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Abstract

Epistemic protocols are communication pro-
tocols aiming at transfer of knowledge in a
controlled way. Typically, the preconditions
or goals for protocol actions depend on the
knowledge of agents, often in nested form.
Informal epistemic protocol descriptions for
muddy children, coordinated attack, dining
cryptographers, Russian cards, secret key ex-
change are well known. The contribution of
this paper is a formal study of a natural re-
quirement on epistemic protocols, that the
contents of the protocol can be assumed to be
common knowledge. By formalizing this re-
quirement we can prove that there can be no
unbiased deterministic protocol for the Rus-
sian cards problem. For purposes of our for-
mal analysis we introduce an epistemic pro-
tocol language, and we show that its model
checking problem is decidable.

1 Introduction

Epistemic protocols have figured in puzzle books for
quite some time; an early reference for the muddy chil-
dren protocol is [9]; they also figure as standard exam-
ples in textbooks on epistemic logic [5, 18]. A formal
study of epistemic protocols should investigate a num-
ber of natural properties of a protocol. More precisely,
the protocol should prescribe what happens no mat-
ter what the initial situation is, and it should remain
correct if the protocol itself is commonly known, in-
cluding its goal and the precise preconditions for each
action in the protocol.

Starting points for our investigation are the perspec-
tive on knowledge in perfect cryptography from [12],
the analysis of Russian cards problems in [15, 2, 18, 16]
and the analysis of multiparty secret key exchange in
[7, 8, 4].

Compared to the flourishing field of formal verification
of communication protocols that started from [3], one
thing still lacking from the above accounts is a well-
defined language for specifying epistemic protocols. As
a consequence of this, formal verification of epistemic
protocols is not easy.

Consider the case of Russian cards problems [15]. A
Russian cards problem is a specification of a random
card distribution among a set of three participants, to-
gether with a goal of communicating the hand of one
participant to another participant by public announce-
ments, in such a way that the third participant does
not learn any card in the actual hands of the other two
participants. Solutions to this should take the form of
exhaustive lists of concrete distribution of cards with
matching announcements, such that the protocol can
be executed under an arbitrary initial distribution of
cards, not just for specific ones. In this paper we
will give formal specifications of such protocols. We
then can make formal distinctions that have not been
made before with informal descriptions of epistemic
protocols, like that between deterministic and non-
deterministic protocols, and analyze their properties.
For example, the 7-hand direct exchange solutions to
the Russian cards problem provided in [15] suggest un-
biased (non-deterministic) protocols that may work on
every initial distribution. However, we show that a
deterministic protocol that is executable on arbitrary
initial distributions exists for this, but that it is nec-
essarily biased.

A notable feature of epistemic protocols, compared to
more usual communication protocols, is that the cor-
rectness of the epistemic protocols heavily relies on
the assumptions of the agents’ meta knowledge about
the protocol itself. It is reasonable to assume that
the protocol and its goals are commonly known by all
the agents including possible adversaries, if we want
to apply the protocol repeatedly in real life cases. The
following example of a tentative four hand solution
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for Russian cards problem RCP2.2.1
1 illustrates how

such meta knowledge matters in the verification of the
protocol. To check the correctness of protocols under
the assumption that the protocol in commonly known,
formalization of protocols is clearly imperative.

Example 1 (Guess My Cards) There are 5 cards
(0-4) and three agents {A,B,E}; agent A has two
cards, B has two cards, and E has only one card. A
wants to inform B of his hand by public announce-
ment, without revealing his cards to E. A ‘promising
protocol’ for this is that A announces the disjunction
of his actual hand (say 01) with all the different combi-
nations of the remaining cards, so he would announce
“I have 01 or 23 or 24 or 34.” Since B has one more
card than E he can eliminate all of 23, 24 and 34, while
E can only eliminate two of 23, 24 and 34. However,
it does not work like this anymore if E knows that the
protocol is meant to reveal A’s hand to B. Assume
that E has 3. Then E will know that A has either
01 or 24. Now suppose that A has 24 and B has 01.
Then B could not have learnt A’s hand from A’s an-
nouncement. So E can infer that A has 01. Another
way to see that the would-be protocol is wrong is as
follows. The procedure to generate the announcement
should also be commonly known. In the above case this
procedure is a function from card hands to announce-
ments f(xy) =“ I have xy or z1z2 or z2z3 or z1z3.”,
where z1, z2, z3 are the remaining 3 cards other than
x, y. This function is injective, so the announcement
reveals the hand immediately.

1.1 Contributions

The main contributions of this paper are:

• An expressive protocol specification and verifica-
tion language whose model checking is decidable.

• Formal specifications and checks of epistemic pro-
tocols under common knowledge, from which it
follows that:

– the sequential muddy children protocol can
be formally proved correct;

– there is a correct, deterministic biased proto-
col for RCP3.3.1;

– there is no correct, deterministic and unbi-
ased 2-step protocol for RCP3.3.1;

– the non-deterministic 1-bit secret key genera-
tion protocol can be formally proved correct.

1The parameters n.n.k express that first agent and sec-
ond agent each have n cards, and the third has k cards.

Structure of the paper We define the protocol
specification language in Section 2. Section 3 talks
about epistemic protocols in normal forms and their
verification problem under common knowledge. De-
terministic protocols for Russian cards problems are
studied in Section 4. We also demonstrate non-
deterministic protocol verification in Section 5 by look-
ing at a simplified secret-key generation protocol.

2 Preliminaries

Informally, epistemic protocols are the communication
patterns which make use of agents’ epistemic reason-
ing power in executions, in order to guarantee the ex-
change of certain information without leaking unde-
sired information to the possible adversaries. In this
paper we focus on the ones which implement public
announcements as the only communication methods,
since public announcements are the simplest and best
studied communication method in logic [18].

2.1 Language and Semantics

We define an Epistemic Protocol Language LEP for
specifying epistemic protocols and for reasoning about
them. The language is kept as simple as possible.
More realistic versions may have agent variable assign-
ment, to express things like “for agent := 1 to n do
. . . ”. The protocols are meant to be general; there is
no intrinsic link between agents and announcements.
Such links can be established by restricting announce-
ments to the form “agent a knows that . . . ”.

Assume p ranges over Φ and a over an agent set Ag.
The protocol language is a variation on dynamic epis-
temic languages as defined in [14, 13], with public an-
nouncement [!φ] as the basic communicative operation.
The new twist in this paper is that public announce-
ments are among the epistemic programs π as defined
below. Further on, when we discuss the specification
and analysis of unbiased protocols, we will extend the
language with a graded modality.

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= a |?φ |!φ | π1;π2 | π1 ∪ π2 | π∗

Below, we will be more specific about basic propo-
sitions p, and may take them to be of the certain
forms, e.g. hasax for a ∈ Ag, for certain applica-
tions. We employ the usual abbreviations: φ ∨ ψ,
φ→ ψ and 〈π〉φ are shorthand for ¬(¬φ∧¬ψ), ¬φ∨ψ
and ¬[π]¬φ, respectively. The truth value of a LEP

formula φ in a state s of a multi-S5 Kripke model
M = (S, {∼i |i ∈ Ag}, V ), is defined by:
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M, s � p ⇔ p ∈ V (s)
M, s � ¬φ ⇔ M, s 2 φ

M, s � φ ∧ ψ ⇔ M, s � φ and M, s � ψ
M, s � [π]φ ⇔ for all M′, s′ : (M, s)JπK(M′, s′)

implies M′, s′ � φ

where π are epistemic programs functioning as model
changers:

(M, s)JaK(M′, s′) ⇔ M′ =M and s ∼a s′
(M, s)J?ψK(M′, s′) ⇔ (M′, s′) = (M, s)

and M, s � ψ
(M, s)J!ψK(M′, s′) ⇔ (M′, s′) = (M|ψ, s)

and M, s � ψ
(M, s)Jπ1;π2K(M′, s′) ⇔ (M, s)Jπ1K ◦ Jπ2K(M′, s′)

(M, s)Jπ1 ∪ π2K(M′, s′) ⇔ (M, s)Jπ1K ∪ Jπ2K(M′, s′)
(M, s)J(π1)∗K(M′, s′) ⇔ (M, s)Jπ1K∗(M′, s′)

whereM|ψ is the restriction ofM to the states where
ψ holds; ◦,∪ and ∗ at right-hand side express the usual
composition, union and reflexive transitive closure on
relations respectively.

As usual, in order to emphasise the intuitive epistemic
meanings of some of our operators, we write Kaφ for
[a]φ and we use Cφ for [(

⋃
i∈Ag i)

∗]φ (the common
knowledge operator).

A notable difference between our language and the
PDL-style dynamic epistemic languages as in [14, 13]
is that we treat atomic programs and announcements
in an uniform way. Thus, we not only allow compli-
cated program constructions on announcements like
(!φ∪!ψ)∗ but also the interaction between atomic pro-
grams and announcements. For example, [(!ψ; (a ∪
b))∗]φ expresses conditional common knowledge of φ
among a, b w.r.t. announcements. When we interpret
basic programs as arbitrary basic actions as in PDL,
then (?ψ; (!ψ∪a))∗ can express a protocol which makes
choices repeatedly between an announcement and a
basic action while ψ holds.

To understand the expressivity better, we identify a
fragment of LEP which can be translated into PDL.
Call a formula echo-free if it has no public announce-
ments in the scope of a star. Any echo-free LEP for-
mula can be translated into a formula without an-
nouncements, by proceeding in two steps. The first
translation t is as follows:

t(>) = >
t(p) = p
t(¬φ) = ¬t(φ)

t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2)
t([a]φ) = [a]t(φ)
t([?ψ]φ) = t(ψ)→ t(φ)
t([!ψ]φ) = [!t(ψ)]t(φ)

t([π1 ∪ π2]φ) = t([π1]φ) ∧ t([π2]φ)
t([π1;π2]φ) = t([π1][π2]φ)
t([π∗]φ) = [π∗]t(φ)

This yields an equivalent formula where each program
π either has the form !φ or is announcement-free. Thus
the transformed formulas of t can be regarded as LCC
formulas in [13], if we consider the public announce-
ments as the corresponding single-pointed action mod-
els. Next, apply the translation procedure T in [13] to
transform the LCC formulas into PDL.

The translation T ◦ t thus yields an equivalent PDL
formula, for all echo-free LEP formulas. Note that this
translation cannot be extended to the full LEP lan-
guage, due to the result of [11] which states that the
satisfiability problem of a language containing at least
iterated relativization ((!φ)∗) and common knowledge
operators is undecidable, even on finite models. How-
ever, for model checking problem we have:

Proposition 1 Model checking LEP on finite Kripke
models is decidable.

Proof : The idea of the proof is based on the obser-
vation that the epistemic programs are eliminative in
nature. We want to turn LEP model checkingM, s � φ
into PDL-style model checking on a larger finite model
N such that instead of interpreting π in φ as model
changers on M, we can see π as a label for a relation
in N . Intuitively, we build N by making all the pos-
sible pointed sub-models (M′, s′) of M as the states
in N . In N , the a-relations ∼Na are defined as follows:
(M′, s′) ∼Na (M′′, s′′) ⇐⇒ M′ = M′′ and s′ ∼a s′′
in M′. Valuations V N ((M′, s′)) = VM

′
(s′). Now we

are ready to compute all the corresponding relations
of π in N by usual treatments in PDL model checking
algorithms for PDL-operators ; ,∪ and ∗ and the fol-
lowing operation to deal with !φ′: M′, s′ →!φ′ M′′, s′′
iff M′′ = M′|φ′ and s′ = s′′. To compute M′|φ′ we
need to call the model checking algorithm again but
since φ′ is strictly simpler than φ, we will finally arrive
at a situation that can be handled by the PDL model
checking algorithm. 2

3 Epistemic protocols

In this section, we address the epistemic protocols and
their verification problem formally. We first restrict
ourselves to a sub-language LSP of LEP with propo-
sition set P and agent set Ag, in order to specify the
epistemic protocols in a simpler but adequate form:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= πact | π;π′ | π∗

πact ::= ?φ; !ψ | πact ∪ π′act
Intuitively we want to specify a sequence of conditional
announcements which may involve non-deterministic
choices. Actions ?φ; !ψ are guarded announcements,
with φ as the precondition and ψ as the message.
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Note that a protocol often comes with assumptions
about the initial situation where the protocol can be
applied and implicitly a set of “axioms” about the
facts which should remain true while the protocol is
running. These define the “physical setting” of the
protocol. For example, in RCP we may assume that
at the beginning each player has a certain number
of different cards and for each card c it holds that
hasic →

∧
j 6=i ¬hasjc, where hasjc is a basic propo-

sition with the obvious meaning: j has card c. In
this paper we will not focus on the specification of the
initial states, but assume that given a protocol Prot,
there is an initial model MProt, with a set of axioms
TProt which are valid onMProt and remain valid while
executing the protocol2. TProt is used in the following
to define deterministic protocols which intuitively can
execute only one action at any time starting from the
initial situation.

Definition 1 (Epistemic Protocol) An epistemic
protocol Prot is a pair 〈πProt,ΦProt〉 where πProt is
an epistemic program in the language LSP and ΦProt

is a set of (announcement-free) formulas serving as
the goal of the protocol. A step of Prot is a guarded
action or a choice among guarded actions. A step
?φ1; !ψ1∪· · · ∪?φn; !ψn is called deterministic if it holds
that ∀i 6= j < n :

If {φi ∧ φj} ∪ TProt is satisfiable then ψi = ψj.

A protocol is called deterministic if each of its steps
is, and non-deterministic if it is not deterministic. A
protocol Prot is of definite length if πProt is echo-free,
otherwise it is of indefinite length. The length of a
protocol of definite length is the number of its steps.

Note that the goals in the above definition are intended
to be met at the end of the protocol, but our formalism
can also express checks of protocol steps, by sequen-
tially composing the step π with a guarded command
?φ; !> (effectively a check of φ).

An epistemic protocol is expected to be implemented
in an environment where every announcement is pub-
licly broadcasted in the possible presence of some pas-
sive eavesdropper. A run of the protocol is a sequence
of guarded announcements ?φ; !ψ, which is executable
on the initial model according to the protocol specifi-
cation. We will assume that no different instantiations
of a protocol run in parallel.

Definition 2 (Verification of Epistemic Protocol)
Verification of an epistemic protocol Prot is checking
whether all the goals hold after any run or some

2Formally TProt can be considered as a subset of the
formulas that are not only valid atMProt but also preserved
under any π operations.

run of the protocol against the initial model MProt

under any initial state. The usual distinction between
safety and liveness properties applies. Checks of
safety properties have the form MProt � [π]φ, those
of liveness properties are of the form MProt � 〈π〉φ,
where MProt � ϕ iff for all s ∈MProt, s � ϕ.

Note that if a deterministic protocol is of definite
length then checking [π]φ coincides with 〈π〉φ, if the
protocol is always executable on MProt. For proto-
cols of indefinite length, we may want to check 〈π〉φ
to make sure the protocol achieves its goal φ at some
finite run.

We call a model connected if every state is connected
to all other states by a path of epistemic relations.
Note that in most applications, the initial models are
connected, assuming that the agents are perfect rea-
soners who can imagine the possibilities others may
think given the facts they can observe. Now we can
use common knowledge to reformulate the verification
problem:

Proposition 2 SupposeM is a connected model then
for any s ∈M,

M � φ ⇐⇒ M, s � Cφ

This means to verify that a protocol is correct under
any possible initial information distribution is to check
the common knowledge of the correctness of the pro-
tocol at some arbitrary initial situation.

As we motivated in the introduction, we assume the
protocol is commonly known in the following sense:

1. The guards of the actions are commonly known;

2. The truthfulness of the announcements is com-
monly known;

3. The goals of the protocol are commonly known.

Such requirements call for a bit of further streamlin-
ing on the form of protocols in our framework. To
motivate this, consider the following choice:

(?q; !¬p) ∪ (?¬q; !p).

According to requirement (1) above, the agent should
be able to learn q from the announcement of ¬p. In
general, for each guarded action ?φ; !ψ, we can make
the precondition commonly known by announcing it
too. Thus we may assume: ψ → φ is valid. Accord-
ing to the above requirement (2), for each ?φ; !ψ that
occurs in a protocol we may assume that φ → ψ is
valid. Some reflection shows that the above require-
ments together boil down to the requirement that in
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each guarded action the guard and the announcement
are the same. Thus, we can restrict our attention to
choices of the following normal form:⋃

i?!φi, where ?!φi is an abbreviation for ?φi; !φi 3.

Given an epistemic protocol Prot, we can transform
every step ?φ1; !ψ1 ∪ · · · ∪?φn; !ψn of it into the right
shape under the assumptions of (1) and (2) by the
following procedure:

• Lump the same actions in each step of the pro-
tocol together: if ψ1 = · · · = ψm then we can
replace ?φ1; !ψ1 ∪ · · · ∪?φm; !ψm by an equivalent
single guarded action ?(φ1 ∨ · · · ∨ φm); !ψ1.

• Transform every appearance of ?φ1; !ψ1 into ?(φ1∧
ψ1); !(φ1 ∧ ψ1).

To implement requirement (3), the straightforward
idea would be simply checking the common knowledge
of the correctness of the protocol (C[π]φ or C〈π〉φ).
We will show this is indeed enough to guarantee the
protocol is correct under the assumption that the
agents know the goals that the protocol should fulfil.

Let us start from the observation made in [15] that
just checking M, w � [!ψ]φgoal is sometimes not suffi-
cient, for a one step protocol !ψ aiming at establishing
φgoal. Indeed, if the agents know the intended goal of
the protocol then they will assume that others do not
perform actions which do not lead to the goal. Such
an assumption gives agents the power to reason more,
as we also saw in Section 1, which sometimes destroys
the correctness of the protocol. Now we can try to
make agents know the goal of protocol by announcing
it.

In [15] the author proposed that the verification should
be undertaken while an announcement !ψ is inter-
preted more than just announcing ψ4:

M, w � [!(ψ ∧ [!ψ]φgoal)]φgoal

The idea behind this is that we announce the goal of
the announcement to make sure that under the as-
sumption that agents know the goal, the protocol is
still correct. However, if [!(ψ ∧ [!ψ]φgoal)]φgoal is now
assumed and known by agents, we still need to make
sure that knowing this again does not affect the cor-
rectness of the protocol. We can iterate such reasoning
ad libitum. Formally we define:

3Although equivalent to !φ, ?!φ is still used in the fol-
lowing for its clearer reading in protocol specification ac-
cording to LSP .

4In the original setting of [15], it is suggested that the
announcement of !ψ by agent a aiming at establishing ψ is
actually !(ψ∧ [!ψ]Kaφ), we omit the details in [15] that are
relevant to the context of Russian cards problem.

• η0 = [!ψ]φ

• ηi+1 = [!(ψ ∧ η0 ∧ · · · ∧ ηi)]φ

We can simplify ηi+1, by making use of the valid for-
mula [!(ψ ∧ [!ψ]φ)]χ↔ [!ψ][!φ]χ:

Proposition 3 ηi+1 = [!ψ; !φ; . . . ; !φ︸ ︷︷ ︸
i

]φ

We actually need to check all ηi, since there are cases
where all the ηi are logically different5.

Notice that if φgoal is in the shape of Cφ then

ηi+1 = [!ψ] [!Cφ] . . . [!Cφ]︸ ︷︷ ︸
i

Cφ⇔ [!ψ]Cφ = η0.

due to the fact that [!Cφ]Cφ is a valid formula [18],
thus making the infinite process of checking ηi man-
ageable. In [15], the author suggests that instead of
checking property φ, we should check property Cφ.
Note that the simplification in Proposition 3 works
on the one-announcement-protocols, but it is not very
clear how to deal with the more complicated forms
of the epistemic protocols as we defined in this paper.
Thus checking common knowledge after the run of the
protocol may not be grounded.

Now we take another perspective, instead of reinter-
preting each announcements, we address the formula
to be checked as a whole. Intuitively, we strengthen
[π]φgoal by some ψ such that:

• ψ should imply [π]φgoal.

• if [π]ψgoal is true then truthfully announcing φ
in advance should not change the truth value of
[π]φgoal.

Thus formally we require:

ψ ↔ [π]φgoal ∧ 〈!ψ〉[π]φgoal

Unfortunately, f(X) = [π]φgoal ∧ 〈!X〉[π]φgoal is not
a monotonic function, given no restriction on [π]φgoal.
However, it is not hard to see that the common knowl-
edge of the correctness of the protocol itself is indeed
a fixed point for f(X):

Proposition 4 C[π]φgoal is a fixed point of f(X), but
[π]Cφgoal is not always a fixed point of f(X).

5Consider the dynamic epistemic analysis of the tra-
ditional Muddy Children puzzle [18]. There is always a
model M, s such that M, s � [!ψ; !φ; . . . ; !φ| {z }

i

]φ, but M, s 2

[!ψ; !φ; . . . ; !φ| {z }
i+1

]φ where φ is the formula that expresses “We

do not know whether we are dirty or not”.
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To see that [π]Cφgoal is not always a fixed point
of f(X), let π =!(q ∨ Kap) and φgoal = r.
[π]Cφgoal 9 〈![π]Cφgoal〉[π]Cφgoal can be wit-
nessed on the following model6 M,N:

p,¬q,¬r : N oo a // • : ¬p, q,¬r

Moreover, C[π]φ is indeed a stronger requirement than
[π]Cφ as the following shows:

Proposition 5 For any epistemic program π of LSP
that is in the normal form, C[π]φ → [π]Cφ is valid.
However, the converse does not hold in general.

The above fixed point analysis also apply to C〈π〉φgoal
in case we check liveness properties. Thus we can now
define verification epistemic protocols under common
knowledge:

Definition 3 (Verification under Common
Knowledge) Verification of an epistemic proto-
col Prot under common knowledge is checking
MProt � C[πProt]φgoal for safety properties or check-
ing MProt � C〈πProt〉φgoal for liveness properties.

Now let us look at a variation of classic Muddy Chil-
dren to demonstrate how we specify and verify an epis-
temic protocol.

Example 2 (Sequential n-Muddy children [19])
The setting is as follows: some of n children
(1, 2, . . . , n) got mud on their foreheads while playing.
The children can see whether other kids are dirty, but
there is no mirror for them to discover themselves
whether they are dirty or not. Now the father walks
in and states: “At least one of you is dirty!” Then
he asks the children 1, 2, . . . , n one by one (i.e.,
sequentially),“Do you know whether you are dirty?”
until he has asked everyone. The children have to
answers “Y es′′ or “No” truthfully. Suppose child j is
the last dirty child in the sequence. Then j will know
that he is dirty when it is his time to answer. And all
the children after him will know that they are clean.
But the j−1 children before j will remain ignorant all
the time about whether they are dirty or clean (under
the usual assumption that the children are honest and
perfect reasoners). Here are the formal details of the
protocol:

• Let di be the basic proposition expressing “child i
is dirty” and ci be ¬di.

• Let ToKorNoti = (?!Knowi) ∪ (?!¬Knowi) express
that i truthfully announces whether he knows he
is dirty or not, where Knowi = Kidi ∨Kici.

6Reflexive arrows are omitted.

• Let LastDirtyi be the formula di ∧
∧
j>i

cj express-

ing that di is the last dirty child according to the
ordering >.

Then ProtSMD = 〈πSMDn , {φSMDn}〉 where

πSMDn
= (!

∨
i

di); ToKorNot1; ToKorNot2; . . . ; ToKorNotn

φSMDn
=

∧
i

(LastDirtyi → (
∧
j<i

¬Knowj ∧
∧
j≥i

Knowj)

A straightforward initial model MProt = {W, {∼i| i ∈
I}, V } is a connected model where:

• W = {〈cd1, cd2, · · · , cdn〉 | cdi ∈ {ci, di}}

• w ∼i v ⇐⇒ 〈cd1, cd2, · · · , cdn〉 = w,
〈cd′1, cd′2, · · · , cd′n〉 = v and cdj = cd′j for all j 6= i.

• V (di)(w) = 1 ⇐⇒ w = 〈cd1, · · · , cdn〉 and cdi =
di.

Clearly ProtSMD is deterministic since the child can
only know or not know whether himslef is dirty, no
matter what TProt is. Nevertheless, the following intu-
itive axiom says all the children can see whether others
are dirty or not: TProt = {C

∧
j 6=i(Kidj ∨Kicj)}. We

can then verify the πSMDn :

Proposition 6 MProt � C[πSMDn ]ΦSMDn .

4 Deterministic Protocols for Russian
Cards Problem

4.1 Formalizing Russian Cards Problem

In this section, we study deterministic 2-step protocols
for Russian cards problem that can be executed under
arbitrary initial distribution of cards, not for a particu-
lar distribution as in many previous discussions[15, 18].
We show that there can only be deterministic proto-
cols for RCP3.3.1 with uneven appearances of cards in
the announcements.

We first model the general case of RCPn.n.k :
Let I = {A,B,E} be the set of players,
Dk = {0, 1, ..., 2n + k − 1} be the set of 2n + k cards,
Hsh be the set of h-hands (e.g. Hs3 = {{x, y, z} |
x, y, z ∈ Dk and x, y, z are different}). Let hasix be
the basic proposition meaning that player i has card
x; hasiX be the shorthand of

∧
x∈X hasix. TProt =

{OneCardInOneP,EkCards,ABnCards,KnowThyself}
where:

• EkCards:
∨
X∈Hsk hasEX;

ABnCards:
∧
i∈{A,B}

∨
X∈Hsn hasiX
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• OneCardInOneP:
∧
i6=j(

∧
x∈Dk(hasix→ ¬hasjx)

• KnowThyself:
∧
i∈I

∧
X∈Hsk(hasiX → KihasiX)

MProt = {W, {∼i| i ∈ I}, V } is a connected model7

where:

• W = {〈X,Y, Z〉 | X,Y ∈ Hsn, Z ∈ Hsk, X ∪ Y ∪
Z = Dk}

• w ∼i v ⇐⇒ wi = vi where 〈X,Y, Z〉A = X;
〈X,Y, Z〉B = Y ; 〈X,Y, Z〉E = Z.

• V (hasix)(w) = 1 ⇐⇒ x ∈ wi.

The goals of the protocol are:

φ1 =
^
x∈Dk

(hasAx→ KBhasAx)

φ2 =
^
x∈Dk

(hasBx→ KAhasBx)

φ3 =
^
x∈Dk

((hasAx→ ¬KEhasAx)∧(hasBx→ ¬KEhasBx))

If the protocol Prot is deterministic, and executable
on arbitrary initial distribution then according to the
previous section, we checkMProt � C〈πProt〉(φ1 ∧φ2 ∧
φ3). The following proposition shows that we can then
safely focus on the first step of the protocol which
should satisfy φ1 and φ3.

Proposition 7 If there is an one-step protocol π such
that MProt � C〈π〉(φ1 ∧ φ3), then there is a π′ such
that MProt � C〈π;π′〉(φ1 ∧ φ2 ∧ φ3).

Proof :Let π′ =
⋃
X∈Hsk?!KBhasEX we show that if

MProt � C〈π〉(φ1 ∧ φ3) then MProt � C〈π;π′〉(φ1 ∧
φ2 ∧ φ3). Let KiCardj be the abbreviation for∧
x∈Dk(hasjx→ Kihasjx). It is obvious thatMProt �

C〈π;π′〉KACardE . From TProt � KACardE →
KACardB , we have MProt � C〈π;π′〉φ2. It is not
hard to see that φ1 is monotonic to model relativiza-
tions, namely if it is true at M, s then it is true
in any possible restrictions of M, s. Thus MProt �
C〈π;π′〉φ1. For φ3, first we know from Proposition 5,
MProt � 〈π〉Cφ1. Thus from TProt � KBCardA →
KBCardE , we have MProt � 〈π〉CKBCardE . There-
fore for each world s where E’s actual hand is X,
MProt, s � 〈π〉KEKBhasEX. Thus truthfully an-
nouncing KBhasEX will not change the worlds that
E considers possible. Thus for factual formula ψ

7It is easy to see that MProt � TProt, but not ev-
erything valid in MProt are specified in TProt, e.g. let
φ =

V
i6=j∈I

V
x∈Dk(hasjx → ¬Kihasjx), then MProt � φ

but TProt 6� φ. TProt includes the hard facts which remain
unchanged while the protocol is applied. However, some
agents may know something they did not know before.

(without knowledge operators), MProt � 〈π〉¬KEψ ↔
〈π;π′〉¬KEψ. Then it is not hard to see thatMProt �
C〈π;π′〉(φ1 ∧ φ2 ∧ φ3). 2

Now we restrict the form of our protocol further by
the adaption of a result from [15], which states that to
announce only A’s alternative hands is enough.

Proposition 8 If a correct 2-step protocol of the Rus-
sian cards problem RCPn.n.k exists, there is another
correct protocol with the first step in the form of:

π ::=?!Pa0∪?!Pa1 ∪ · · · ∪?!Pam

where Pai is in the form of
∨
j≤m hasAXj (i.e. A’s

alternative hands).

We now prove a lemma for our negative result later in
this section.

Lemma 1 The first step of a correct 2-step determin-
istic protocol of the Russian cards problem RCPn.n.k
should at least satisfy:

1. each possible hand appears once and only once in
?!Pa0∪?!Pa1 ∪ · · · ∪?!Pam.

2. any two hands in one announcement Paj can only
share at most n− k − 1 common cards.

Proof : For (1): From Proposition 8 and the require-
ment that MProt � C〈πProt〉> we know every hand
should appear at least once. From the fact that pro-
tocol should be deterministic, every hand can only ap-
pear once. In the following, given a hand X of A, let
Pa(X) be the announcement Paj in the protocol such
that hasAX is a disjunct of Paj .
For (2): To let B know A’s cards after A’s announce-
ment, we should make sure that given A’s hand X, for
any B’s hand Z, the alternatives in Pa(X) will be ruled
out. Namely, for any different hands X,Y ∈ Pa(X),
any hand Z ⊆ Dk\X that B may have: Z ∩ Y 6= ∅.
This means that for every two hands X,Y in Pai, the
number of cards different from the cards in X∪Y must
be less than n. Otherwise there is a possible hand Z
which does not intersect with both X and Y . Thus,
we have |Dk| − |Y ∪ X| < n. Since |Dk| = 2n + k,
|Y ∪X| > n + k. Therefore it is not hard to see that
|X ∩ Y | < n− k. 2

In the following we will concentrate on the original
Russian cards problem RCP3.3.1 as coined in [15]. We
first show that there is a deterministic protocol:

Theorem 1 There is a correct, 2-step deterministic
protocol for RCP3.3.1

8.
8The solution was found with the help of the Alloy An-

alyzer cf.[10]
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Proof : Let hasAPai be the abbreviation for∨
X∈Pai

hasAX where

Pa0 : 012 036 045 134 156 235 246
Pa1 : 013 025 046 126 145 234 356
Pa2 : 014 026 035 136 245
Pa3 : 015 024 123 256 346
Pa4 : 016 034 124 135 236 456
Pa5 : 023 056 125 146 345

Let π =
⋃

0≤i≤5(?!hasAPai). Note that π satisfies the
conditions in Lemma 1. Moreover we can verify that
M � C〈π〉(φ1 ∧φ3). Thus from Proposition 7, there is
a deterministic protocol for RCP3.3.1. 2

However, the above protocol is biased in the sense that
not all the cards appear evenly in all the possible an-
nouncement(e.g. in Pa2, 0 appears 3 times but others
only appear twice). Thus an eavesdropper may learn
that some card is more likely to be held by A. Thus it
is preferable to have an unbiased protocol with evenly
appearances of cards. Here are some properties of the
unbiased protocol for RCP3.3.1, if exists:

Lemma 2 The first step of an unbiased deterministic
protocol for RCP3.3.1 must satisfy the following:

1. each announcement Paj contains, and only con-
tains, 7 alternative hands.

2. there are in total 5 alternative announcements in
the protocol.

3. every two hands in the same announcement have
exactly one card in common.

Proof : For (1): If all the cards appear evenly (sup-
pose g times) in any announcement with k hands, then
3k = 7g. So the minimal k is 7, and each card ap-
pears 3 times. We claim that if k is greater than 7
then there must be two hands which share more than
1 cards. Note that there are only C2

7 = 21 differ-
ent pairs of cards and each hand contains 3 different
pairs. From the second statement in Lemma 1 any two
hands should not have a pair of cards in common, 7
hands then covers all the possible different pairs. Thus
adding one more hand must result in two hands share
two cards in common.
For (2): From the first statement in Lemma 1, we know
the C3

7 = 35 hands should all appear in the protocol
once. Thus from (1) the protocol should have 5 alter-
native 7-hand announcements.
For (3): Suppose there are two hands X,Y in an an-
nouncement such that X ∩ Y = ∅. Without loss of
generality let X = 123, y = 456. Since each of the
possible 21 pairs should appear in some hand the an-
nouncement as argued in (1), then the hands 14c and

24c′ must also appear in the same announcement for
some cards c, c′. Since every two hands should not
have two cards in common then c, c′ 6∈ X ∪ Y thus
c, c′ ∈ Dk\X ∪ Y , namely c = c′ = 0. However now
14c and 24c′ have two cards in common, contradic-
tion. 2

Moreover, we need to require that E cannot infer some
card is more likely than others to be held by A. To
formally specify this requirement we need some form
of graded modality as in [6]. Since here we only need
to express whether hasAx and hasAy are equally pos-
sible to E, we introduce a 2-ary modalities Ba into the
language LSP with the following semantics:

M, s � Ba(ψ, φ) ⇐⇒ ]a(s, φ) = ]a(s, ψ)

where ]a(s, χ)|{t | s ∼a t and M, t � χ}|. Clearly,
adding this modality does not destroy the decidability
of the model checking problem on finite models.

Now we can show that an unbiased protocol, if exists,
also guarantees that player E does not have a lucky
guess:

Proposition 9 If there exists an unbiased protocol
πProt for RCP3,3,1 then
MProt � C〈πProt〉

∧
x,y∈Dk((¬KE¬hasAx ∧

¬KE¬hasAy)→ BE(hasAx, hasAy)).

Proof :Given an announcement Pa(as a set of alter-
native hands) in an unbiased protocol for RCP3.3.1,
for any card c ∈ Dk, let SE = {X|c ∈ X and X ∈
Pa}. From Lemma 1, we know that the alterna-
tive hands in ScE should not have 2 cards in com-
mon. So any card that appears in ScE only ap-
pears once. From the proof of statement 1 in
Lemma 2, we know every card in Dk\{c} must ap-
pear in ScE . Thus every card in Dk\{c} only ap-
pears once in the hands in ScE . Since Pa is unbi-
ased then Pa\ScE is still unbiased. Thus it is not hard
to see that MProt � C〈πProt〉

∧
x,y∈Dk((¬KE¬hasAx∧

¬KE¬hasAy)→ BE(hasAx, hasAy)). 2

The authors of [2] showed that unbiased non-
deterministic protocols exist, by making use of proba-
bilistic selections9. However, in the following, we show
that there is no deterministic protocol which is unbi-
ased.

Theorem 2 There is no correct deterministic 2-step
protocol which is unbiased for RCP3.3.1.

Proof :We prove the theorem by proving the following
stronger claim first:

9The verification there was not purely formal, due to
the lack of specification languages.
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There are no 3 sets of 7 hands each, such that: (1)
all the 21 hands that appear in these sets are different;
(2) every two hands in the same set have one and only
one common card; (3) all the cards appear evenly in
every set.

Suppose towards contradiction that there exist 3 sets
Pa2, Pa3, Pa4 satisfying (1), (2) and (3). Assume
without loss of generality that 012 ∈ Pa2, 013 ∈ Pa3

and 014 ∈ Pa4. Since 01x ∈ Pax then from (2) and
(3) we know that xab, xcd ∈ Pax, 0ac, 0bd ∈ Pax and
1ad, 1bc ∈ Pax such that ab|cd ac|bd and ad|bc are
three different partitions of Dk\{0, 1, x}. Since for 4
cards there are only 3 different partitions, we can list
all the remaining hands in Pa2, Pa3, Pa4:

for Pa2 : p2
134, p2

156 p2
235, p2

246 p2
336, p2

345
for Pa3 : p3

124, p3
156 p3

225, p3
246 p3

326, p3
345

for Pa4 : p4
123, p4

156 p4
225, p4

236 p4
326, p4

335

where pxi ∈ {0, 1, x}. First, there exists an x ∈ {2, 3, 4}
such that px1 = x, otherwise there must be either two
056 or two 156 in Pa2, Pa3, Pa4, contradictory to (1).
Suppose w.l.g. that p2

1 = 2. It is easy to see that
p3

1 6= 3 and p4
1 6= 4, otherwise 234 appears twice in

Pa2, Pa3, Pa4. Moreover, obviously p3
1 6= p4

1. Suppose
w.l.g. that p3

2 = 3. Then p4
2 6= 4 since 346 ∈ Pa3,

therefore p4
3 = 4. Now let us fill in the known pxi as

following:

for Pa2 : 234, 256 p2
235, p2

246 p2
336, p2

345
for Pa3 : p3

124, p3
156 325, 346 p3

326, p3
345

for Pa4 : p4
123, p4

156 p4
225, p4

236 426, 435

Now we know that p2
3, p

3
3, p

4
2 ∈ {0, 1} and p3

3 6= p4
2

since p3
1 6= p4

1. Therefore p2
3 = p3

3 or p2
3 = p4

2, but
in any case, there will be one hand appear in two
announcements, contradiction.
The Theorem follows from above claim and
Lemma 2. 2

5 Non-deterministic Protocols for
Secret-key Generation

In this section, we demonstrate the use of our frame-
work in specifying the non-deterministic protocols, by
considering a simplified version of the One-Bit Secret
Key exchange protocol in [7].

Example 3 A deck of cards is distributed randomly to
players A,B,E such that A,B,E hold k+ 1, 1, k cards
respectively. Players A and B want to generate a 1-bit
secret key by public announcements in the presence of
the eavesdropper E according to the following protocol:
1. Player A announces that “I have one card in {x, y}”
where one card in {x, y} is in his hand and the other
not.

2. Player B announces that “I have also one card
in {x, y}” if either x or y is his card. Otherwise he
announces that “ I do not have any card in {x, y}”.
3. If B’s announcement is negative then the players
proceed by going to step 1 again as if the deck shrinks to
its subset without x, y. If B’s announcement is positive
then A,B should know that A has one card and B
has the other in {x, y}, while E still does not know
which belongs to whom. In the end A,B generate one
bit secret key by the agreement that bit = 1 if A has
max(x, y), bit = 0 otherwise.

We can give the initial model MProt′ and axioms
TProt′ for the above scenario, similar to MProt and
TProtin the previous section. Note that the step 3
in the above informal description requires that agents
continue “as if ” the deck of cards (Dk) changes to
Dk\{x, y}, namely agent A will not announce any-
thing she mentioned before. Since after B’s negative
response, agent A knows the card y is at E’s hand
and E knows that x is at A’s, we can then equally
specify the step by adding an epistemic pre-condition
for agent A’s announcement: she only mentions {x, y}
if (1) she is sure that E does not know which card in
{x, y} belongs to her; (2) she does not know that E has
a card in {x, y} already and (3) she does not know B’s
card (otherwise the execution of the protocol should
be terminated).

Now let hasA(x� y) be the abbreviation of
((hasAx ∧ ¬hasAy ∧ KA¬KEhasAx ∧ ¬KAhasEy) ∨
(hasAy ∧ ¬hasAx ∧ KA¬KEhasAy ∧ ¬KAhasEx)) ∧∧
z∈Dk ¬KAhasBz. Let hasi(x⊕ y) be the abbrevia-

tion of hasix ∨ hasiy. Then the above protocol can
be formalized as Prot′ = 〈πProt′ ,ΦProt′〉 where πProt′

is as follows:` [
x,y∈Dk

(?!(hasA(x� y)); (?!hasB(x⊕ y)∪?!¬hasB(x⊕ y)))
´∗

and ΦProt′ = {
∧
x∈Dk(KAhasBx →∨

y∈Dk(KBhasAy ∧ ¬KEhasAy ∧ ¬KEhasBx))}.

Note that the protocol πProt′ is non-deterministic and
indefinite in length, since for any x, z 6= y ∈ Dk,
hasi(x� y) and hasi(x� z) may both hold at some
state in MProt′ where A has x but not y or z. Just
like the informal description of the protocol, for any x
that A has, she randomly chooses the announcement
she wants to make. Also note that in the specification
we use ∗ operator to avoid giving a bound of steps
of the protocol which depends on the specific k. The
verification problem is as follows:

Proposition 10 MProt′ � C[π′Prot]ΦProt′ .

With some efforts, we may specify the n-bit secret ex-
change multi-party protocols in [7, 8], based on the
above example.
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6 Conclusion and Future work

The logical framework for formally specifying and ver-
ifying epistemic protocols of this paper made it possi-
ble to formally state and verify the crucial requirement
that the protocols remain correct even if the protocol
and its goals are commonly known, not only to the
participants in the protocol but also to eavesdroppers.
This fleshes out remarks to that effect in [15, 18, 2].

Future work We have restricted ourselves to proto-
cols involving public announcement only. This guar-
antees decidability of the model checking for protocols,
and decidability of satisfiability for the echo-free part
of the language (where no public announcements occur
in the scope of an iteration operator). The exact com-
plexity of the model checking problem of this logic is
left for further investigation. The restriction also gives
some hope for the synthesis problem for restricted
forms of epistemic protocols (cf. the ideas mentioned
[1]). Some obvious extensions of the language are sub-
group announcements and actions for factual change
(cf. [17, 13]). Another interesting extension is con-
current action, for modelling simultaneous announce-
ments. In order to verify some non-deterministic pro-
tocols where probabilistic choices of announcements
play an important role, e.g. the unbiased protocols
mentioned in [2], we may need to extend our language
with probabilistic programs and modalities about con-
ditional probability.

In any case, the long term goal of our project is to de-
sign and analyse an epistemic protocol language that
can be used to specify and automatically verify real
life protocols for secure communication or social mech-
anism design, thus exploring a new field of “Epistemic
Engineering”.
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