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Abstract

In earlier work [Halpern and Rêgo 2006b],
we proposed a logic that extends the Logic
of General Awareness of Fagin and Halpern
[1988] by allowing quantification over primi-
tive propositions. This makes it possible to
express the fact that an agent knows that
there are some facts of which he is unaware.
In that logic, it is not possible to model an
agent who is uncertain about whether he is
aware of all formulas. To overcome this prob-
lem, we keep the syntax of the earlier paper,
but allow models where, with each world, a
possibly different language is associated. We
provide a sound and complete axiomatization
for this logic and show that, under natural as-
sumptions, the quantifier-free fragment of the
logic is characterized by exactly the same ax-
ioms as the logic of Heifetz, Meier, and Schip-
per [2008].

1 INTRODUCTION

Adding awareness to standard models of epistemic
logic has been shown to be useful in describing many
situations (see [Fagin and Halpern 1988; Heifetz,
Meier, and Schipper 2006] for some examples). One
of the best-known models of awareness is due to Fa-
gin and Halpern [1988] (FH from now on). They add
an awareness operator to the language, and associate
with each world in a standard possible-worlds model of
knowledge a set of formulas that each agent is aware
of. They then say that an agent explicitly knows a
formula ϕ if ϕ is true in all worlds that the agent con-
siders possible (the traditional definition of knowledge,
going back to Hintikka [1962]) and the agent is aware
of ϕ.

In the economics literature, going back to the work of

Modica and Rustichini [1994, 1999] (MR from now on),
a somewhat different approach is taken. A possibly dif-
ferent set L(s) of primitive propositions is associated
with each world s. Intuitively, at world s, the agent is
aware only of formulas that use the primitive proposi-
tions in L(s). A definition of knowledge is given in this
framework, and the agent is said to be aware of ϕ if, by
definition, Kiϕ ∨Ki¬Kiϕ holds. Heifetz, Meier, and
Schipper [2006, 2008] (HMS from now on), extend the
ideas of MR to a multiagent setting. This extension
is nontrivial, requiring lattices of state spaces, with
projection functions between them. As we showed in
earlier work [Halpern 2001; Halpern and Rêgo 2008],
the work of MR and HMS can be seen as a special
case of the FH approach, where two assumptions are
made on awareness: awareness is generated by primi-
tive propositions, that is, an agent is aware of a formula
iff he is aware of all primitive propositions occurring
in it, and agents know what they are aware of (so that
they are aware of the same formulas in all worlds that
they consider possible).

As we pointed out in [Halpern and Rêgo 2006b] (re-
ferred to as HR from now on), if awareness is generated
by primitive propositions, then it is impossible for an
agent to (explicitly) know that he is unaware of a spe-
cific fact. Nevertheless, an agent may well be aware
that there are relevant facts that he is unaware of. For
example, primary-care physicians know that special-
ists are aware of things that could improve a patient’s
treatment that they are not aware of; investors know
that investment fund companies may be aware of is-
sues involving the financial market that could result in
higher profits that they are not aware of. It thus be-
comes of interest to model knowledge of lack of aware-
ness. HR does this by extending the syntax of the FH
approach to allow quantification, making it possible to
say that an agent knows that there exists a formula of
which the agent is unaware. A complete axiomatiza-
tion is provided for the resulting logic. Unfortunately,
the logic has a significant problem if we assume the
standard properties of knowledge and awareness: it is
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impossible for an agent to be uncertain about whether
he is aware of all formulas.

In this paper, we deal with this problem by considering
the same language as in HR (so that we can express
the fact that an agent knows that he is not aware of all
formulas, using quantification), but using the idea of
MR that there is a different language associated with
each world. As we show, this slight change makes it
possible for an agent to be uncertain about whether
he is aware of all formulas, while still being aware of
exactly the same formulas in all worlds he considers
possible. We provide a natural complete axiomatiza-
tion for the resulting logic. Interestingly, knowledge
in this logic acts much like explicit knowledge in the
original FH framework, if we take “awareness of ϕ”
to mean Ki(ϕ ∨ ¬ϕ); intuitively, this is true if all the
primitive propositions in ϕ are part of the language
at all worlds that i considers possible. Under minimal
assumptions, Ki(ϕ ∨ ¬ϕ) is shown to be equivalent to
Kiϕ∨Ki¬Kiϕ: in fact, the quantifier-free fragment of
the logic that just uses the Ki operator is shown to be
characterized by exactly the same axioms as the HMS
approach, and awareness can be defined the same way.
Thus, we can capture the essence of MR and HMS ap-
proach using simple semantics and being able to reason
about knowledge of lack of awareness.

Board and Chung [2009] independently pointed out
the problem of the HR model and proposed the solu-
tion of allowing different languages at different worlds.
They also consider a model of awareness with quantifi-
cation, but they use first-order modal logic, so their
quantification is over domain elements. Moreover,
they take awareness with respect to domain elements,
not formulas; that is, agents are (un)aware of objects
(i.e., domain elements), not formulas. They also allow
different domains at different worlds; more precisely,
they allow an agent to have a subjective view of what
the set of objects is at each world. Sillari [2008] uses
much the same approach as Board and Chung [2009].
That is, he has a first-order logic of awareness, where
the quantification and awareness is with respect to do-
main elements, and also allows from different subjec-
tive domains at each world.

The rest of the paper is organized as follows. In
Section 2, we review the HR model of knowledge
of unawareness. In Section 3, we present our new
logic and axiomatize it in Section 4. In Sec-
tion 5, we compare our logic with that of HMS
and discuss awareness more generally. All proofs
are left to the full paper, which can be found at
www.cs.cornell.edu/home/halpern/papers/tark09.pdf.

2 THE HR MODEL

In this section, we briefly review the relevant results
of [Halpern and Rêgo 2006b]. The syntax of the logic
is as follows: given a set {1, . . . , n} of agents, for-
mulas are formed by starting with a countable set
Φ = {p, q, . . .} of primitive propositions and a count-
able set X of variables, and then closing off under
conjunction (∧), negation (¬), the modal operators
Ki, Ai, Xi, i = 1, . . . , n. We also allow for quantifi-
cation over variables, so that if ϕ is a formula, then
so is ∀xϕ. Let L∀,K,X,A

n (Φ,X ) denote this language
and let LK,X,A

n (Φ) be the subset of formulas that do
not mention quantification or variables. As usual, we
define ϕ ∨ ψ, ϕ ⇒ ψ, and ∃xϕ as abbreviations of
¬(¬ϕ ∧ ¬ψ), ¬ϕ ∨ ψ, and ¬∀x¬ϕ, respectively. The
intended interpretation of Aiϕ is “i is aware of ϕ”.

Essentially as in first-order logic, we can define induc-
tively what it means for a variable x to be free in a
formula ϕ. Intuitively, an occurrence of a variable is
free in a formula if it is not bound by a quantifier. A
formula that contains no free variables is called a sen-
tence. We are ultimately interested in sentences. If ψ
is a formula, let ϕ[x/ψ] denote the formula that results
by replacing all free occurrences of the variable x in ϕ
by ψ. (If there is no free occurrence of x in ϕ, then
ϕ[x/ψ] = ϕ.) In quantified modal logic, the quan-
tifiers are typically taken to range over propositions
(intuitively, sets of worlds), but this does not work in
our setting because awareness is syntactic; when we
write, for example, ∀xAix, we essentially mean that
Aiϕ holds for all formulas ϕ. However, there is an-
other subtlety. If we define ∀xϕ to be true if ϕ[x/ψ] is
true for all formulas ψ, then there are problems giv-
ing semantics to a formula such as ϕ = ∀x(x), since
ϕ[x/ϕ] = ϕ. We avoid these difficulties by taking the
quantification to be over quantifier-free sentences. (See
[Halpern and Rêgo 2006b] for further discussion.)

We give semantics to sentences in L∀,K,X,A
n (Φ,X ) in

awareness structures. A tuple M = (S, π, K1, . . .,
Kn, A1, . . ., An) is an awareness structure for n
agents (over Φ) if S is a set of worlds, π : S ×
Φ → {true, false} is an interpretation that deter-
mines which primitive propositions are true at each
world, Ki is a binary relation on S for each agent
i = 1, . . . , n, and Ai is a function associating a set
of sentences with each world in S, for i = 1, ..., n. In-
tuitively, if (s, t) ∈ Ki, then agent i considers world
t possible at world s, while Ai(s) is the set of sen-
tences that agent i is aware of at world s. We are
often interested in awareness structures where the Ki

relations satisfy some properties of interest, such as
reflexivity, transitivity, or the Euclidean property (if
(s, t), (s, u) ∈ Ki, then (t, u) ∈ Ki). It is well known
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that these properties of the relation correspond to
properties of knowledge of interest (see Theorem 2.1
and the following discussion). We often abuse nota-
tion and define Ki(s) = {t : (s, t) ∈ Ki}, thus writing
t ∈ Ki(s) rather than (s, t) ∈ Ki. This notation allows
us to view a binary relation Ki on S as a possibil-
ity correspondence, that is, a function from S to 2S .
(The use of possibility correspondences is more stan-
dard in the economics literature than binary relations,
but they are clearly essentially equivalent.)

Semantics is given to sentences in L∀,K,X,A
n (Φ,X ) by

induction on the number of quantifiers, with a subin-
duction on the length of the sentence. Truth for prim-
itive propositions, for ¬, and for ∧ is defined in the
usual way. The other cases are defined as follows:1

(M, s) |= Kiϕ if (M, t) |= ϕ for all t ∈ Ki(s)
(M, s) |= Aiϕ if ϕ ∈ Ai(s)
(M, s) |= Xiϕ if (M, s) |= Aiϕ and (M, s) |= Kiϕ
(M, s) |= ∀xϕ if (M, s) |= ϕ[x/ψ], ∀ψ ∈ LK,X,A

n (Φ).

There are two standard restrictions on agents’ aware-
ness that capture the assumptions typically made in
the game-theoretic literature [Modica and Rustichini
1999; Heifetz, Meier, and Schipper 2006; Heifetz,
Meier, and Schipper 2008]. We describe these here in
terms of the awareness function, and then characterize
them axiomatically.

• Awareness is generated by primitive propositions
(agpp) if, for all agents i, ϕ ∈ Ai(s) iff all the
primitive propositions that appear in ϕ are in
Ai(s) ∩ Φ.

• Agents know what they are aware of (ka) if, for
all agents i and all worlds s, t such that (s, t) ∈ Ki

we have that Ai(s) = Ai(t).

For ease of exposition, we restrict in this paper to
structures that satisfy agpp and ka. If C is a (pos-
sibly empty) subset of {r, t, e}, then MC

n (Φ,X ) is the
set of all awareness structures such that awareness sat-
isfies agpp and ka and the possibility correspondence is
reflexive (r), transitive (t), and Euclidean (e) if these
properties are in C.

A sentence ϕ ∈ L∀,K,X,A
n (Φ,X ) is said to be valid in

awareness structure M , written M |= ϕ, if (M, s) 6|=
¬ϕ for all s ∈ S. (This notion is called weak validity
in [Halpern and Rêgo 2008]. For the semantics we

1HR gives semantics to arbitrary formulas, including
formulas with free variables. This requires using valua-
tions that give meaning to free variables. By restricting to
sentences, which is all we are ultimately interested in, we
are able to dispense with valuations here, and thus simplify
the presentation of the semantics.

are considering here, weak validity is equivalent to the
standard notion of validity, where a formula is valid
in an awareness structure if it is true at all worlds
in that structure. However, in the next section, we
modify the semantics to allow some formulas to be
undefined at some worlds; with this change, the two
notions do not coincide. As we use weak validity in the
next section, we use the same definition here for the
sake of uniformity.) A sentence is valid in a class M
of awareness structures, written M |= ϕ, if it is valid
for all awareness structures in M, that is, if M |= ϕ
for all M ∈M.

In [Halpern and Rêgo 2006b], we gave sound and
complete axiomatizations for both the language
L∀,K,X,A

n (Φ,X ) and the language L∀,X,A
n (Φ,X ), which

does not mention the implicit knowledge operator Ki

(and the quantification is thus only over sentences
in LX,A

n (Φ)). The latter language is arguably more
natural (since agents do not have access to the im-
plicit knowledge modeled by Ki), but some issues be-
come clearer when considering both. We start by
describing axioms for the language L∀,K,X,A

n (Φ,X ),
and then describe how they are modified to deal with
L∀,X,A

n (Φ,X ). Given a formula ϕ, let Φ(ϕ) be the set
of primitive propositions in Φ that occur in ϕ.

Prop. All substitution instances of valid formulas of
propositional logic.

AGPP. Aiϕ ⇔ ∧p∈Φ(ϕ)Aip.2

KA. Aiϕ ⇒ KiAiϕ

NKA. ¬Aiϕ ⇒ Ki¬Aiϕ

K. (Kiϕ ∧Ki(ϕ ⇒ ψ)) ⇒ Kiψ.

T. Kiϕ ⇒ ϕ.

4. Kiϕ ⇒ KiKiϕ.

5. ¬Kiϕ ⇒ Ki¬Kiϕ.

A0. Xiϕ ⇔ Kiϕ ∧Aiϕ.

1∀. ∀xϕ ⇒ ϕ[x/ψ] if ψ is a quantifier-free sentence.

K∀. ∀x(ϕ ⇒ ψ) ⇒ (∀xϕ ⇒ ∀xψ).

N∀. ϕ ⇒ ∀xϕ if x is not free in ϕ.

2As usual, the empty conjunction is taken to be the
vacuously true formula true, so that Aiϕ is vacuously true
if no primitive propositions occur in ϕ. We remark that in
the conference version of HR, an apparently weaker version
of AGPP called weak generation of awareness by primitive
propositions is used. However, this is shown in HR to be
equivalent to AGPP if the agent is aware of at least one
primitive proposition, so AGPP is used in the final version
of HR, and we use it here as well.
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Barcan. ∀xKiϕ ⇒ Ki∀xϕ.

MP. From ϕ and ϕ ⇒ ψ infer ψ (modus ponens).

GenK . From ϕ infer Kiϕ.

Gen∀. If q is a primitive proposition, then from ϕ infer
∀xϕ[q/x].

Axioms Prop, K, T, 4, 5 and inference rules MP and
GenK are standard in epistemic logics. A0 captures
the relationship between explicit knowledge, implicit
knowledge and awareness. Axioms 1∀, K∀, N∀ and
inference rules Gen∀ are standard for propositional
quantification.3 The Barcan axiom, which is well-
known in first-order modal logic, captures the relation-
ship between quantification and Ki. Axioms AGPP,
KA, and NKA capture the properties of awareness be-
ing generated by primitive propositions and agents
knowing which formulas they are aware of. Let
AXK,X,A,∀ be the axiom system consisting of all the ax-
ioms and inference rules in {Prop, AGPP, KA, NKA,
K, A0, 1∀, K∀, N∀, Barcan, MP, GenK , Gen∀}.
The language L∀,X,A

n without the modal operators Ki

has an axiomatization that is similar in spirit. Let
KX , TX , 4X , XA, and BarcanX be the axioms that
result by replacing the Ki in K, T, 4, KA, and Barcan,
respectively, by Xi. Let 5X and GenX be the axioms
that result from adding awareness to 5 and GenK :

5X . (¬Xiϕ ∧Aiϕ) ⇒ Xi¬Xiϕ.

GenX . From ϕ infer Aiϕ ⇒ Xiϕ.

The analogue of axiom NKA written in terms of Xi,
¬Aiϕ ⇒ Xi¬Aiϕ, is not valid. To get completeness
in models where agents know what they are aware of,
we need the following axiom, which can be viewed as
a weakening of NKA:

FAX . ¬∀xAix ⇒ Xi¬∀xAix.

Finally, consider the following axiom that captures the
relation between explicit knowledge and awareness:

A0X . Xiϕ ⇒ Aiϕ.

Let AXX,A,∀ be the axiom system consisting of all the
the axioms and inference rules in {Prop, AGPP, XA,
FAX , KX , A0X , 1∀, K∀, N∀, BarcanX , MP, GenX ,

3Since we gave semantics not just to sentences, but
also to formulas with free variables in [Halpern and Rêgo
2006b], we were able to use a simpler version of Gen∀ that
applies to arbitrary formulas: from ϕ infer ∀xϕ. Note
that all the other axioms and inference rules apply without
change to formulas as well as sentences.

Gen∀}. The following result shows that the seman-
tic properties r, t, e are captured by the axioms T, 4,
and 5, respectively in the language L∀,K,X,A

n ; similarly,
these same properties are captured by TX , 4X , and 5X

in the language L∀,X,A
n .

Theorem 2.1: [Halpern and Rêgo 2006b] If C (resp.,
CX) is a (possibly empty) subset of {T, 4, 5} (resp.,
{TX, 4X, 5X}) and if C is the corresponding subset of
{r, t, e} then AXK,X,A,∀ ∪ C (resp., AXX,A,∀ ∪ CX) is
a sound and complete axiomatization of the sentences
in L∀,K,X,A

n (Φ,X ) (resp. L∀,X,A
n (Φ,X )) with respect

to MC
n (Φ,X ).

Consider the formula ψ = ¬Xi¬∀xAix ∧ ¬Xi∀xAix.
The formula ψ says that agent i considers it possible
that she is aware of all formulas and also considers it
possible that she is not aware of all formulas. It is
not hard to show ψ is not satisfiable in any structure
in M(Φ,X ), so ¬ψ is valid in awareness structures in
M(Φ,X ), It seems reasonable that an agent can be
uncertain about whether there are formulas he is un-
aware of. In the next section, we show that a slight
modification of the HR approach using ideas of MR,
allows this, while still maintaining the desirable prop-
erties of the HR approach.

3 THE NEW MODEL

We keep the syntax of Section 2, but, following MR,
we allow different languages to be associated with dif-
ferent worlds. Define an extended awareness structure
for n agents (over Φ) to be a tuple M = (S, L, π,
K1, . . ., Kn,A1, . . ., An), where M = (S, π, K1, . . .,
Kn,A1, . . ., An) is an awareness structure and L maps
worlds in S to nonempty subsets of Φ. Intuitively,
L∀,K,X,A

n (L(s),X ) is the language associated with
world s. We require that Ai(s) ⊆ L∀,K,X,A

n (L(s),X ),
so that an agent can be aware only of sentences that
are in the language of the current world. We still
want to require that agpp and ka; this means that if
(s, t) ∈ Ki, then Ai(s) ⊆ L∀,K,X,A

n (L(t),X ). But L(t)
may well include primitive propositions that the agent
is not aware of at s. It may at first seem strange that
an agent considers possible a world whose language in-
cludes formulas of which he is not aware. (Note that,
in general, this happens in the HR approach too, even
though there we require that L(s) = L(t).) But, in
the context of knowledge of lack awareness, there is
an easy explanation for this: the fact that Ai(s) is
a strict subset of the sentences in L∀,K,X,A

n (L(t),X )
is just our way of modeling that the agent considers
it possible that there are formulas of which he is un-
aware; he can even “name” or “label” these formulas,
although he may not understand what the names re-
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fer to. If the agent considers possible a world t where
Ai(s) consists of every sentence in L∀,K,X,A

n (L(t),X ),
then the agent considers it possible that he is aware
of all formulas. The formula ψ in Section 2 is sat-
isfied at a world s where agent i considers possible
a world t1 such that Ai(s) consists of all sentences in
L∀,K,X,A

n (L(t1),X ) and a world t2 such thatAi(s) does
not contain some sentence in L∀,K,X,A

n (L(t2),X ). Note
that we can also describe worlds where agent 1 con-
siders it possible that agents 2 and 3 are aware of the
same formulas, although both are aware of formulas
that he (1) is not aware of, and other more compli-
cated relationships between the awareness of agents.
See Section 5 for further discussion of awareness of
unawareness in this setting.

The truth relation is defined for formulas in
L∀,K,X,A

n (Φ,X ) just as in Section 2, except that for a
formula ϕ to be true at a world s, we also require that
ϕ ∈ L∀,K,X,A

n (L(s),X ), so we just add this condition
everywhere. Thus, for example,

• (M, s) |= p if p ∈ L(s) and π(s, p) = true;

• (M, s) |= ¬ϕ if ϕ ∈ L∀,K,X,A
n (L(s),X ) and

(M, s) 6|= ϕ.

• (M, s) |= ∀xϕ if ϕ ∈ L∀,K,X,A
n (L(s),X ) and

(M, s) |= ϕ[x/ψ] for all ψ ∈ LK,X,A
n (L(s)).

We leave it to the reader to make the obvious changes
to the remaining clauses.

If C be a (possibly empty) subset of {r, t, e}, NC
n (Φ,X )

be the set of all extended awareness structures such
that awareness satisfies agpp and ka and the possibility
correspondence is reflexive, transitive, and Euclidean
if these properties are in C. We say that a formula
ϕ is valid in a class N of extended awareness struc-
tures if, for all extended awareness structures M ∈ N
and worlds s such that Φ(ϕ) ⊆ L(s), (M, s) |= ϕ.
(This is essentially the notion of weak validity defined
in [Halpern and Rêgo 2008].)

4 AXIOMATIZATION

In this section, we provide a sound and complete ax-
iomatization of the logics described in the previous
section. It turns out to be easier to start with the
language L∀,X,A

n (Φ,X ). All the axioms and inference
rules of AXX,A,∀ continue to be sound in extended
awareness structures, except for BarcanX and FAX .
In a world s where L(s) = p and agent 1 is aware of
p, it is easy to see that ∀xXiAix holds. But if agent 1
considers possible a world t such that L(t) = {p, q}, it
is easy to see that Xi∀xAix does not hold at s. Sim-
ilarly, if in world t, agent 1 considers s possible, then

¬∀xAix holds at t, but Xi¬∀xAix does not. Thus,
BarcanX does not hold at s, and FAX does not hold
at t. We instead use the following variants of BarcanX

and FAX , which are sound in this framework:

Barcan∗X . (Ai(∀xϕ) ∧ ∀x(Aix ⇒ Xiϕ)) ⇒
Xi(∀xAix ⇒ ∀xϕ).

FA∗X . ∀x¬Aix ⇒ Xi∀x¬Aix.

Let AXX,A,∀
e be the result of replacing FAX and

BarcanX in AXX,A,∀ by FA∗X and Barcan∗X (the e here
stands for “extended”).

Theorem 4.1 : If CX is a (possibly empty) subset
of {TX, 4X, 5X} and C is the corresponding subset of
{r, t, e}, then AXX,A,∀

e ∪ CX is a sound and complete
axiomatization of the language L∀,X,A

n (Φ,X ) with re-
spect to NC

n (Φ,X ).

The completeness proof is similar in spirit to that of
HR, with some additional complications arising from
the interaction between quantification and the fact
that different languages are associated with different
worlds. What is surprisingly difficult in this case is
soundness, specifically, for MP. For suppose that M
is a structure in Nn(Φ,X ) such that neither ¬ϕ nor
¬(ϕ ⇒ ψ) are true at any world in M . We want to
show that ¬ψ is not true at any world in M . This is
easy to show if Φ(ψ) ⊂ Φ(ϕ). For if s is a world such
that Φ(ψ) ⊆ L(s), it must be the case that both ϕ
and ϕ ⇒ ψ are true at s, and hence so is ψ. How-
ever, if ϕ has some primitive propositions that are not
in ψ, it is a priori possible that ¬ψ holds at a world
where neither ϕ nor ϕ ⇒ ψ is defined. Indeed, this
can happen if Φ is finite. For example, if Φ = {p, q},
then it is easy to construct a structure M ∈ Nn(Φ, X)
where both Aip ∧ Aiq and (Aip ∧ Aiq) ⇒ ∀xAix are
never false, but ∀xAix is false at some world in M .
As we show, this cannot happen if Φ is infinite. This
in turn involves proving a general substitution prop-
erty: if ϕ is valid and ψ is a quantifier-free sentence,
then ϕ[q/ψ] is valid. (We remark that the substitution
property also fails if Φ is finite.) See the full paper
for details. Proofs for all other results stated in this
abstract can also be found in the full paper.

Using different languages has a greater impact on the
axioms for Ki than it does for Xi. For example, as we
would expect, Barcan does not hold, for essentially the
same reason that BarcanX does not hold. More inter-
estingly, NKA, 5, and GenK do not hold either. For
example, if ¬Kip is true at a world s because p /∈ L(t)
for some world t that i considers possible at s, then
Ki¬Kip will not hold at s, even if the Ki relation is an
equivalence relation. Indeed, the properties of Ki in
this framework become quite close to the properties of
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the explicit knowledge operator Xi in the original FH
framework, provided we define the appropriate variant
of awareness.

Let A∗i (ϕ) be an abbreviation for the formula Ki(ϕ ∨
¬ϕ). Intuitively, the formula A∗i (ϕ) captures the prop-
erty that ϕ is defined at all worlds considered possible
by agent i. Let AGPP∗, XA∗, A0∗, 5∗, Barcan∗, FA∗,
and Gen∗ be the result of replacing Xi by Ki and Ai

by A∗i in AGPP, XA, A0X , 5X , Barcan∗X , FA∗X , and
GenX , respectively. It is easy to see that AGPP∗, A0∗,
and Gen∗ are valid in extended awareness structures;
XA∗, 5∗, Barcan∗, and FA∗ are not. For example,
suppose that p is defined in all worlds that agent i
considers possible at s, so that A∗i p holds at s. If there
is some world t that agent i considers possible at s and
a world u that agent i considers possible at t where p
is not defined, then A∗i p does not hold at t, so KiA

∗
i p

does not hold at s. It is easy to show that XA∗ holds if
the Ki relation is transitive. Similar arguments show
that 5∗, Barcan∗, and FA∗ do not hold in general, but
are valid if Ki is Euclidean and (in the case of Barcan∗

and FA∗) reflexive. We summarize these observations
in the following proposition:

Proposition 4.2:

(a) XA∗ is valid in N t
n(Φ,X ).

(b) Barcan∗ is valid in N r,e
n (Φ,X ).

(c) FA∗ is valid in N r,e
n (Φ,X ).

(d) 5∗ is valid in N e
n(Φ,X ).

In light of Proposition 4.2, for ease of exposition, we re-
strict attention for the rest of this section to structures
in N r,t,e

n (Φ,X ). Assuming that the possibility relation
is an equivalence relation is standard when modeling
knowledge in any case. Let AXK,X,A,A∗,∀

e be the re-
sult of replacing GenK and Barcan in AXK,X,A,∀ by
Gen∗ and Barcan∗, respectively, and adding the ax-
ioms AGPP∗, A0∗, and FA∗ for reasoning about A∗i .
(We do not need the axiom XA∗; it follows from 4
in transitive structures.) Let AXK,A∗,∀

e consist of the
axioms in AXK,X,A,A∗,∀

e except for those that mention
Xi or Ai; that is, AXK,A∗,∀

e = AXK,X,A,A∗,∀
e −{AGPP,

KA, NKA, A0}. Note that AXK,A∗,∀
e is the result of

replacing Xi by Ki and Ai by A∗i in AXX,A,∀
e (except

that the analogue of XA is not needed). Finally, let
AXK,A∗

e consist of the axioms and rules in AXK,A∗,∀
e

except for the ones that mention quantification; that
is, AXK,A∗

e = {Prop, AGPP∗, K, Gen∗, A0∗}. We use
AXK,A∗

e to compare our results to those of HMS.

Theorem 4.3:

(a) AXK,X,A,A∗,∀
e ∪{T, 4, 5∗} is a sound and complete

axiomatization of the sentences in L∀,K,X,A
n (Φ,X )

with respect to N r,e,t
n (Φ,X ).

(b) AXK,A∗,∀
e ∪{T, 4, 5∗} is a sound and complete ax-

iomatization of the sentences in L∀,K
n (Φ,X ) with

respect to N r,t,e
n (Φ,X ).

(c) AXK,A∗
e ∪ {T, 4, 5∗} is a sound and complete ax-

iomatization of LK
n (Φ) with respect to N r,t,e

n (Φ).

Since, as we observed above, AXK,A∗,∀
e is essentially

the result of replacing Xi by Ki and Ai by A∗i in
AXX,A,∀

e , Theorem 4.3(b) makes precise the sense in
which Ki acts like Xi with respect to A∗i .

5 DISCUSSION

Just as in our framework, in the HMS and MR ap-
proach, a (propositional) language is associated with
each world. However, HMS and MR define awareness
of ϕ as an abbreviation of Kiϕ ∨ Ki¬Kiϕ. In order
to compare our approach to that of HMS and MR, we
first compare the definitions of awareness. Let A′iϕ be
an abbreviation for the formula Kiϕ ∨Ki¬Kiϕ. The
following result says that for extended awareness struc-
tures that are Euclidean, A∗i ϕ is equivalent to A′iϕ.

Proposition 5.1 : If M = (S,L, π,K1, ...,Kn,
A1, . . . ,An) is a Euclidean extended awareness struc-
ture, then for all s ∈ S and all sentences ϕ ∈
L∀,K,X,A

n (Φ,X ),

(M, s) |= A∗i ϕ ⇔ A′iϕ.

Proof: Suppose that (M, s) |= Ki(ϕ∨¬ϕ)∧¬Kiϕ. It
follows that Φ(ϕ) ⊆ L(s), Φ(ϕ) ⊆ L(t) for all t such
that (s, t) ∈ Ki, and that there exists a world t such
that (s, t) ∈ Ki and (M, t) |= ¬ϕ. Let u be an arbitrary
world such that (s, u) ∈ Ki. Since Ki is Euclidean, it
follows that (u, t) ∈ Ki. Thus, (M, u) |= ¬Kiϕ, so
(M, s) |= Ki¬Kiϕ. It follows that (M, s) |= A′iϕ, as
desired.

For the converse, suppose that (M, s) |= A′iϕ. If either
(M, s) |= Kiϕ or (M, s) |= Ki¬Kiϕ, then Φ(ϕ) ⊆
L(s), and if (s, t) ∈ Ki, we have that Φ(ϕ) ⊆ L(t).
Therefore, (M, s) |= A∗i ϕ.

In [Halpern and Rêgo 2008], we showed that AXK,A∗
e ∪

{T, 4, 5∗} provides a sound and complete axiomatiza-
tion of the structures used by HMS where the possi-
bility relations are Euclidean, transitive, and reflexive,
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with one difference: A′i is used for awareness instead
of A∗i . However, by Proposition 5.1, in N e

n, A∗i and
A′i are equivalent. Thus, for the class of structures of
most interest, we are able to get all the properties of
the HMS approach; moreover, we can extend to al-
low for reasoning about knowledge of unawareness. It
is not clear how to capture knowledge of unawareness
directly in the HMS approach.

It remains to consider the relationship between Ai and
A∗i . Let A∗i (s) be the set of sentences that are defined
at all worlds considered possible by agent i in world s;
that is, ϕ ∈ A∗i (s) iff (M, s) |= A∗i ϕ. Assuming that
agents know what they are aware of, we have that if
(s, t) ∈ Ki, then Ai(s) = Ai(t). Thus, it follows that
Ai(s) ⊆ A∗i (s). For if ϕ ∈ Ai(s), then Φ(ϕ) ⊆ L(t) for
all t such that (s, t) ∈ Ki, so (M, s) |= A∗i (ϕ).

We get the opposite inclusion by assuming the follow-
ing natural connection between an agent’s awareness
function and the language in the worlds that he con-
siders possible:

• LA: If p /∈ Ai(s), then p /∈ L(t) for some t such
that (s, t) ∈ Ki.

It is immediate that in models that satisfy LA (and
agpp), Ai(s) ⊇ A∗i (s) for all agents i and worlds s.
Thus, under minimal assumptions, A∗i (s) = Ai(s).

The bottom line here is that under the standard as-
sumptions in the economics literature, together with
the minimal assumption LA, all the notions of aware-
ness coincide. We do not need to consider a syntactic
notion of awareness at all. However, as pointed out by
FH, there are other notions of awareness that may be
relevant; in particular, a more computational notion of
awareness is of interest. For such a notion, an axiom
such as AGPP does not seem appropriate. We leave
the problem of finding axioms that characterize a more
computational notion of awareness in this framework
to future work.

We conclude with some comments on awareness and
language. If we think of propositions p ∈ L(t)−Ai(s)
as just being labels or names for concepts that agent i
is not aware of but i understands other agents might
be aware of, LA is just saying that i should not use the
same label in all worlds that he considers possible. It
is important that an agent can use different labels for
formulas that he is unaware of. A world where an agent
is unaware of two primitive propositions is different
from a world where an agent is unaware of only one
primitive proposition. For example, to express the fact
that in world s agent agent 1 considers it possible that
(1) there is a formula that he is unaware that agent 2
is aware of and (2) there is a formula that both he and
agent 2 are unaware of that agent 3 is aware of, agent

1 needs to consider possible a world t with at least
two primitive propositions in L(t) − A1(s). Needless
to say, reasoning about such lack of awareness might
be critical in a decision-theoretic context.

The fact that the primitive propositions that an agent
is not aware of are simply labels means that switch-
ing the labels does not affect what the agent knows
or believes. More precisely, given a model M =
(S,L,K1, . . . ,Kn,A1, . . . ,An, π), let M ′ be identical
to M except that the roles of the primitive propo-
sitions p and p′ are interchanged. More formally,
M ′ = (S,L′,K1, . . . ,Kn,A′1, . . . ,A′n, π′), where, for all
worlds s ∈ S, we have

• L(s)− {p, p′} = L′(s)− {p, p′};
• p ∈ L′(s) iff p′ ∈ L(s), and p′ ∈ L′(s) iff p ∈ L(s);

• π(s, q) = π′(s, q) for all q ∈ L(s)− {p, p′};
• if p ∈ L(s), then π(s, p) = π′(s, p′), and if p′ ∈
L(s), then π(s, p′) = π′(s, p);

• if ϕ is a formula that mentions neither p nor p′,
then ϕ ∈ Ai(s) iff ϕ ∈ A′i(s);

• for any formula ϕ that mentions either p or p′,
ϕ ∈ Ai(s) iff ϕ[p ↔ p′] ∈ A′i(s), where ϕ[p ↔ p′]
is the result of replacing all occurrences of p in ϕ
by p′ and all occurrences of p′ by p.

It is easy to see that for all worlds s, (M, s) |= ϕ iff
(M ′, s) |= ϕ[p ↔ p′]. In particular, this means that
if neither p nor p′ is in L(s), then for all formulas,
(M, s) |= ϕ iff (M ′, s) |= ϕ. Thus, switching labels
of propositions that are not in L(s) has no impact on
what is true at s.

We remark that the use of labels here is similar in
spirit to our use of virtual moves in [Halpern and Rêgo
2006a] to model moves that a player is aware that he
is unaware of.

Although switching labels of propositions that are not
in L(s) has no impact on what is true at s, changing
the truth value of a primitive proposition that an agent
is not aware at s may have some impact on what the
agent explicitly knows at s. Note that we allow agents
to have some partial information about formulas that
they are unaware of. We certainly want to allow agent
1 to know that there is a formula that agent 2 is aware
of that he (agent 1) is unaware of; indeed, capturing a
situation like this was one of our primary motivations
for introducing knowledge of lack of awareness. But
we also want to allow agent 1 to know that agent 2
is not only aware of the formula, but knows that it is
true; that is, we want X1(∃x(¬A1(x) ∧K2(x))) to be
consistent. There may come a point when an agent
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has so much partial information about a formula he
is unaware of that, although he cannot talk about it
explicitly in his language, he can describe it sufficiently
well to communicate about it. When this happens in
natural language, people will come up with a name for
a concept and add it to their language. We have not
addressed the dynamics of language change here, but
we believe that this is a topic that deserves further
research.
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