra and that/~ be countably additive. 
(There are some subtleties involved with countable additivity in nonstandard probability spaces; see 

Section 4.3.) 

3 Relating Popper Spaces to (S)LPS's 

In this section, I provide an isomorphism Fs~p  from Popper spaces over (W, .~') to SLPS's over (W, ~ ) ,  
for each fixed W and ~r. Given an SLPS (W, ~ , / i )  of length oL, consider the cps (W, ~r, ~ ,  #) such 
that ~ '  = U~<a{V E .T :  #~(V) > 0}. For V E F ~, let j r  be the smaUest index such lZjv(V ) > O. 
Define/~(UIV ) = # iv  (UIV)" I leave it to the reader to check that (1,1~ .~', j r , ,  #) is a Popper space. 

There are many isomorphisms between two infinite spaces. Why is F s ~ v  of interest? Suppose that 
Fs~p(W,  ~ ,  12) = (W, ~ ,  7 ,  lz). It is easy to check that the following two important properties hold: 

• 7 consists precisely of those events for which conditioning in the LPS is defined; that is, 
.~'~ = {U : ## (U)  ~ 0 for some ## E fi}. 

• For U E .~ , /z ( - IU)  = #'(-IU), where /d  is the first probability measure in the sequence ~IU. 
That is, the Popper  measure agrees with the most significant probability measure in the conditional 
LPS given U. Given that an LPS assigns to an event U a sequence of  numbers and a Popper 
measure assigns to U just a single number, this is clearly the best single number  to take. 

It seems that these are minimal properties that we would want an isomorphism to satisfy. Moreover, it 
is easy to see that these two properties completely characterize Fs-.p. 

BBD claim without proof that F s - e  is an isomorphism from CLPS's to conditional probability 
spaces. They work in finite spaces (so that CLPS's are equivalent to SLPS's) and restrict attention to 
LPS's where (in the notation used here), W is finite, ~r = 2 W, and 7 = 2 W - 0 (so that conditioning 
is defined for all nonempty sets). Since ~ = 2 W - ~, the cps's they .consider are all Popper spaces. 
Hammond [1994] provides a careful proof of this result, under the restrictions considered by BBD. 
Hammond's  result holds for arbitrary finite Popper spaces, with essentially no change in proof. 

Theorem3.1: [Hammond 1994] l f  W is finite, then F s ~ p  is an isomorphism from SLPS(W,.~) to 

Pop(W, .Tr). 
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The situation is much different in the infinite case (which is not considered by either BBD or 
Hammond). It is easy to see that F s ~ t ,  is an injection from from SLPS's to Popper spaces. However, 
as the following example shows, if we do not require countable additivity, it is not an isomorphism. 

Example  3.2: (This example is essentially due to Robert Stalnaker [private communication, 2000].) Let 
W = .gV, the natural numbers, let.P" consist of the finite and cofinite subsets of  J~V', and let.~'~ = U -  {0}. 
Define #1(VIU) = 1 if U and V are both cofmite. If  U is finite, define # I ( V I U  ) = IV I"1 uI/IUI. I 
leave it to the reader to check that (zP~ r, .~', 7 ,  ~1) is a Popper space. Suppose there were some LPS 
(JA r, .~,/7) which was mapped by F s ~ p  to this Popper space. Then it is easy to check that ff #i is the 
first measure in/~ such that #i(U) > 0 for some finite set U, then # i (U  t) > 0 for all finite sets U. To 
see this, note that for any finite set U ~, since izi(U) > 0, it follows that # i (U  O U ~) > 0. Since U U U ~ is 
finite, it must  be the case that #i is the first measure in/7 such that/zi(U O U ~) > 0. Thus, by definition, 
izl(U'lU U U') = #i(U'IU O U'). Since #I(U'IU U U') > 0, it follows that lzi(U') > 0. Moreover, 
essentially the same argument shows that #i(U) must be proportional to IUI. But there is no probability 
measure #i that makes the probability of  every finite set proportional to its cardinality. | 

As the following theorem, proved by Spohn [1986], shows, there is no such counterexample if we 
restrict to countably additive SLPS's and countably additive Popper spaces. 

Theorem 3.3: [Spohn 1986] For all W, the map Fs~p is an isomorphism from SLPSC(W, .~') to 
Pope(W, 

It is important in Theorem 3.3 that we consider SLPS's and not CLPS's. F s , p  is in fact not an 
isomorphism from CLPS's to Popper spaces. 

Example  3.4: Consider the Popper space ([0, 1], .~', .7 rt,/z) which is the image under F s ~ p  of the SLPS 
constructed in Example 2.4. It is easy to see that this Popper space cannot be the image under Fs.-.p of 
some CLPS. | 

It is interesting to contrast these results to those of R6nyi [1956] and van Fraassen [1976]. Renyi 
considers what he calls dimensionally-ordered systems. A dimensionally ordered system (over (W, .~') 
has the form (W, .~', 7 ,  {/zi : i E I}),  where .~" is a an algebra of  subsets of  W, . ~  is a subset of .~" 
closed under finite unions, I is a totally ordered set (but not necessarily well-founded, so it may not, for 
example, have a first element) and #i is a measure on (W, .~') (not necessarily a probability measure) 
such that 

• for each U E 7 ,  there is some i E I such that 0 < #i(U) < cx~ (note that the measure of a set 
may, in general, be c~), 

• if /zi(U) < oo a n d j  < i, then # j (U)  = O. 

Note that it follows from these conditions that for each U E .~1, there is exactly one i E I such that 
0 < re(U) < 

There is an obvious analogue of the map Fs--,e mapping dimensionally ordered system to cps's. 
Namely, let FD--,C map the dimensionally ordered system ( W , . ~ ' , 7 ,  {#i : i E I})  to the cps 
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(W, ~ ,  .~'~, #), where #(VIU) = #i(VIU), where i is the unique element of I such that 0 < #i(U) < oo. 
Rdnyi shows that .FD~C is an isomorphism from dimensionally-ordered systems to cps's where the set 
.~'~ is closed under finite unions. (Csaszar [1955] extends this result to cases where the set ~ '  is not 
necessarily closed under finite union.) Rdnyi assumes that all measures involved are countably additive 
and that ~ is a a-algebra, but these are inessential assumptions. That is, his proof goes through without 
change if ~ is an algebra and the measures are additive; all that happens is that the resulting conditional 
probability measure is additive rather than a-additive. 

It is critical in Rdnyi's framework that the #i's are arbitrary measures, and not just probability 
measures. His result does not hold if the #i's ale required to be probability measures. If we consider 
only finitely additive measures, the Popper space constructed in Example 3.2 already shows why. It 
corresponds to a dimensionally ordered space (#1, #2) where #1 (U) = I UI (i.e., the measure of a set is 
its cardinality) and #2(U) is 1 if U is cofinite and 0 if U is finite. It cannot be captured by a dimensionally 
ordered space where all the elements are probability measures, for the same reason that it is not the 
image of an SLPS under F s ~ p .  (Rdnyi [1956] actually provides a general characterization of when the 
#i's can be taken to be (countably additive) probability measures.) 

Van Fraassen [1976] proved a result whose assumptions are somewhat closer to Theorem 3.3. Van 
Fraassen considers what he calls ordinal families of probability measures. An ordinal family over 
(W, .~') is a sequence of the form {(WE, .T E, #E) :/3 < a} such that 

• w E c _ w ;  

• 3rE is an algebra over WE; 

• ## is a probability measure with domain .~#; 

• U E < , ~  E = .~'; 

• i f U E ~ a n d V E ~ E ,  thenUnVEJrE;  

• i f  U E .T', U n V E ~E, and #,# (U I"1 V) > O, then there exists 7 such that U E ~ ,  and #7 (U) > O. 

Given an ordinal fsmily {(W#, ~r~, #E) : /3 < a} over (W,3r), consider the map Fo~c which 
associates with it the cps (W, 3 r, .7 ~, #), where .T ~ = {U E 3 r : #7(U) > 0 for some '7 < a} and 
#(VIU ) -- #E(VIU), where/3 is the smallest ordinal such that U E .T E and #E(U) > 0. Van Fraassen 
shows that Fo~c is an isomorphism from ordinal families over (W, ~) to Popper spaces over (W, .T). 
Again, for van Fraassen, countable additivity does not play a significant role. If .T is a c-algebra, a 
countably additive ordinal family over (W, ~) is defined just as an ordinal family, except that now .7~ is 
required to be a a-algebra over W 3 for all 13 < cz and .~" is required to be the least a-algebra containing 
OE<a~ E (since OE<,x.T E is not in general a a-algebra). The same map F o ~ c  is also an isomorphism 
from countably additive ordinal families to countably additive Popper spaces. 

Spotm's result, Theorem 3.3, can be viewed as a strengthening of van Fraassen's result in the 
countably additive case, since for Theorem 3.3 all the ~ ' s  are required to be identical. This is a 
nontrivial requirement. The fact that it cannot be met in the case that W is infinite and the measures are 
not necessarily finitely additive is an indication of this. 

It is worth seeing how van Fraassen's approach handles the finitely additive examples which 
do not correspond to SLPS's. The Popper space in Example 3.2 corresponds to the ordinal family 
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{(Wn,.~',~,/zn) : n < oJ} where, f o r n  < cv, W~ = {1 , . . .  ,n} ,  .~'~ consists of  all subsets of Wn, and 
#n is the uniform measure, while Ww = 27V, .Tvo consists of the finite and cofinite subsets of .~V, and 
#or(U) is 1 if U is cofmite and 0 if U is finite. It is easy to check that this ordinal family has the 
desired properties. The key point to observe here is the leverage obtained by allowing each probability 
measure to have a different domain. 

4 Relating LPS's to NPS's 

In this section, I show that LPS's and NPS's are isomorphic in a strong sense. Again, I separate the 
results for the finite case and the infinite case. 

4.1  T h e  f in i t e  c a s e  

Consider an LPS of  the form (#1, #2, #3). Roughly speaking, the corresponding NPS should be 
(1 - e - e2)#1 + e#2 + e2#3, where e is some infinitesimal. That means that #2 gets infinitesimal weight 
relative to/zl  and/z3 gets infinitesimal weight relative to #2. The question is, which infinitesimal E 
should be chosen? Intuitively, it shouldn't  matter. No matter which infinitesimal is chosen, the resulting 
NPS should be equivalent to the original LPS. How can we make this intuition precise? 

Suppose that we want to use an LPS or an NPS to compute which of  two bounded, real-valued 
random variables has higher expected value. (The intended application here is decision making, where 
the functions can be thought of  as the utilities corresponding to two actions; the one with higher 
expected utility is preferred.) The idea is that two measures of  uncertainty (each of which can be an 
LPS or an NPS) are equivalent if the preference order they place on random variables (according to 
their expected value) is the same. Note that, given an LPS 12, the expected value of a random variable 
X is ~ x  z12(X = z),  where 12(X = z) is a sequence of  probability values and the multiplication and 
addition are pointwise. Thus, the expected value is a sequence; these sequences can be compared using 
the lexicographic order <L defined in Section 2.2. If v is either an LPS or NPS, then let E~,(X) denote 
the expected value of  random variable X according to v. 

Definition 4.1: I f  each of vl and v2 is either an NPS over (W, .~') or an LPS over (W, .Y'), then vl is 
equivalent to v2, denoted Vl ,~ v2, if, for all random variables X and Y measurable with respect to b r ,  
Evi(X)  _< Err (Y)  iff E~z(X) _< E ~ ( Y ) .  (As usual, X is said to be measurable with respect to .~" if 
{w : X ( w )  = z} E ~ for all x in the range of X.) I 

This notion of  equivalence satisfies analogues of  the two key properties of the map Fs--,p considered 
at the beginning of  Section 3. 

Proposi t ion 4.2: I f  t, E NPS(W, .~'), 12 E LPS(W, .~'), and u ~ 12, then ~,(U) > 0 iff 12(U) > O. 
Moreover, if u(U) > O, then st(r,(VJU)) = ~ ( V I U  ), where lzj is the first probability measure in 12 
such that #j(U) > O. 

The next result justifies restricting to finite LPS's ff the state space is finite. Given an algebra .7 r, 
let Basic(.Y') consist of the basic sets in .7 r, that is, the nonempty sets .~ that themselves contain no 
nonempty subsets in .7 r. Clearly the sets in Basic(G) are disjoint, so that IBasic(.~')l _< IWI . If all sets 
are measurable, then Basic(.Y') consists of the singleton subsets of W. If  W is finite, it is easy to see 
that all sets in b r are finite unions of  the sets in Basic(.~'). 
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Proposition 4.3: I f  W is finite, then every LPS over (W, .~') is equivalent to an LPS of length at most 
[Basic(Y')l. 

I can now define the isomorphism that relates NPS's and LPS's.  Given (W, .F), let LPS(W, yz)/.~ 
be the equivalence classes of ,'w-equivalent LPS's over (W, .~'); similarly, let NPS(W, .~')/.~ be the 
equivalence classes of a-equivalent NPS's over (W, .~'). Note that in NPS(W, .T)/,~,, it is possible that 
different nonstandard probability measures could have different ranges. For this section, without loss 
of generality, I could also fix the range of all NPS's to be fixed nonstandard model  .~t~(e) discussed in 
Section 2.3. However, in the infinite case, it is not possible to restrict to a single nonstandard model, so 
I do not do so here either, for uniformity. 

Now define the mapping FL~N from LPS(W, .~)/~ to NPS(W, Y:)/m pretty much as suggested at 
the beginning of  this subsection: If [g] is an equivalence class of  LPS's,  then choose a representative 
/~t E [/~] with finite length. Suppose that /~ = ( # 0 , . . . ,  #k). Let FL~N([/.~]) = [(1 -- e . . . . .  ere)# 0 + 
E//,I -t- ""  • - b  J c ~ k ] .  

Theo rem 4.4: l f  W is finite, then FFL--,N is an isomorphism from LPS(W, .~ ') /~ to N P S ( W , . r ) / =  that 
preserves equivalence (that is, each NPS in F'L~N([~]) is equivalent to I~). 

BBD [1991a] also relate nonstandard probability measures and LPS's under the assumption that the 
state space is finite. However, the way they relate them is somewhat different in spirit from the notion of 
equivalence introduced here. They prove representation theorems essentially showing that a preference 
orders on lotteries can be represented by a standard utility function on lotteries and an LPS iff it can 
be represented by a standard utility function on lotteries and an NPS. Thus, they show that NPS's and 
LPS's are equiexpressive in terms of representing preference orders on lotteries. 

The difference between BBD's result and Theorem 4.4 is essentially a matter of quantification. 
BBD's result can be viewed as showing that, given an LPS, for each utility function on lotteries, there 
is an NPS that generates the same preference order on lotteries for that particular utility function. In 
principle, the NPS might depend on the utility function. More precisely, for a fixed LPS / i ,  all that 
follows from their result is that for each utility function u, there is an NPS v such that (/~, u) and (v, z0 
generate the same preference order on lotteries. Theorem 4.4 says that, given/~, there is an NPS u such 
that (/~, z 0 and (v, u) generate the same preference on lotteries for all utility functions u. 

4.2 T h e  inf in i te  case  

An LPS over an infinite state space W may not be equivalent to any finite LPS. However, ideas 
analogous to those used to prove Proposition 4.3 can be used to provide a bound on the length of the 
minimal-length LPS's  in an equivalence class. 

Proposi t ion 4.5: Every LPS over (W, ~)  is equivalent to an LPS over (W, .~) of length at most I l. 

Now, just as in the finite case, given an LPS (## : fl < a)  of length a ,  we want to show that it is 
equivalent to some NPS v. Much like the finite case, the idea will be to take v = ~a<,~ ~##a, where 
st(ca,/e#) = 0 if 3 < fit < a.  There are two issues that must  be dealt with in order to get this to work. 
First, we must ensure that there is a non-Archimedean field where there are infinitesimals e#, fl < or, 
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such that st(e#,/ea) = 0 i f f l  < 3'  < a. Note, for example, that this cannot be done in ~ ( e )  if  ca > w. 
Another problem is making sense of the infinite sum. Fields are closed under finite sums; in general, 
infinite sums may not be defined. 

I now construct a family of non-Archimedean fields where these problems are solved. Define a 
nonstandard model of the integers to be a model that contains the integers and satisfies every property of 
the integers expressible in first-order logic. It follows easily from the compactness theorem of first-order 
logic [Enderton 1972] that, given an ordinal a,  there exists a nonstandard model of  the integers that 
includes elements n#,/~ < a, such that no = 0 and n¢ < n#, if B < ft.2 

Given a nonstandard model I* of the integers, let .~t~(I*) be the non-Archimedean model defined as 
follows: ./R(I*) consists of  all polynomials of  the form ~ # < a  r# ena for some ordinal a,  where n# E I* 
for/~ < cz, n# < n#, if B < / ~  (so that the set {n# : B < a} is well founded), and r E is a standard 
real for all/~ < tx. We can identify the standard reals r with a polynomial of  the form form re °. These 
polynomials can be added and multiplied using the standard rules for addition and multiplication of  
polynomials. It is easy to check that the result of  adding or multiplying two polynomials is another 
polynomial in ~ ( I * ) .  In particular, if pl and p2 are two polynomials, N1 is the set of  coefficients of  
Px, and N2 is the set of  coefficients of  P2, then the coefficients of  iol + P2 lie in Nl t.J N2, while the 
coefficients of  pip2 fie in the set N3 = {nl + n2 : n E N1, n2 E N2}. Both N1 O N2 and N3 are easily 
seen to be well founded if N1 and N2 are. Moreover, for each expression nl + n2 E N3, it follows from 
the well-foundedness of  Nl and N2 that there are only finitely many pairs (n, n ~) E N1 x N2 such that 
n + n ~ = nl  + n2. Finally, each polynomial (other than 0) has an inverse that can be computed using 
standard "formal" division of polynomials; I leave the details to the reader. An element of  .nq~(I*) is 
positive if  its leading coefficient is positive. Define an order < on ~ ( I * )  by taking a < b if b - a is 
positive. With these definitions, .~  is a non-Archimedean field. Moreover, st(en2/e nt) = 0 if hl < n2. 

Given (W, .Tr), let a be the minimal ordinal whose cardinality is greater than I.Z'l. Let I* be (w,~) 
a nonstandard model of  the integers such that there exist elements n# in I~w,~ ) for all fl < a such 

that no = 0 and n# < n#, if fl < /~' < a. We can now define a map Fi.,~N from LPS(W,.~')/~ 
to NPS(W, .~')/~ as follows: Given an equivalence class [/~] E LPS(W, ~ ) ,  by Proposition 4.5, there 
exists/~ ~ [/~] such that/~ has length a' < a. Let v = ~0<~<o~, ena## and define FL~N[t~] = Iv]. In 
the full paper, I show that v m,/Z The following result is immediate. 

Theorem 4.6: FL~N is an injection from LPS(W, .T')/m, to NPS(W, .~')/,~ that preserves equivalence. 

What about the converse? Is it the case that for every NPS there is an equivalent LPS? As the 
following example shows, the answer is no. 

Example 4.7: As in Example 3.2, let W = J?V, the natural numbers, let .~" consist of the finite and 
cofinite subsets of~V, and let ~rl = ~r _ {0}. Let v I be an NPS with range ~fit~(e), where v l ( u )  = [U[e 
if U is finite and v(U) = 1 - IU]e if U is cofinite. This is clearly an NPS, and it corresponds to the 
cps/z I of  Example 3.2, in the sense that st(v(V]U)) = # t ( v I u  ) for all V E .~', U E .T t. Just as in 
Example 3.2, it can be shown that there is no LPS/ i  such that v I ~ / Z  1 

2The compactness theorem says that, given a collection for formulas, if each finite subset has a model, then so does the 
whole set. Consider a language with a function + and constant symbols for each integer, together with constants n~,/3 < oL. 
Consider the collection of first-order formulas in this language consisting of all the formulas true of the integers, together with 
the formulas no = 0 and n~ < na,, for all/3 < ff < oz. Clearly any finite subset of this set has a model--namely, the 
integers. Thus, by compactness, so does the full set. Clearly the model has the properties we want. 
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4.3 Countably additive nonstandard probability measures 

Do things get any better if we require countable additivity? To answer this question, we must first 
make precise what countable additivity means in the context of non-Archimedean fields. To understand 
the issue here, recall that for the standard real numbers, every bounded nondecreasing sequence has a 
unique least upper bound, which can be taken to be its limit. Given a countable sum each of  whose 
terms is nonnegative, the partial sums form a nondecreasing sequence. I f  the partial sums are bounded 
(which they are if the terms in the sums represent the probabilities of a pairwise disjoint collection of 
sets), then the limit is well defined. 

None of  the above is true in the case of  non-Archimedean fields. For a trivial counterexample, 
consider the sequence E, 2~, 3¢, . . . .  Clearly this sequence is bounded (by any positive real number), but 
it does not have a least upper bound. For a more subtle example, consider the sequence 1/2, 3/4,  7 / 8 , . . .  
in the field ~ (¢ ) .  Should its limit be 17 While this does not seem to be an unreasonable choice, note 
that 1 is not the least upper bound of the sequence. For example, 1 - ¢ is greater than every term in the 
sequence, and is less than 1. So are 1 - 3E and 1 - ¢2. Indeed, this sequence has no least upper bound 

Despite these concerns, I define limits in _ht~(I *) pointwise. That is, a sequence a h  a2, a3 , . . ,  in 
ht~(I *) converges to b E ht~(I *) if, for every n E I*, the coefficients of  ~n in al,  a2, a3 , . . ,  converge 
to coefficient of ~n in b. (Since the coefficients are standard reals, the notion of convergence for the 
coefficients is just the standard definition of  convergence in the reals. Of  course, if ~n does not appear 
explicitly, its coefficient is taken to be 0.) As usual, ~ 1  ai is taken to be b if the sequence of partial 
sums ~ i~1  ai converges to b. Note that, with this notion of  convergence, 1/2, 3/4,  7 / 8 , . . .  converges 
to 1 even though 1 is not the least upper bound of the sequence)  

With this notion of countable sum, it makes perfect sense to consider countably-additive nonstandard 
probability measures. If .~" is a a-algebra and LPSC(W, ~ )  and NPS~(W, ~') denote the countably 
additive LPS's and NPS's on (W, .~'), respectively, then Proposition 4.6 can be applied with no change 
in proof  to show the following. 

Proposition 4.8: F L ~  iV is an injection from LPSe(W, .7:) to NPSe(W, .Y'). 

However, as the following example shows, even with the requirement of  countable additivity, there 
are nonstandard probability measures that are not equivalent to any LPS. 

Example 4.9: Let W = {Wl ,Z02,~ /33 , . . .} ,  and let .~" = 2 w.  Choose any nonstandard I*. Define an 
NPS (W, .~', v) with range .~t~(I*) by taking ~,(wj) = aj  + bje, where aj  = 1/2J, b2j-1 = ¢/2 j - l ,  
and b2j = - ~ / 2  j - l ,  for j = 1,2,3,  . . . .  Thus, the probabilities of w l , w 2 , . . ,  are characterized 
by the sequence 1/2 + E, 1/4 - ~, 1/8 + ~/2, 1/16 - E/2, 1/32 + E/4, . . . .  For U C W, define 
v(U) = ~ { j : ~ u }  aj + e ~ { j : ~ 6 u  } bj. It is easy to see that these sums are well-defined. As I show 
in the full paper, there is no LPS fi over (W, .~) such that v ~/~.  l 

3For those used to thinking of convergence in topological terms, what is going on here is that the topology corresponding 
to this notion of convergence is not Hausdorff. 
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5 Relating Popper Spaces to NPS's 

Consider the map FN--,p from nonstandard probability spaces to Popper spaces such that FN,p(W, .~', v) 
(W,.~, ~ ' , /z ) ,  where .7 r '  = {U : v(U) ~ 0} and #(VIU ) = st(v(VlU)) for V E .~', U E ~ .  I leave 
it to the reader to check that (W, .T, .T ~, #) is indeed a Popper space. Define an equivalence relation 
_~ on NPS(W,.~') (and NPSe(W,.F) by taking vl = v2 if {U : ~q(U) = 0} = {U : v2(U) = 0} and 
st(vl (VlU) ) = st(v2(VIU) ) for all V, U such that vl (U) ~ O. Let NPS/ ~_ (resp., NPS~ / _  ~) consist of  
the _~ equivalence classes in NPS (resp., NPSe). Clearly .FN~p is well defined as a map from NPS/_~ 
to Pop(W, .T) and from NP~/-~ to PopC(W, .7"). As the following result shows, FN-.p is actually a 
bijection. 

Theorem 5.1: FN p is a bijectionfrom NPS(W, to Pop(W, and from NPSe(W, 
to Pope(W, 

McGee [1994] proves essentially the same result as Theorem 5.1 in the case that b r is an algebra 
(and the measures involved are not necessarily countably additive). McGee [1994, p. 181] says that his 
result shows that "these two approaches amount to the same thing". However, this is far from clear. 
The _~ relation is rather coarse. In particular, it is coarser than m. 

Proposition 5.2: If vl ~ v2 than vl ~ v2. 

The ~- relation identifies nonstandard measures that behave quite differently in decision contexts. 
This difference already arises in finite spaces, as the following example shows. 

Example 5.3: Suppose W = {wl, w2}. Consider the nonstandard probability measure Vl such that 
/,/1(1/31) = 1/2 + e and vl(w2) = 1/2 - e. (This is equivalent to the LPS (#1,#2) where # l (wl)  = 
#2(w2) = 1/2,/z2(wl) = 1, and #2(w2) = 0.) Let v2 be the nonstandard probability measure such that 
v2(wl) = v2(w2) = 1/2. Clearly vl -~ v2. However, it is not the case that Vl ,~, v2. Consider the two 
random variables X{wl} and X{w2}. (Iuse the notation Xu to denote the indicator function for U; that is, 
Xu(w) = 1 i fw  E U and Xu(W) = 0 otherwise.) According to vl, the expected value of X{~ol} is (very 
slightly) higher than that of  X{w2}, however, the expected value of  X{wl } is less than that of  otx{~} for 
any (standard) real a > 1. According to v2, X{to~} and X{~2} have the same expected value. Thus, 
vl ~ v2. Moreover, it is easy to see that there is no Popper measure/z on {wl, w2} that can make the 
same distinctions with respect to X{wa} and X{w2} as vl, no matter how we define expected value with 
respect to a Popper measure. 1 

More generally, Theorem 3.1 shows that, in a precise sense, Popper spaces are equivalent to SLPS's, 
while Theorem 4.4 shows that LPS's are equivalent to NPS's. Thus, there is a gap in expressive power 
between Popper spaces and NPS's that essentially amounts to the gap between SLPS's and LPS's. 

6 Discussion 

As the preceding discussion shows, there is a sense in which NPS's more general than both Popper 
spaces and LPS's. LPS's are more expressive than Popper measures in finite spaces and in infinite 
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spaces where we assume countable addifivity (in the sense discussed at the end of Section 5), but 
without assuming countable additivity, they are incomparable, as Example 3.2 shows. Although NPS's 
are equivalent to LPS's in finite state spaces, NPS's have other advantages. For example, as pointed out 
by Hammond [1994] and BBD, it is easier to define independence in NPS's. 

On the other hand, NPS's also have some disadvantages. In particular, working with a nonstandard 
probability measure requires defining and working with a non-Archimedean field. LPS's have the 
advantage of using just standard probability measures. Moreover, their lexicographic structure may 
give useful insights. It seems to be worth considering the extent to which LPS's can be genera ted  
so as to increase their expressive power. I am currently exploring LPS's ordered by an arbitrary (not 
necessarily well-founded) index set. It seems that such LPS's may be useful in characterizing iterated 
deletion of weakly dominated strategies. (This is done by Brandenburger and Keisler [2000] using finite 
LPS's; it seems that results are more cleanly stated using infinite LPS's ordered by the integers.) I hope 
to report on this in future work. 

One final point: defining belief. Brandenburger and Keisler [2000] defined a notion of belief using 
LPS's and provided an elegant decision-theoretic justification of it. According to their definition, an 
agent believes U in LPS I~ if there is some j < rn such that #i(U) = 1 for all i < j and #i(U) = 0 
for i > j .  Independently, van Fraassen [1995] defined a notion of belief using Popper spaces that 
can be shown to be essentially equivalent to the definition given by Brandenburger and Keisler. (See 
[Ado-Costa and Parikh 1999] for a followup to van Fraassen's work.) That there should be equivalent 
notions of belief in the context of LPS's and Popper spaces is perhaps not that surprising, in light of the 
close connection between them. The results of this paper suggest that it may also be worth considering 
notions of belief defined in NPS's. 
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