
Foundations of non-commutative probability theory (Extended abstract) ∗

Daniel Lehmann
School of Engineering and

Center for the Study of Rationality
Hebrew University, Jerusalem 91904, Israel

Abstract

Kolmogorov’s setting for probability theory is
given an original generalization to account for
probabilities arising from Quantum Mechanics.
The sample space has a central role in this pre-
sentation and random variables, i.e., observables,
are defined in a natural way. The mystery pre-
sented by the algebraic equations satisfied by
(non-commuting) observables that cannot be ob-
served in the same states is elucidated.

1 Introduction

In Quantum Physics a state of a physical system defines
random variables corresponding to observables that are
represented by Hermitian operators. These random vari-
ables cannot be treated in the framework, laid down by Kol-
mogorov in the 30’s, which is now standard in probability
theory. The main reason is that, in the standard treatment,
real random variables are functions from the sample space
to the set of reals, implying that all points of the sample
space possess values for any random variable, whereas the
standard understanding of Quantum Physics requires that
random variables that correspond to non-commuting oper-
ators cannot both have a value at the same time.

This paper proposes a generalization of Kolmogorov’s
framework that encompasses the non-commuting probabil-
ities arising from Quantum Physics. Contrary to previous
efforts, known under the general term of Quantum Logic
and which [2] surveys in an authoritative way, in which the
sample space is absent, this effort gives a central role to the
sample space.

∗This work was partially supported by the Jean and Helene
Alfassa fund for research in Artificial Intelligence

2 Kolmogorov’s setting

We shall recall the now classical setting laid down by Kol-
mogorov. The description below is not the most succinct
possible, but the reader will have no problem showing it is
equivalent to his/her favorite presentation.

We start with an arbitrary non-empty set Ω, the sample
space, whose elements are called points.

Definition 1 A set F ⊆ 2Ω of sets of sample points is a σ-
field iff it satisfies

1. ∅ ∈ F ,

2. for any A ∈ F , the complement of A, Ac = Ω − A is
a member of F ,

3. for any finite or countably infinite sequence Ai, i ∈ I
of pairwise disjoint elements of F (for any i, j 6= i,
Ai ∩ Aj = ∅) their union

⋃

i∈I Ai is a member of F .

The elements of F are called events.

Definition 2 A probability measure (or, distribution) p is a
function p : F −→ [0, +∞] such that:

1. p(∅) = 0,

2. p(Ω) = 1,

3. for any finite or countably infinite sequence Ai,
i ∈ I of pairwise disjoint elements of F , we have
p(

⋃

i∈I Ai) =
∑

i∈I p(Ai).

The definition of a random variable is now the following.

Definition 3 A random variable of a σ-field 〈Ω,F〉 to a σ-
field 〈R, Σ〉 is a measurable function X : Ω −→ R, that is
to say a function X such that the inverse image by X of any
event of Σ is an event of F .
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3 Extant work

The foundation of Quantum Logic was laid by Birkhoff and
von Neumann in [1] which set the frame for later work in
Quantum Logic. This frame is based on the classical views
that quantic propositions are either true or false, that propo-
sitions can be composed using negation, conjunction and
disjunction, and that the structure to be studied is the con-
sequence relation: which propositions follow from other
propositions or sets of propositions. The algebraic struc-
ture of such propositions is naturally seen to be an ordered
structure, in fact a lattice. Birkhoff and von Neumann no-
ticed that the lattice of interest is not, in general, distribu-
tive. Quantum Logic therefore studied non-distributive
complemented lattices, satisfying a property weaker than
distributivity: modularity was advocated by [1] but most
researchers opted for the even weaker orthomodularity.

The probabilistic aspect of Quantum Physics is probably
its most revolutionary feature. There is no doubt that a
physicist will consider the fact that, in Quantum Physics,
a state can define, even in principle, only the probability of
observations as more immediately revolutionary than the
fact that disjunction does not distribute over conjunction.
We shall now describe the way Quantum Logic deals with
probabilities. Its analysis of classical probabilities relies
on the observation that a σ-field defines a Boolean algebra
with countable l.u.b’s. A (classical) probability measure is
therefore a function that attaches a real number (its proba-
bility) to every element of a Boolean algebra and satisfies
certain conditions. The concrete algebra of subsets pre-
sented in Kolmogorov’s setting is replaced by an abstract
Boolean algebra. By Stone’s representation theorem, there
is no loss here since any Boolean algebra is isomorphic to a
concrete algebra of subsets. Probability measures in Quan-
tum Logic are therefore analyzed as functions assigning a
probability to every element of an orthomodular lattice that
satisfy certain properties. But orthomodular (or modular)
lattices are not, in general, lattices of sets and the sample
space disappears from the picture. This has three serious
drawbacks. First the intuitive idea that probability of an
event is, in some sense, the measure of the “size” of a set
of possibilities cannot be carried on. Secondly, the defini-
tion of a random variable, which requires a sample space, is
not possible. Thirdly, the special case of classical probabil-
ities is characterized by the boolean character of the lattice
and this may seem at odds with the view generally held by
physicists that classical physics is the special case of quan-
tum physics in which all operators commute: it is difficult
to see boolean lattices as commutative orthomodular lat-
tices. A family of algebras generalizing boolean algebras
has been proposed in [3] and boolean algebras are exactly
the commutative algebras of the family. The relation of
those algebras to the present work needs further study.

The first concern has been addressed by setting additional

requirements, concerned with Atomicity and Covering, on
the lattice structure: see for example axioms H1 and H2
in [8]. Such properties are not satisfied in Boolean algebras
and therefore classical probabilities are not a special case
of Quantum probabilities. Random variables may then be
defined by functions on the atoms of the structure.

This work proposes a framework for probability theory that
generalizes Kolmogorov’s and that encompasses Quan-
tum Probability. Classical probability is a special case of
Quantum Probability. The sample space is not eliminated,
but given some additional structure: it is an Similarity-
Projection (SP) structure. These have been defined and
studied in [5]. They abstract from the real scalar product
in Hilbert spaces.

4 A more general setting

We shall generalize Kolmogorov’s setting by assuming
some structure on the sample space Ω. We assume there is
a similarity function s : Ω × Ω −→ R that associates a real
number, their similarity, to any two sample points. Think
of x and y as unitary vectors in a Hilbert space and think of
s(x, y) as their real scalar product squared: | 〈x, y〉 |2. We
shall assume that the pair 〈Ω, s〉 is a Similarity-Projection
(SP) structure as defined in [5], where p was used instead
of s. Intuitively, SP-structures may be understood as one-
dimensional subspaces of a Hilbert space with holes. A
set of n elements is an n-dimensional Hilbert space with
very big holes. We shall now recall the properties of SP-
structures that we shall need, with the necessary definitions
and notations. We restrict our attention to standard SP-
structures as defined in [5]. The definition of a standard
SP-structure is recalled in Appendix A.

The properties below are the ones we shall use in the
sequel, they should not be taken as a definition of SP-
structures. A physically and epistemologically motivated
definition of SP-structures may be found in [5] where
the properties below are proved out of a set of seem-
ingly weak assumptions. Property 7 that is so striking in
Hilbert spaces is not an assumption, it follows from more
basic properties. Similarly for Property 8. Property 13
seems original. It means that the similarity function s(x, y)
is, in a sense, continuous: for ε > 0, close enough to
0, if s(x, y) ≥ 1 − ε, then for any z ∈ Ω the difference
s(x, z) − s(y, z) is of order

√
ε.

In the following x, y, z are arbitrary elements of the sample
space Ω and A, B are arbitrary subsets of Ω.

1. s(x, y) ∈ [0, 1], and x = y iff s(x, y) = 1,

2. s(y, x) = s(x, y),

3. x and y are said to be orthogonal, written x ⊥ y iff
s(x, y) = 0, we say that x is orthogonal to A and write
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x ⊥ A iff x ⊥ y for every y ∈ A, we say that A and
B are orthogonal and write A ⊥ B iff z ⊥ B for every
z ∈ A,

4. A is said to be an ortho-set iff all pairs of distinct ele-
ments of A are orthogonal,

5. for any ortho-set A, s(x, A)
def
=

∑

y∈A s(x, y) ≤ 1,

6. B is said to be a subspace and A is said to
be a basis for B iff A is an ortho-set and
B = {x ∈ Ω | s(x, A) = 1},

7. if B is a subspace all bases for B have the same car-
dinality,

8. if Ai for i ∈ I are subspaces, then their intersection
⋂

i∈I Ai is also a subspace: subspaces are closed un-
der arbitrary intersections,

9. ∅ is a subspace, Ω is a subspace,

10. the orthogonal complement of any subset A is defined
by:

A⊥ def
= {x ∈ Ω | x ⊥ A},

11. A⊥ is a subspace, if A is a subspace then (A⊥)⊥ = A,
∅⊥ = Ω, Ω⊥ = ∅,

12. for any subspace A and any x ∈ Ω, if x is not or-
thogonal to A, there is a unique t(x, A) ∈ A such that
s(x, t(x, A)) = s(x, A) and for every y ∈ A one has
s(x, y) = s(x, t(x, A)) s(t(x, A), y),

13.

s(z, x) ≤ (1)

s(z, y) + 1/2
√

1 − s(x, y) + (1 − s(x, y)).

Note that the seemingly natural triangular inequality:
s(x, y) ≤ s(x, z) s(z, y) is not a property of SP-structures.
It does not hold in Hilbert spaces. A classical SP-structure
is defined to be a structure in which s(x, y) = 0 whenever
x 6= y. In a classical SP-structure x and y are orthogonal
iff they are different, and A and B are orthogonal iff they
are disjoint. Any set A is a subspace. The orthogonal com-
plement of a set A is its set complement: Ω − A.

5 Properties of SP structures

We present here properties of SP-structures that have not
been presented in [5]. We define the sum A⊕B of any two
subsets of Ω. The set A ⊕ B is the minimal subspace that
contains A and B.

Definition 4 Let 〈Ω, s〉 be an SP-structure. If A, B ⊆ Ω,
their sum A ⊕ B is defined to be the smallest subspace in-
cluding A ∪ B:

A ⊕ B =
⋂

X is a subspace, A∪B⊆X

X.

This definition is correct since, as noticed in 8 above, sub-
spaces are closed under intersection. One easily sees that
sum is commutative, associative and monotone: A ⊆ A′

implies A ⊕ B ⊆ A′ ⊕ B. Therefore the sum of any family
(finite or infinite) of subsets is well-defined:

⊕

i∈I Ai is the
intersection of all subspaces including ∪i∈IAi.

In a classical structure sum is union: A ⊕ B = A ∪ B.

Lemma 1 For any subspaces A, B: A ⊕ A⊥ = Ω and
A ∩ A⊥ = ∅.

Proof: Let x ∈ Ω. Let B be a basis for A. By Theorem 1
of [5] there is a basis for Ω that includes B. Let B ∪ B ′

be this basis: p(x, B) + p(x, B′) = 1 and B′ ⊆ A⊥. Any
subspace that includes B and B′ must be Ω. We have
shown that A ⊕ A⊥ = Ω.

If x ∈ A ∩ A⊥ we must have s(x, x) = 0, contradicting
property 1 above. We have shown that A ∩ B = ∅.

We shall now show that the set of subspaces of an SP-
structure is an orthomodular complemented lattice. The
lattice of closed subspaces of a Hilbert space shows that
it is not always modular. The structure we are interested in
is an orthomodular lattice, but note that we have additional
structure given by the similarity function.

Theorem 1 Let 〈Ω, s〉 be an SP-structure. The set of sub-
spaces of Ω is a complete complemented orthomodular lat-
tice, if one takes A ≤ B iff A ⊆ B. Least upper bound is
⊕ and greatest lower bound is intersection.

Proof: The relation ≤ is obviously a partial order and,
since, by 8, subspaces are closed under intersections, inter-
sections are greatest lower bounds. By definition sums are
least upper bounds and the lattice is complete. Lemma 1
shows that it is a complemented lattice. Orthomodularity is
a consequence of Theorem 8 of [5]: if A ⊆ C are subspaces
any basis B for A can be extended into a basis B ∪ B ′ for
C and therefore C ⊆ B ⊕ B′ ⊆ A ⊕ A⊥ ∩ C .

De Morgan’s laws hold in any orthocomplemented lattice.

Corollary 1 For any subspaces A and B (A ∩ B)⊥ =
A⊥ ⊕ B⊥ and (A ⊕ B)⊥ = A⊥ ∩ B⊥. These equalities
extend to arbitrary infinite sums and intersections.

We shall now generalize the similarity s to arbitrary sub-
spaces of Ω.
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Definition 5 Let A, B ⊆ Ω be subspaces. We wish to
define a measure of their similarity, denoted s(A, B).
Let x ∈ Ω, we shall define τ(x, A, B) to be the sim-
ilarity of A and B from the vantage point x. Then
we let s(A, B) = lim inf{τ(x, A, B) | x ∈ Ω}. Now
let us define τ(x, A, B). In case x 6⊥ A and x 6⊥ B,
let τ(x, A, B) = s(t(x, A), t(x, B)). If x ⊥ A, we let
τ(x, A, B) = 1 − s(x, B). If x ⊥ B, we let τ(x, A, B) =
1 − s(x, A).

Note that if x ⊥ A and x ⊥ B both last conditions give
τ(x, A, B) = 1. Note also that s(A, B) = s(B, A).

Theorem 2 For any x, y ∈ Ω, we have s({x}, {y}) =
s(x, y).

Proof: If z 6⊥ x and z 6⊥ y we have τ(z, {x}, {y}) =
s(x, y). If z ⊥ x, we have τ(z, x, y) = 1 − s(z, y) ≥
s(x, y). If z ⊥ y, we have τ(z, x, y) = 1 − s(z, x) ≥
s(x, y).

Theorem 3 If x ∈ A, then s(A, B) ≤ s(x, B).

Proof:

Suppose x 6⊥ B. Then one has s(A, B) ≤ τ(x, A, B) =
s(x, t(x, B)) = s(x, B). If x ⊥ B we have s(A, B) ≤
τ(x, A, B) = 1 − s(x, A) = 0 ≤ s(x, B).

In general, s({x}, B) < s(x, B).

Theorem 4 s(A, B) = 1 iff A = B.

Proof: Let A = B. If x 6⊥ A we have τ(x, A, B) =
s(t(x, A), t(x, A)) = 1. If x ⊥ A we have τ(x, A, B) =
1 − s(x, B) = 1. Assume, now, that s(A, B) = 1. For
every x ∈ Ω we have τ(x, A, B) = 1. Suppose x ∈ A.
If x 6⊥ B we have τ(x, A, B) = s(x, t(x, B)) = 1 and
x ∈ B. If x ⊥ B, we have 1 − s(x, t(x, A)) = 1 and
s(x, x) = 0, a contradiction. We conclude that A ⊆ B.
Similarly we have B ⊆ A and we conclude that A = B.

We may now generalize Inequality 1.

Theorem 5 Let A, B, C ⊆ Ω be subspaces. We have

s(A, B) ≤ s(A, C) + 1/2
√

1 − s(B, C) + 1 − s(B, C).

Proof: It is enough to show that, for any x ∈ Ω, we have

τ(x, A, B) ≤ (2)

τ(x, A, C) + 1/2
√

1 − s(B, C) + 1 − s(B, C).

Suppose, first, that x 6⊥ A, x 6⊥ B and x 6⊥ C. Let
w = t(x, A), y = t(x, B) and z = t(x, C). By Inequal-
ity 1 we have:

s(w, y) ≤ s(w, z) + 1/2
√

1 − s(y, z) + 1 − s(y, z)

and therefore
τ(x, A, B) ≤

τ(x, A, C) + 1/2
√

1 − τ(x, B, C) + 1 − τ(x, B, C).

But s(B, C) ≤ τ(x, B, C) and Equation 2 is proved. Sup-
pose, now, that x 6⊥ A, x 6⊥ B but x ⊥ C. Let w = t(x, A)
and y = t(x, B). We must show that

s(w, y) ≤ 1−s(x, A)+1/2
√

1 − s(B, C)+1−s(B, C).

But s(x, A) = s(x, w). We know that x ⊥ C and
s(w, x) + s(w, C) ≤ 1. It is therefore enough to show that

s(w, y) ≤ s(w, C) + 1/2
√

1 − s(B, C) + 1 − s(B, C).

If w 6⊥ C , by Inequality 1, we have

s(w, y) ≤

s(w, t(w, C)) + 1/2
√

1 − s({y}, C) + 1 − s({y}, C).

We conclude by Theorem 3. If w ⊥ C, it is enough to
show that s(w, y) + s(B, C) ≤ 1. But s(B, C) ≤ s(y, C)
by Theorem 3 and we have s(y, w) + s(y, C) ≤ 1.

The case x 6⊥ A, x 6⊥ C but x ⊥ B is treated similarly.

If x 6⊥ A, x ⊥ B and x ⊥ C we must show that

1−s(x, A) ≤ 1−s(x, A)+1/2
√

1 − s(B, C)+1−s(B, C)

which is obvious.

We are left with the case x ⊥ A. We must show that

1−s(x, B) ≤ 1−s(x, C)+1/2
√

1 − s(B, C)+1−s(B, C),

or equivalently

s(x, C) ≤ s(x, B) + 1/2
√

1 − s(B, C) + 1 − s(B, C).

If x ⊥ C the claim is obvious. Assume x 6⊥ C and let
z = t(x, C). If x ⊥ B we have s(z, x) + s(z, B) ≤ 1 and
therefore s(x, C) ≤ 1 − s(z, B) ≤ 1 − s(B, C). If, last,
x 6⊥ B and we let y = t(x, B), by Inequality 1 we have:

s(x, z) ≤ s(x, y) + 1/2
√

1 − s(y, z) + 1 − s(y, z)

and therefore

s(x, C) ≤ s(x, B)+1/2
√

1 − τ(x, B, C)+1−τ(x, B, C) ≤

s(x, B) + 1/2
√

1 − s(B, C) + 1 − s(B, C).

In classical SP-structures s(A, B) is equal to 1 iff A = B
and equal to 0 otherwise.
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6 σ*-fields

We want to generalize Definition 1, i.e., the definition of
a σ-field on a set Ω to that of a σ*-field over an SP-
structure 〈Ω, s〉. As expected, we require that the σ*-field
F be closed under countably many sums (sums generalize
unions) and under orthogonal complement (they generalize
set-complements). But we require the elements of a σ*-
field F are subspaces, not arbitrary subsets, of Ω.

Definition 6 Let 〈Ω, s〉 be an SP-structure. A set F of sub-
spaces of 〈Ω, s〉is said to be a σ*-field over 〈Ω, s〉 iff:

1. ∅ ∈ F ,

2. for every A ∈ F , its orthogonal complement A⊥ is in
F ,

3. for any set, finite or countably infinite Ai, i ∈ I , of
pairwise orthogonal elements of F , its sum

⊕

i∈I Ai

is in F .

Elements of F are called events.

Note that Ω = ∅⊥ is an event.

If 〈Ω, s〉 is a classical SP-structure then the notion of a σ*-
field on the structure is equivalent to that of a σ-field on
Ω.

Lemma 2 Assume F is a σ*-field on 〈Ω, s〉, I is finite or
countably infinite, and for any i ∈ I , Ai is an element of F .
Then, the intersection

⋂

i∈I Ai is in F .

Proof: By Corollary 1.

Corollary 2 Any σ*-field is a bounded complemented or-
thomodular lattice, if one takes A ≤ B iff A ⊆ B. Least
upper bound is ⊕ and greatest lower bound is intersection.
Countably infinite sets have l.u.b. and g.l.b. but the lattice
is not, in general, complete.

7 Probability distributions

We may now generalize Definition 2. We shall define *-
probabilities that attach a probability to events of a σ*-
field. Note that states in Quantum Physics are such *-
probabilities. Our first three conditions are those of Defini-
tion 2, but a fourth condition is added to ensure that proba-
bilities are, in a sense, continuous. If the subspaces A and
B are close, i.e., s(A, B) is close to 1, then we expect p(A)
and p(B) to be close to each other.

Definition 7 Assume 〈Ω, s〉 is an SP-structure, and F is a
σ-* field on 〈Ω, s〉. A *-probability on 〈Ω, s,F〉 is a func-
tion p : F −→ [0, +∞] that satisfies:

1. p(∅) = 0,

2. p(Ω) = 1,

3. for any finite or countably infinite set, Ai, i ∈ I
of pairwise orthogonal elements of F one has:
p(

⊕

i∈I Ai) =
∑

i∈I p(Ai),

4. for any events A, B, we have

p(A) ≤ (3)

p(B) + 1/2
√

1 − s(A, B) + (1 − s(A, B)).

Note that, in our third condition, the sum
⊕

i∈I Ai is an
event by Definition 6. Our fourth condition is taken from 13
above, which has been shown to be tight in [5].

It is clear that convex combinations of probabilities are
probabilities.

Lemma 3 Assume 〈Ω, s〉 and F are fixed. If for
any i ∈ I pi is a probability and wi ∈ [0, 1] are
such that

∑

i∈I wi = 1, then q =
∑

i∈I wi pi defined by
q(A) =

∑

i∈I wi pi(A) for any A ∈ F is a probability.

8 Pure and mixed states

In Quantum Physics pure states have a dual aspect: they
are points of the sample space, i.e., elements of the sub-
spaces representing quantic propositions, but they also at-
tach probabilities to points and subspaces (the transition
probability). This simply generalizes the fact that a point x
in the sample space can be identified, in Kolmogorov’s set-
ting, with the probability distribution that gives probability
one to all events that contain x and probability zero to all
other events. Probabilities attached to points in the sample
space are called pure states in Quantum Physics.

Theorem 6 Assume 〈Ω, s〉 is an SP-structure, and F is
a σ-* field on 〈Ω, s〉. Let x ∈ Ω be a point in the
sample space. One may define a *-probability px by:
px(B) = s(x, B) =

∑

y∈A s(x, y) for any event B and
any basis A for B. Such probabilities are called pure states
and the set of pure states will be denoted by P (Ω). Convex
combinations of pure states are called mixed states. The set
of mixed states will be denoted M(Ω). We shall represent
mixed states as convex combinations of points of the sam-
ple space: p =

∑

i∈I ri xi for non-negative real numbers
ri such that

∑

i∈I ri = 1 and xi ∈ Ω for i ∈ I .

Proof: Obviously px(∅) = 0 and px(Ω) = 1. Suppose now
that Bi, i ∈ I is a family of pairwise orthogonal events. We
have s(x,

⊕

i∈I Bi) =
∑

i∈I s(x, Bi) since a basis for the
sum is the union of bases for the B’s. To check the last
(continuity) property of probability measures, assume, first,
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that x is orthogonal to neither A nor B. By properties 12
and 13 of Section 4 and by Definition 5 we have:

s(x, A) = s(x, t(x, A)) ≤

s(x, t(x, B)) + 1/2
√

1 − s(t(x, A), t(x, B))+

(1 − s(t(x, A), t(x, B))) ≤
s(x, B) + 1/2

√

1 − s(A, B) + (1 − s(A, B)).

If x ⊥ A, the claim is obvious. Suppose, now that x ⊥ B
and x 6⊥ A. We have s(A, B) ≤ τ(x, A, B) = 1 − s(x, A).
Therefore s(x, A) ≤ 1 − s(A, B).

Gleason’s theorem [6] says that, for any SP-structure de-
fined by the rays of a Hilbert space of dimension larger than
2, any probability measure on the σ*-field of all closed sub-
spaces is a mixed state. Notice that the result does not hold
for Hilbert spaces of dimension 2. For physical systems
of dimension 2 there are probabilities that are not mixed
states. Nevertheless it seems that the only probabilities
found useful to study such systems in quantum physics are
mixed states. The reason may be hidden in the preparation
of quantic systems: one seems to know how to prepare a
system in any mixed state but not in any state correspond-
ing to a probability measure that is not mixed. Therefore
one is probably justified in restricting one’s attention to
mixed states.

A most important remark is that the set M(Ω) of all
convex combination of pure states is not a free struc-
ture. We may well have, for example 1/2 px + 1/2 py =
1/2 pw + 1/2 pz with x 6= w and x 6= z. A topic for fur-
ther study is the characterization of those transformations
τ : P (Ω) −→ M(Ω) for which

∑

i∈I ripxi
=

∑

j∈J sjpyj

implies
∑

i∈I riτ(pxi
) =

∑

j∈J sjτ(pyj
).

In classical structures, mixed states are discrete probability
measures and therefore the remainder of this paper gen-
eralizes only discrete probability theory. A generalization
of continuous probability theory is probably necessary to
understand systems with observables that can take a con-
tinuum of values.

9 Random variables

The definition of *-random variables, generalizing Defini-
tion 3 requires some thinking.

Definition 8 Let 〈Ωi, si〉 be SP-structures, and F i be σ-
* fields on 〈Ωi, si〉 for i = 1, 2. We want a random vari-
able to give values in Ω2 to elements of Ω1. So it seems a
random variable X should be a function Ω1 −→ Ω2. But
we noticed in Section 1 that non-commuting observables
cannot be defined have values at the same sample points.
Therefore we must accept the idea that X be a partial func-
tion X : Ω1 −→ Ω2. In the classical case of Definition 3,

the function is a total function and therefore we shall re-
quire that X be defined on some basis for Ω1. In the clas-
sical case Ω1 is the only basis and therefore X must be
total. We, then, as usual, require that the inverse image by
X of any element of F2 be an element of F1. Guided by
the fact that, in the classical case, if A, B are disjoint el-
ements of Ω2, their inverse images X−1(A) and X−1(B)
are disjoint, we require that if A, B ∈ F2 and A ⊥ B, we
have X−1(A) ⊥ X−1(B).

Real random variables are important enough to justify a
specialization of Definition 9

Definition 9 Let 〈Ω, s〉 be an SP-structure, and F a σ-
* field on 〈Ω, s〉. A real random variable X is a partial
function X : Ω −→ R that is defined on some basis for Ω
and such that the inverse image by X of any Lebesgue-
measurable subset of R is an element of F and such that
the inverse images of any two disjoint such subsets are or-
thogonal elements of F .

Note that Definition 9 ensures that the set of points of the
sample space Ω on which a random variable X is defined is
a set of pairwise orthogonal subspaces (generalizing eigen-
subspaces) whose sum is Ω.

A real random variable is a partial function, but it defines
a total function: its expected value in each state. There
is no problem in considering that expected values of non-
commuting observables are both defined at the same time.
This total function can be even defined on mixed states.

Definition 10 Let X be a real random variable as above
and suppose it takes only a countable set of values: ri for
i ∈ I . Let p ∈ M(Ω) be any mixed state. We define X̂(p)
as

∑

i∈I ri p(X−1(ri)).

Theorem 7 Let X be a random variable as in Defini-
tion 10. Let x ∈ Ω and assume B = {bi | i ∈ I} is a
basis for Ω on which X is defined. Then X̂(px) =
∑

i∈I X(i) s(x, bi).

Proof: For any a ∈ R, let J(a) ⊆ I be the set of indexes
i for which X(i) = a. The subspace ⊕i∈Jbi spanned by
the corresponding basis elements is equal to X−1(a), and
px(X−1(a)) = s(x,⊕i∈Jbi) =

∑

i∈J s(x, bi).

10 Future work

In Quantum Physics, operators, and particularly self-
adjoint operators, play a central role. Operators can be
composed and their commutation properties represent im-
portant physical information. One should try to reflect
this transformational aspect into our present framework, in
terms of properties of *-random variables. We hope to be
able to characterize classical Kolmogorov’s probability the-
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ory as the special case of *-probabilities in which random
variables commute.
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A SP-structures

We recall here the essentials of the definition of SP-
structures as presented in [5], with minimal explanations.
The reader is referred to [5] for a gentle complete introduc-
tion.

Property 1 (Symmetry) For any x, y ∈ Ω, s(y, x) =
s(x, y).

Symmetry is an experimentally verifiable and fundamen-
tal property of Quantum Mechanics, see, e.g., the Law of
Reciprocity in [7], p. 35.

Property 2 (Non-negativity) For any x, y ∈ Ω,
s(x, y) ≥ 0.

Property 3 (Boundedness) For any state x ∈ Ω and any

ortho-set A, s(x, A)
def
=

∑

a∈A s(x, a) ≤ 1.

The next property we want to consider deals with orthogo-
nal projections.

Property 4 (O-Projection) Suppose x ∈ Ω is a state and
A ⊆ Ω is an ortho-set such that s(x, A) < 1. Then there
exists a state y ∈ Ω with the following properties:

1. y ⊥ A, i.e., s(y, A) = 0, i.e., A ∪ {y} is an ortho-set,
and

2. s(x, A) + s(x, y) = 1.

O-Projection should remind the reader of the Gram-
Schmidt process. Physically, the ortho-set A represents
certain values of a given observable and therefore can be in-
terpreted as a test: is the state x in A or not. If s(x, A) < 1
the answer to the question above may, with a certain “prob-
ability” be “no”. If the answer is indeed “no” the system is
left in a state y that satisfies the three conditions above. The
scalar product can be seen to satisfy those conditions, when
y is the projection of x on the subspace A⊥ orthogonal to
A. In a classical system, s(x, A) < 1 implies s(x, A) = 0
and we can take y = x.

Definition 11 If A is an ortho-set, the subspace
Ā ⊆ Ω generated by A is defined by: Ā =

{x ∈ Ω | s(x, A) = 1}. The ortho-set A is said to be
a basis for Ā. A basis is a basis for Ω. A subspace is a set
of states X ⊆ Ω such that there exists some ortho-set A
such that X = Ā.

Our next defining property for SP-structure is a factoriza-
tion property.

Property 5 (Factorization) Let A be an ortho-set and x
an arbitrary state. If y, z ∈ Ā and s(x, y) = s(x, A), then
s(x, z) = s(x, y) s(y, z).

Factorization implies that s(x, A) is the maximum of all
s(x, y) for y ∈ Ā and that every such s(x, y) can be fac-
tored out through the state taking this maximum. Factor-
ization has been described in Theorem 1 of [4]. The mean-
ing of Factorization, for Physics, is that, if one knows that
in state y some observable A has a specific value, then the
probability of a transition from x to y is the product of the
probability of measuring this specific value (in x) times the
transition probability from the state obtained after the mea-
surement to y. Factorization seems to be a logical require-
ment relating tests to two propositions one of which entails
the other: if A entails B, testing for A may be done by
testing first for B and then for A.

In [5] a last property is presented that is shown to imply
Equation 1 of Section 4. Since, in this paper, we only need
Equation 1, we shall not present this property here.

Definition 12 Any two states x, y ∈ Ω are said to be equiv-
alent, and we write x ∼ y iff for any z ∈ Ω, one has:
s(x, z) = s(y, z). An SP-structure is said to be standard
if any two equivalent states are equal.
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