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Abstract

We study games in which the choices available
to players are not fixed, and may change dur-
ing the course of play. Specifically, we consider
a model in which players may switch strategies,
and a global (social) decision may remove some
choices, based on the strategies being adopted
by players. We propose a logical formalism in
which such choices are specified, and a model of
bounded memory strategies in which the eventual
implications of such choices can be computed,
and present preliminary results.

1 Introduction

Outfitting oneself in India before the 1980s was an elab-
orate affair. One had to buy cloth from a store, decide on
the design and style of the garment, and get it stitched by
a tailor. Along the way, many personal preferences and
current fashion trends would play a role. But gradually,
as readymade garments came into the market, it became
clear that this was a cheaper and quicker option, though
this severely limited one’s say in the finer design details.
As more people bought readymades, they became cheaper
still, and with fewer customers, tailors had to charge more
to sustain themselves. Today, there are very few practising
tailors, and getting one’s clothes custom made is a luxury.
Whether this choice will even be available a few genera-
tions from now is unclear.

Economists are, of course, well aware of such phenom-
ena. The availability of individual choices is, in general,
determined by choices by the society as a whole, and in
turn, social choices are influenced by patterns of individual
choices. In this process, the set of choices may expand or
contract over time.

However, there is a political or philosophical value attached
to availability of individual choices. A strategya may be
justified by the presence of another optionb but if even-

tually b is forced out, the rationale fora may disappear,
thougha is the only one present. In a world where all pos-
sible eventual consequences can be computed, the cost of
such disappearance of choices can also be taken into ac-
count, but (as we see in the case of environment conserva-
tion) realisation typically comes post-facto.

To see this, consider a toll booth on a busy road which is
manually operated. A vehicle driving through has to stop,
tender cash and only then is allowed to proceed. Hence it
is suggested that toll collection be RFID based. A vehicle
equipped with RFID can speed through an automatic lane,
and the requisite amount will be debited from the bank ac-
count of the owner of the vehicle. While this is welcome,
protesters point to loss of privacy, since the movements of
the car owner can then be tracked. RFID is defended on
the grounds that anyone worried about privacy can always
use the lane with the manual booth. Thus speed and pri-
vacy are traded off against each other and the RFID system
is introduced. Gradually, as more people use the fast lanes,
only one lane is operated manually, and there comes a point
when the manual booth is removed on the grounds that it is
too expensive to maintain. Interestingly, there is almost no
public debate when this is done.

What happened to the trade-off between speed and privacy?
It can be argued that a strategy valued by so few is socially
a luxury to maintain, but the point remains that the ratio-
nale and terms of debate have changed entirely. While the
question of whether this is acceptable or not is interesting
for political philosophers, we suggest that there is at least
a clear case for models that compute such eventual conse-
quences of social decisions.

The general situation is as follows. At every stage, an in-
dividual has certain choices to make. But making a choice
also comes with a cost which is associated with that choice
and which the individual has to incur in making the choice.
On the other hand, society also incurs a certain cost in mak-
ing these choices available to individuals. This cost is a
function of the choices being provided as well as the profile
of choices made by individuals.
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From time to time, based on the history of choice profiles
and predictions of the future, society revises the choices
it provides to individuals as well as the cost individuals
have to incur to make these choices. This in turn has an
effect on individuals’ strategies, who switch between avail-
able choices. The dynamics of this back and forth process
can be quite interesting and complicated.

Indeed, the decision on whether a facility should be pro-
vided as a part ofsocial infrastructure(as opposed to being
individually maintained, based on affordability) is based on
such computations. Society may well decide that it is in
its interest toensurethat everyone gets access to a facil-
ity, however uniform, rather than having a range of choices
available but only to a subset of people. (As an example,
consider Singapore offering free island-wide WiFi connec-
tivity for three years.)

In game theoretic models of such social phenomena, so-
cial rules are considered as game forms, and individual
behaviour is regulated using payoffs. Rule changes are
considered to be exogenous, and correspond to change of
payoff matrices. In evolutionary game theory, rules are
considered as game equilibria: individuals following rules
are players, and the desired properties of rules are given
by equilibrium strategies, thus describing enforced rules.
However what we discuss here is endogenous dynamics of
these rules that takes into account the fact that individual
behaviour and rules operate mutually and concurrently. In
this sense, individual rationality and social rationality are
mutually dependent, and what we seek to study are the pat-
terns ofreasoningthat inform such dependence.

We thus consider game forms which change dynamically,
but according to pre-specified rules stated in a formal logic.
If players had unlimited computational power, they could
startegise about all possible game changes as well, but
we consider players with bounded computational ability,
who formulate initial strategic plans and revise them dur-
ing course of play, based on observation. Such switching
is again described logically. This, in turn, determines ap-
plicability of game changing rules, and so on. We can then
ask, in this model, which action choices are eventuallysta-
ble (in the sense that no further game changes will elimi-
nate them), and under what conditions. We may also ask
if a player eventually gets removed by the dynamics of
the game, if eventually a particular action tuple becomes
the only choice available forever or if the cost stabilises to
some specific amount. We show that these questions are al-
gorithmically solvable.

It is important to emphasise that we focus on qualitative
reasoning rather than quantitative analysis. However, the
framework is appropriate for any such analysis in which
costs and payoffs take values from a finite set, which is
realistic when limited to players who have only a bounded
memory.

Related Work: Game Dynamics

Strategy switching by players and rule changing are by no
means new notions for game theory, and have indeed been
studied extensively in evolutionary game theory. Weibull
([Wei97]) studies how players observe payoffs obtained
by others and change their behaviour accordingly. [PW07]
studies a model where actions of players depend on the
forecasted outcome. It is not required that all players arrive
at the same expectation. Depending on past forecasting er-
rors, players switch strategies and update their behaviour.
The behaviour switching of the players in effect causes the
game itself to change in a dynamic fashion reflecting the
choices which fall out of favour for all the players.

Dynamic learning has also been extensively studied in
game theory. Young ([PY93]) considers a model in which
each player chooses an optimal strategy based on a sam-
ple of information about what other players have done in
the past. In [PY00] he defines and studies the long run dy-
namics of a model of how innovations spread in a social
network. [BS99] looks at equilibrium selection by players
who revise strategies by a learning process. They note that
the stable behaviour of agents depend on the dynamics of
the game itself and argue that it is important to incorporate
these changes into the model. Switching behaviour of play-
ers has also been studied in dynamical system models of
social interaction ([SP00], [Hor05]).

Going further, Hashimoto and Kumagai ([HK03]) even
propose a model in which interaction rules of replicator
equations change dynamically, and offer computer simu-
lations of dynamic game changes.

Given such extensive work by dynamical system theorists,
the need for qualitative reasoning, with all its severe lim-
itations, in the same framework may well be questioned.
It should be noted that dynamical system models typically
work with fixed evolution rules (which are complicated
enough) and study changes in parameter values. The rel-
ative advantage of logics is that rather than working with a
fixed rule, we can study an entire class of rules (that can be
specified in the logic) in a general fashion. Moreover, use
of automata theoretic techniques for solving the problems
(as done here) gives us uniform algorithms, as opposed to
numerical solutions and computer simulations. Further, we
hope that inference systems can be built which explicate
the logical connections between individual and collective
rationality in such contexts.

Related Work: Logical Studies

Our work is situated in the logical foundations of game
theory, and hence employs logical descriptions of strate-
gies and automata based algorithms to answer questions.
Modal logics have been used in various ways to reason
about games and strategies. Notable among these is the
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work on alternating temporal logic (ATL) and its exten-
sions ([AHK02], [HW03], [HJW05], [JHW05]): assertions
are made on outcomes a coalition of players can ensure, and
what strategy a player plays may depend on her intensions
and epistemic attitudes. In [Ben01,Ben02] van Benthem
uses dynamic logic to describe games as well as strate-
gies. [Gho08] presents a complete axiomatisation of a logic
describing both games and strategies in a dynamic logic
framework where assertions are made about atomic strate-
gies. [RS08] studies a logic in which not only are games
structured, but so also are strategies. [Ben07] lists a range
of issues to be studied in reasoning about strategies.

Somewhat different in approach, and yet related, is the
work of De Vos and Vermeir ([VV00],[VV02]) in which the
authors present a framework for decision making with cir-
cumstance dependent preferences and decisions (OCLP).
It allows decisions that comprise of multiple alternatives
which become available only when a choice between them
is forced.

In our earlier work ([PRS09]), we study aprocess-likeno-
tion of strategy in the context of strategy switching. In par-
ticular, we show the decidability of a stability question:
given a game arena and a strategy specification, whether
players eventually settle down to strategies without further
switching. There are two critical differences between that
study and the one presented here. Firstly, in [PRS09], the
game arena is fixed, choices are static and players are the
only actors; in contrast, this work is about changing game
arenas, and the dependence of individual choices and social
decisions on each other. Secondly, the logic in [PRS09] is
much more intricate and includes an explicit switching op-
erator. However, the techniques used (automata and trans-
ducer constructions) in the two papers are similar: one uses
them to study a complex logic on static models, and the
other to study a simple logic on dynamic models. We hope
to integrate these into one framework, but the framework is
too messy as yet to admit this.

2 Preliminaries

We study games in extensive form which are given as trees
of game positions (game trees), with branching denoting
choices of moves. However, since we wish to study games
that change dynamically, what we need is not a single tree,
but a collection of trees. Moreover, if the game duration
is fixed, game changes can be predetermined statically, and
hence we consider games of unbounded duration which can
be modelled by infinite game trees. Since the main object
of this paper concerns algorithmic analysis of games, we
require that the game structure is presented in a finite fash-
ion. One possibility is to describe the structure in terms of
a finite set of rules. However, a simpler approach, which is
the one we adopt in this discussion, is to present the game
structure as a finite game arena which is a finite graph. The

infinite extensive form game is then just the unfolding of
this finite graph. We are thus led to unbounded duration
games played on finite arenas. The model is formalised be-
low.

2.1 Game Arena

LetN = {1, . . . , n} be the set ofplayers. For eachi ∈ N ,
letAi ∪ {ǫ} be afiniteset ofactions of playeri. ǫ denotes
a null action which is useful when we wish to record that
the move made by a player was notavailable1. Let A =
Πn
i=1(Ai ∪ {ǫ}) andA =

⋃n
i=1 Ai. An arena A = (V,E)

is a finite graph with the vertex setV and edge relationE.
For v ∈ V , let vE = {(v, u) ∈ E}, i.e., the set of edges
outgoing fromv. The edges of the arena are labelled with
labels fromA. For an edge labela = (a1, . . . , an) we let
a(i) denote theith component ofa, i.e., a(i) = ai. We
let |a|a, a ∈ A ∪ {ǫ}, denote the number ofa’s present
in the labela, i.e., |a|a = |{i | 1 ≤ i ≤ n, a(i) = a}|.
We assume that for every labela such that|a|ǫ ≥ 1 there
always exists an edge inA with labela. An initial vertex
v0 ∈ V is distinguished and the gameG = (A, v0) consists
of an arenaA and the initial vertexv0. A sub-arena A′ of
the arenaA is a graph(V ′, E′) such thatV ′ ⊂ V andE′ is
the set of edges induced byV ′.

The game proceeds as follows. Initially a token is placed
at v0. If the token is at some vertexv, then players 1
to n simultaneously choose actionsa1, . . . , an from their
action setsA1, . . . , An respectively. This defines a tuple
a = (a1, . . . , an). If a is the label of the edge(v, u) then
the token is moved tou. If a is not present among the la-
bels of the outgoing edges then for alli : 1 ≤ i ≤ n
such that the actiona(i) is not available to playeri, a(i)
is replaced byǫ in a to getaǫ. If (v, u) is the edge with
labelaǫ then the token is moved tou. This defines a path
π = v0

a0→ v1
a1→ . . . in the arena. Such a path is called a

play. A finite play is also called ahistory.

Tree Unfolding

The tree unfolding of the arenaA at a nodev0 is a sub-
set TA ⊂ A∗ such thatǫ ∈ TA is the root and for all
t = a0a1 . . .ak ∈ TA such thatv0

a0→ . . .
ak→ vk is the cor-

responding path inA, ta ∈ TA for all (vk, u) ∈ vkE such
that(vk, u) is labelled witha. For a nodet = a0a1 . . .ak ∈

TA such thatv0
a0→ . . .

ak→ vk is the corresponding path in
A, we letλ(t) = vk. We also use the notationTG to denote
the tree unfolding of the gameG = (A, v0).

2.2 Strategies

A strategy of a player tells her how to play the game. In
other words, it prescribes at every position which move to
make. Formally astrategy µi of playeri is a functionµi :

1 The notion will be made precise in Section 3
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A∗ → Ai. Note that the codomain ofµi isAi and notAi ∪
{ǫ}. The empty action isnota strategic choice for a player;
rather it isforcedwhen the action she plays is not available.
A strategyµi can equivalently be thought of as a subtree
Tµi

, the strategy-tree, of TA with root corresponding to
the positionv0 such that:

– For any nodet = a0a1 . . .ak if µi(t) = a then the
children oft in Tµi

are exactly those nodesta ∈ TA
such thata(i) is equal toa.

A strategyµ is said to bebounded memory if there exists
a finite state machineM = (M, g, h,mI) whereM is a fi-
nite set denoting the memory of the strategy,mI is the ini-
tial memory,G : A×M →M is the memory update func-
tion, andh : A×M → Ai the output function which spec-
ifies the choice of the player such that ifa0 . . .ak is a play
andm0 . . .mk+1 is a sequence determined bym0 = mI

andmi+i = g(ai,mi) thenµ(a0 . . .ak) = h(ak,mk+1).
The strategyµ is said to bememoryless if M is a single-
ton.

2.3 Dynamic Game Restriction

Having defined game arenas, we now proceed to consider
game restrictions. The crucial elements are:whena restric-
tion is to be carried out in the course of play, andwhat the
effects of a restriction are. We choose a very simple answer
to the latter, namely to eliminate a subset of choices at se-
lected game positions. The former is treated logically, to be
defined in the next section, by tests for logical conditions.

Formally the restriction is triggered by a rule of the form
r = pre 7→ A′ wherepre is a precondition which is inter-
preted on partial plays andA′ is a restriction of the arena.
For an arenaA and a partial (finite) playt ∈ TA, we say
that the ruler = pre 7→ A′ is enabled at(A, t) if the fol-
lowing conditions hold.

– The partial playt conforms to the preconditionpre
(this notion will be made precise in the next section).

– The arenaA′ = (V ′, E′) is a sub-arena ofA.
– λ(ρ) ∈ V ′, i.e. the node inA which corresponds to

the partial playt is present inA′ as well.

When the ruler = pre 7→ A′ is applied to a partial playt,
the game proceeds to the new arenaA′ starting at the node
λ(t).

Induced Game Tree

The restriction rules are specified along with the initial
game arena. LetR = {r1, . . . , rm} be afinite set of re-
striction rules. For an arenaA, let Sub(A) denote the set
of all subarenas ofA. Given a game arena(A, v0) and a
finite set of rulesR, the extensive form game tree is the (in-
finite) treeT = (S,⇒, s0) whereS ⊆ A∗ × Sub(A) and

s0 = (ǫ,A). We start unfoldingA starting at the nodev0.
T is generated by the repeated application of the following
steps:

– At any nodet = (a0a1 . . .ak,A
′) of the tree, check if

a rule(rj = prej 7→ Aj) ∈ R is enabled at(t,A′). If
more than one rule is enabled then choose any one of
them.

– The subgame rooted att is the unfolding ofAj at the
nodeλ(a0a1 . . .ak).

2.4 Strategising by Players

Strategies, as defined earlier, are functions from nodes of
the resulting game tree to actions of players. A strategy thus
specifies the complete plan of a player. However, in the case
of bounded memory agents, a player typically starts play-
ing the game with information on game structure and on
other players’ skills, as well as an initial set of possible
strategies to employ. As play progresses, she makes obser-
vations and accordingly revises strategies, switches from
one to another, perhaps even devises new strategies that
she hadn’t considered before. The fact that other players
are similarly revising strategies is recognised and iterated
on. The observations made by the player take into account
actions of others and her own cost computation for the his-
tory of play. In addition to this, in the presence of dynamic
game restriction operations, the player can keep track of
the restriction rules which are triggered by observing the
history of play and adapt her strategy based on this infor-
mation.

A strategy specification for a player would therefore be of
the formpre 7→ ai where, as earlier,pre is a precondition
which is interpreted on partial plays andai is an action of
player i. The specification asserts that if a partial playt
conforms to the preconditionpre, then the actionai is taken
by the player.

Note that a strategy specification of this form is partial,
since it does not constrain game positions at which the pre-
condition does not hold; the player is free to choose any en-
abled action. This makes sense especially in the context of
players with bounded memory, since they cannot (in gen-
eral) compute all possible futures, or even keep a record
of the entire past. Thus, in our model, a player starts the
game with a finite set of such specifications and switches
between these specifications by taking into account the his-
tory of play.

3 Logical Specifications

In this section we show that game arena restriction can be
specified in a succinct manner in terms of homomorphisms
and that restriction preconditions can be represented in a
simple tense logic formalism.
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3.1 Homomorphisms

A homomorphism is a functionh : A ∪ {ǫ} → A ∪ {ǫ}
such thath(a) is eithera or ǫ andh(ǫ) = ǫ.

Given an arenaA and a homomorphismh, the restric-
tion of A with respect toh, A|h is defined as follows.
An edge with labela = (a1, . . . , an) in A gets label
h(a) = (h(a1), . . . , h(an)) in A|h.

A homomorphism on an arena is thus nothing but the re-
moval of one (or more) action(s) from the labels of the
edges of the arena. Thus, in order to describe a homomor-
phism, it is enough to specify the action(s) to be removed.
However, given an action we may not wish to remove the
action from an individual’s choice at all possible points but
only at selective ones. This can be achieved by associat-
ing the restriction with respect to certain observables of the
players.

3.2 Restriction Specifications

We now formally describe how we can specify these re-
strictions that the society imposes on the actions of the
players. LetP be a set of propositions andBool(P) be the
set of boolean formulas overP (i.e. built using the syntax
p ∈ P | ¬β | β1 ∨ β2). We also use the following abbrevi-
ations:⊤ ≡ p ∨ ¬p and⊥ ≡ p ∧ ¬p. Let Val : V → 2p

be a valuation function.Val can be lifted toTA in the nat-
ural way, i.e.,Val(t) = Val(λ(t)). The truth of a formula
β ∈ Bool(P) at a game positionv, denotedv |= β is de-
fined as follows:

– v |= p ∈ P iff p ∈ Val(v).
– v |= ¬β iff v 6|= β.
– v |= β1 ∨ β2 iff v |= β1 or v |= β2.

Given an arenaA the restriction rules imposed by the so-
ciety consists of a collection of specification of the form
ϕ ⊃ h, whereϕ is a precondition specification andh is a
specification of the homomorphism. The formal syntax and
semantics is presented below

Syntax of Homomorphism Specifications

Homomorphisms are specified using the following syntax:

h ::= hβ:a | h1 ∧ h2, wherea ∈ A andβ ∈ Bool(P).

Semantics

For an arenaA and a homomorphism specificationh, we
define the restriction ofA with respect toh (denotedA|h)
inductively as follows:

– h ≡ hβ:a: A|hβ:a
is A with the label a =

(a1, . . . , an) of every edge(v, u) ∈ vE replaced by
(h(a1), . . . , h(an)) such thath(ǫ) = ǫ,

• h(ai) = ǫ if v |= β andai = a, h(ai) = ai
otherwise.

– h ≡ h1 ∧ h2: A|h1∧h2
= (A|h1

)|h2

Note that using the above notation the removal of all ‘a’ ac-
tions in the arena can be specified byh⊤:a and the removal
of a playeri from the arena by

∧
a∈Ai

h⊤:a.

Syntax of Restriction Precondition

ϕ ::= p ∈ P | ¬ϕ′ | ϕ1 ∨ ϕ2 | 〈a〉−ϕ′ | �-ϕ′ | 〈a〉+ϕ′

As usual⊖ϕ′ ≡
∨

a∈A 〈a〉
−
ϕ′, ©ϕ′ ≡

∨
a∈A〈a〉

+ϕ′ and
♦-ϕ′ ≡ ¬�-¬ϕ′.

Semantics

A formulaϕ is evaluated on the game treeTG. The truth of
ϕ at a nodet of TG, denotedTG, t |= ϕ is defined induc-
tively as:

– TG, t |= p iff p ∈ Val(t)
– TG, t |= ¬ϕ′ iff TG, t 2 ϕ′

– TG, t |= ϕ1 ∨ ϕ2 iff TG, t |= ϕ1 or TG, t |= ϕ2

– TG, t |= 〈a〉−ϕ′ iff t = t′a andTG, t′ |= ϕ′

– TG, t |= �-ϕ′ iff for all prefixest′ of t, TG, t′ |= ϕ′

– TG, t |= 〈a〉+ϕ′ iff t′ = ta ∈ TG andTG, t′ |= ϕ′

The modality〈a〉+ϕ′ talks about one step future. It asserts
the existence of ana edge after whichϕ′ holds. Note that
future time assertions up to any finite depth can be coded
by iteration of this construct.〈a〉−ϕ′ is the corresponding
construct for one step past.�-ϕ′ makes assertion about the
unbounded past, it specifies the transitive closure of the one
step past operator. i.e. all states in the past satisfiesϕ′. We
can define the corresponding construct for future,�ϕ′ with
the following interpretation:

– TG, t |= �ϕ′ iff for all t′ such thatt is a prefix oft′,
TG, t

′ |= ϕ′

The technical results of this paper goes through even with
the addition of this construct. However, for the applications
we have in mind, this construct is not required.

3.3 Strategy Specifications

The strategy of players depend on properties of the history
of the play. These can therefore be specified as a collec-
tion of formulae of the formψ ⊃ a whereψ is a simple
past time tense logic formula. The syntax ofψ is given as
follows.
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ψ ::= p ∈ P | ¬ψ′ | ψ1 ∨ ψ2 | 〈a〉
−
ψ′ | �-ψ′

A formulaψ of playeri is evaluated on the game treeTG.
Then the truth ofψ at a nodet of TG, denotedTG, t |= ψ is
defined inductively as given earlier.

3.4 Capturing Costs in the Logical Formalism

Following a strategy induces a certain cost for the player.
The distribution of strategies chosen by players carry a so-
cial cost. In this model, we have taken an abstract view of
costs associated with individual players and social costs as-
sociated with providing facilities. In a quantitative model,
each moveai ∈ Ai made by playeri would be associated
with a local costci. Given a historya0 . . .ak, the accumu-
lated cost of playeri would be some function of the form
Ci = Σk−1

i=0 β
ici whereβ is a discounting factor. The player

would then reason about how to play based on her accumu-
lated cost. The social cost typically depends on the history
of the choices made by players in the past. When the so-
cial cost crosses some pre-defined threshold, it might be
socially optimal to make certain facilities part of the com-
mon infrastructure which reduces the individual costs.

When the costs arise from a fixed finite set, they can be
coded up using propositions in the logical framework on
the lines of [Bon02]. The costc can be represented using
the propositionpc and orderings are inherited from the im-
plications available in the logic. Furthermore, costs can be
dependent on the actions enabled at a game position. This
can also be easily represented in the logical formalism by
making use of the one step future modality.

3.5 Examples

Revisiting the tailor example, suppose there are two players
1 and 2. Each of them have two choices initially:t for going
to a tailor andr for opting for readymade. Suppose initially
the social cost is 5 units. Suppose the cost functions are as
follows: the cost of going to a tailor is 2/5 times the social
cost and the cost of going for a readymade is 3/5 times the
social cost. Also suppose that initially both players playt.
Player 1 has the condition that if at any point, the cost oft
becomes 2.5 or more then she switches tor and player 2 has
the condition that if at any point, the cost oft becomes 3 or
more then she switches tor. Suppose the propositions for
the social costs are{p4, p5, p7, p8} wherep4 is supposed
to mean that the social cost is 4 units and so on. Then the
strategy of player 1 is:S1 = {⊖(p4 ∨ p5) ⊃ t,⊖(p7 ∨
p8) ⊃ r} and that of player 2 is:S2 = {⊖(p4 ∨ p5 ∨ p7) ⊃
t,⊖p8 ⊃ r}.

Now suppose after 2 moves, the social cost rises to 7. This

is modelled in the arena by having pathsv0
(·,·)
→ v1

(·,·)
→

v2 wherep7 ∈ Val(v2). Then player 1 switches to play

r. Also suppose the social cost increases to 8 when 1 of
the players playr. This is modelled in the arena by having

pathsv
(r,·)/(·,r)
−→ v′ wherep8 ∈ Val(v′). Then player 2 also

switches tor. Further suppose if the social cost increases
to 8 then the society decides to do away with all the tailors.
This is given by the restriction specification⊖p8 7→ h⊤:t.

3.6 Stability

Let G = (A, v0) be a game,R be a finite set of game re-
striction rules,{Si}i∈N be a finite set of strategy specifica-
tions or each playeri ∈ N . Let α be a formula from the
syntax:

α ::= α ∈ Bool(P) | 〈a〉+α

We sayα is stable in (G,R, {Si}i∈N) if there exists a
sub-arenaA′ such that for all game positionst ∈ TA′ , we
have:TA′ , t |= α. Thus stability with respect to an observ-
able property captures the existence of a subarena to which
the game stabilises under the dynamics specified byR and
{Si}i∈N . For the applications we consider, we do not re-
quire the full power of temporal logic forα.

4 Results

In this section we present the main theorem of this pa-
per. The questions addressed here are representatives of the
kind of questions one can ask and prove of the model.

Theorem 1. Given a gameG = (A, v0), a finite set of
restriction rulesR, a finite set of strategy specifications
{Si}i∈N and a formulaα, the following question is decid-
able:

– Is α stablein (G,R, {Si}i∈N )?

Proof. Let R = {(ϕ1 7→ h1), . . . , (ϕm 7→ hm)} andSi =
{(ψi1 ⊃ ai1), . . . , (ψ

i
ki

⊃ aiki
)} for each playeri. LetCl(α)

denote the sub-formula closure of a temporal formulaα.
For a homomorphism specificationh, letEL(h) denote the
set of all atomic homomorphism specifications inh. For
H = {h1, . . . , hm}, letEL(H) = EL(h1)∪ . . .∪EL(hm).
The proof is carried out in the following steps.

Step 1.For each of the restriction rulesϕj 7→ hj , we con-
struct a finite state automatonRj which works as follows:
the state space ofRj consists of the set of all maximal con-
sistent subsets ofϕj (atoms ofϕj). The automaton runs
on the game arena and keeps track of the game positions
whereϕj is satisfied. We then construct the restriction au-
tomatonR which runsR1, . . . ,Rm in parallel. In addition,
it also keeps track of the setX ⊆ 2EL(H) of atomic ho-
momorphisms which are enabled. The setX is updated by
the behaviour of the individual automataRj . At any point
when the automatonRj indicates thatϕj holds, the rule
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is triggered andEL(hj) is added to the setX . A formal
definition of the automaton is given in the appendix.

Step 2. For each of the strategy specificationψij ⊃ aij ,
we first construct a finite state automatonSψi

j
which keeps

track of whetherψij holds at a game position. As earlier,
the state space of the automaton is the set of atoms ofψij .

For playeri, we construct a finite state transducerSi which
generates the strategy ofi in conformance with the specifi-
cationsSi.Si is a finite state machine equipped with an out-
put function. It simulates the automataSψi

j
for all j as well

as the restriction automatonR in parallel. At every posi-
tion supposeψij1 , . . . , ψ

i
jl

holds at that position.Si chooses
one ofψij1 , . . . , ψ

i
jl

non-deterministically, sayψij∗ . Si then
outputs actionaij∗ iff

– For all the atomic homomorphism specificationsϕ 7→
hβ:a trigerred byR so far, eitherϕ /∈ s wheres is the
current state ofSψi

j∗
or aij∗ 6= a or aij∗ = a⇒ β /∈ s.

The output isǫ otherwise.

The formal automaton construction is provided in the ap-
pendix.

Step 3.A transducerS simulates all theSj ’s, 1 ≤ j ≤ n, in
parallel. That is,S is a product of all theSj ’s. It’s output are
action tuples which are the actions output by the individual
transducers,Sj ’s. The restriction automatonR operates on
the output ofS. Finally a master transducerQ simulatesR
andS in parallel.Q is a product ofR andS and its output
is the same as that ofS.

Figure 1 shows the interdependence between the various
automata.

R1 R2 Rm· · ·

R

S

Q

S1 S2 Sn· · ·

Sψ1

1
· · · Sψ1

k1

Sψ2

1
· · · Sψ2

k2
· · · Sψn

1
· · · Sψn

kn

Fig. 1.

Step 4.Let Q = (Q,→, I, f) be the master transducer
constructed as above. Forq ∈ Q, we say thatVal(q) = P
iff for each componentqi of q, which are states of the
restriction automatonR and the strategy transducerS,
qi ∩ P = P .

We define the restriction of the game with respect toQ,
G↾Q as follows.G↾Q = (V ′, E′, v′0) where

– V ′ = V ×Q
– E′ ⊂ V ′ × V ′ such that(v, q)

a

→ (v′, q′) iff (v, v′) ∈

E andq
a

→ q′ andf(q) = a(i) for all 1 ≤ i ≤ n and
Val(v′) = Val(q′).

– v′0 = {v0} × I such that(v0, q) ∈ v′0 iff Val(v0) =
Val(q).

To answer the stability question, construct the restricted
graphG↾Q as described above.

– Check if there is a maximal connected componentF
in G ↾Q and whether all paths starting from all initial
vertices reachF . If no, then output ‘NO’ and quit.

– Check ifα holds at all the game positions inF . If so
output ‘YES’, else output ‘NO’.

Corollary 1. Given a gameG and specificationsR and
{Si}i∈N , the following questions are decidable:

1. Does playeri eventually get removed by the dynamics
of the game?

2. Does a particular action tuplea become the only
choice available for ever?

3. Does the cost stabilise to a specific amountc?

Proof. In each case, we come up with a formulaα us-
ing the coding mentioned in section 3.4 such that answer-
ing the question amounts to checking the stability ofα in
(G,R, {Si}i∈N), which is decidable by Theorem 1.

For (1), we can code the positions of playeri using a
propositionturni and check ifα = ¬turni is stable in
(G,R, {Si}i∈N). This asks whether it is the case that the
rules of the society and the behaviour of other players drive
a particular player out of the game. The negation of this
question can also be answered: Does playeri survive till
the end of the game?

For (2), we check ifα = 〈a〉+⊤∧
∧

a∗ 6=a
〈a∗〉

+⊥ is stable
in (G,R, {Si}i∈N). This corresponds to deciding whether
the actiona eventually becomes part of the social infras-
tructure. The choices available to players disappear in such
a scenario. (3) follows from a similar argument.

Complexity

Let p be the maximum size of all theψij formulae and
k = maxi∈N |Si|. The size of eachSj , 1 ≤ j ≤ n is
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O(k · 2p) and therefore the size ofS is O(nk · 2p). Like-
wise, letq is the maximum size of theϕi formulae and
l = |EL(H)|. The size ofR isO(m ·2q ·2l) and hence that
of Q is O(mnk · 2p+q+l). The size of the restricted graph
G ↾ Q is thereforeO(|G| · mnk · 2p+q+l). Checking for
connected components can be done in time polynomial in
the size of the graph. Whenα is a conjunction of boolean
formulas and one step future formulas, the truth checking
can be done efficiently in linear time. The complexity of the
construction given in theorem 1 isO(|G| ·mnk · 2p+q+l).

4.1 Consequences of Theorem 1

Theorem 1 implies that comparison between game restric-
tion rules in terms of their imposed social cost is possi-
ble. Suppose the “type” of players is known in terms of the
strategy specification employed (note that we do not insist
on knowing the exact strategy) and we have two sets of
game restriction rulesR1 andR2. It is possible to compute
the social cost with respect toR1 andR2 and deduce which
is better suited. From the players’ perspective, if the game
restriction rules are known and the type of other players are
known, then they can compare between their strategy spec-
ifications. For instance, in the tailor example, this process
might help a tailor to adapt better to the competition from
ready-made manufacturers. He might be able to change his
service into something of a hybrid form where the basic
stitching itself is mechanised with respect to a fixed range
of sizes. However, certain specific personalisation can be
done by employing fewer number of workers, thereby be-
ing cost efficient.

5 Discussion

We have presented a simple formalism for describing and
reasoning about endogenous dynamics of games, specifi-
cally about social restrictions on individuals’ choices. We
wish to emphasise that the model formulation and the sta-
bility theorem are intended as preliminary results in a larger
programme of study. Ongoing work includes the study of
other questions such asrule synthesis: rather than speci-
fying homomorphism specifications, given a goalα to be
achieved, we seek to synthesise rules of the formϕ 7→ h
that ensure stability ofα. Note that such a question is a
natural analogue of mechanism design in our framework.

While we have confined our study here to removal of ac-
tions (and players),introductionof new actions and play-
ers is also interesting, and needs considerable changes in
the framework. Another line of work relates tohierarchies:
there is no reason to limit the interaction studied here to one
level of social aggregation, except that of technical conve-
nience.

6 Appendix

6.1 Restriction Automaton

The automatonRi for ϕi : 1 ≤ i ≤ m is defined asRi =
(Ri,→i, Ii, Fi) over alphabet2P where

– Ri = AT (ϕi) are the atoms (maximal consistent
states) of the subformula closure ofϕi.

– Ii is the set of initial states. These are the states that
do not contain subformulae of the form⊖ϕ.

– Fi is the set of final states. These are states that contain
ϕi.

– r1
P
→i r2 iff the following conditions hold.

• For all 〈a〉−ϕ ∈ Cl (ϕi), 〈a〉
−ϕ ∈ r2 iff ϕ ∈ r1.

• For all [a]+ϕ ∈ Cl(ϕi), [a]+ϕ ∈ r1 impliesϕ ∈
r2.

• r1 ∩ P = P .

Let EL(h) denote the set of all atomic homomorphism
specifications inh. ForH = {h1, . . . , hm}, let EL(H) =
EL(h1) ∪ . . . ∪ EL(hm). The restriction automatonR is a
tupleR = (R,→, I) over alphabetA where

– R = Πm
j=1Rj × 2EL(H).

– I = I1 × . . .× Im × ∅. That is, the initial state is one
that corresponds to the identity homomorphism.

– (q1, . . . , qm, X)
a

→ (q′1, . . . , q
′
m, Y ) iff qj →j

q′j , ∀j : 1 ≤ j ≤ m and

• Y = X ∪ EL(hk) if qk ∈ Fk. That is, if thek’th
restriction has been enabled then the automaton
keeps track of it by adding it to the setX .

• Y = X otherwise.

6.2 Strategy Transducer

The automatonSψi
j

for ψij is a tuple

Sψi
j

= (Sψi
j
,→ψi

j
, Iψi

j
, Fψi

j
)

over alphabet2P . Sψi
j

simulates the atoms ofψij similar to
the construction ofRi

The strategy transducer for playeri, Si is a tupleSi =
(Si,→i, Ii, fi) over input alphabetA and output alphabet
Ai ∪ {ǫ} whereSi is the set of states,→i is the transition
relation,Ii is the initial state andfi is the output function.
The transducer output functionfi generates the strategy of
playeri.

– Si = Πki

j=1Sψi
j
× R. Sj whereR is the state space of

R.
– Ii = Πki

j=1Iψi
j
× I
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– fi(s1, . . . , ski
, r) = aij iff sj is a final state ofSψi

j

and of all the atomic homomorphismsϕ 7→ hβ:a en-
abled byR so far,ϕ /∈ sj or aij 6= a or β /∈ sj .
fi(s1, . . . , ski

, r) = ǫ otherwise.

– (s1, . . . , ski
, r)

a

→i (s′1, . . . , s
′
ki
, r′) iff si →ψi

j

s′i, ∀j : 1 ≤ j ≤ ki andr
a

→ r′.
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