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Abstract

Tennenholtz (GEB 2004) developed Program
Equilibrium to model play in a finite two-
player game where each player can base their
strategy on the other player’s strategies. Ten-
nenholtz’s model allowed each player to pro-
duce a “loop-free” computer program that
had access to the code for both players. He
showed a folk theorem where the result of
any mixed-strategy individually rational play
could be an equilibrium payoff in this model
even in a one-shot game. Kalai et al. gave a
general folk theorem for correlated play in a
more generic commitment model.

We develop a new model of program equi-
librium using general computational models
and discounting the payoffs based on the
computation time used. We give an even
more general folk theorem giving correlated-
strategy payoffs down to the pure minimax
of each player. We also show the existence
of equilibrium in other games not covered by
the earlier work.

1 INTRODUCTION

Consider two players Alice and Bob who play a finite
game like Prisoner’s Dilemma. Instead of just choosing
an action, suppose they try to reason about what the
other player will do. For example, Alice may be willing
to cooperate as long as Alice believes Bob will also
cooperate and vice versa. Cooperation may become
an equilibria, even in a one-shot game, if both players
can share their reasoning mechanisms.

Tennenholtz [Tennenholtz 04] suggests modeling the
reasoning processes as computer programs where each
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player submits a program that can see the code of the
other player (as well as its own code). To avoid infinite
regression (each player simulating the other with nei-
ther ever willing to halt first) Tennenholtz limits the
programs to be “loop-free” or straight-line programs
in the CS vernacular that must pick some action in
the action space.

Tennenholtz defines a notion of Program Equilibrium
in this model and shows that dual cooperation can in-
deed be achieved: Both players submit programs that
will cooperate if both programs are identical and de-
fect otherwise.

Tennenholtz proves a general “Folk Theorem” for these
games where every individually rational mixed strat-
egy can be achieved as an equilibrium in the program
equilibrium model, even for one-shot games.

We broaden Tennenholtz’s work by allowing the play-
ers to play arbitrary Turing machines. We avoid in-
finite regression by discounting the running time, i.e.,
for some δ < 1, the payoff of each player is discounted
by a multiplicative factor of δt where the player used
t steps in their computation. If a player’s program
doesn’t halt, the player gets a payoff of zero. If one
player halts while the opponent doesn’t, the player gets
the best possible (discounted) payoff for his action.

The idea of discounting utility comes from a standard
assumption in economic theory that people value an
(inflation-adjusted) dollar a year from now less than
receiving that dollar today. The discount δ for a spe-
cific time-period is chosen so that an agent is indiffer-
ent between receiving δ dollars at the beginning of the
period and one dollar at the end of the period.

Not only does our model allow for arbitrary computer
programs, we also get a stronger folk theorem than
Tennenholtz or his successors. We can achieve any
correlated strategy individual rational play down to
the pure-strategy minimax as a program equilibrium
in our model.
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We describe our model in Section 3 and the main folk
theorem in Section 4. In Section 5, we consider the
largest-integer game where each player announces an
integer and the one who announces the largest integer
receives $100 and splitting the pot if they give the same
number. This game has no Nash equilibrium and no
program equilibrium in Tennenholtz or later models.
We give a simple equilibrium that splits the pot in our
model and can also achieve a general folk theorem for
this game.

In Section 6.1 we look at Chess. Nash equilibrium
and previous program equilibriums would require the
players to play best play despite the fact that it is
assumably computationally hard. We argue that in
our discounted time model, best play is not an equi-
librium and make the case (but don’t prove) that the
right equilibrium better matches how computers and
humans play chess.

Finally in Section 6.2 we discuss discounted time in
traditional computational complexity outside of game
theory, arguing that it is more natural than our tradi-
tional definitions, can be used to capture the standard
classes and may give us a different way to understand
average-case complexity, expected running time and
approximation algorithms.

2 RELATED WORK

2.1 TENNENHOLTZ PROGRAM
EQUILIBRIUM

In his seminal paper, Tennenholtz [Tennenholtz 04] de-
veloped the first program equilibrium model. Fix a
finite 2-play normal-form game G. Instead of playing
actions in G, each player produces a program to com-
pute the action. The twist is that each program can
look at the code of the other player’s program (as well
as its own). This twist captures the idea of reasoning
about the other player’s strategy.

He shows how to achieve cooperation in a 1-shot Pris-
oner’s Dilemma game.

C D
C 3, 3 0, 4
D 4, 0 1, 1

Figure 1: Prisoner’s Dilemma

The Equilibrium Strategies work as follows:

P1(〈P1〉, 〈P2〉) :
If 〈P2〉 is as below

Cooperate.
Otherwise Defect.

P2(〈P1〉, 〈P2〉) :
If 〈P1〉 is as above

Cooperate.
Otherwise Defect.

If both players play the equilibrium programs the pro-
grams will both cooperate. If one player deviates the
other will defect.

To guarantee that the programs always play an ac-
tion, Tennenholtz allows only “loop-free” or straight-
line programs. In his model, the players must use pure
strategies to choose a program but the programs them-
selves can randomize. Tennenholtz shows the following
folk theorem for his model. A program equilibrium is
a choice of programs for each player such that neither
player has incentive to choose a different program.

Theorem 1 (Tennenholtz) Fix a finite two-player
game G and mixed strategies of the players on that
game such that are individually rational, that is the
payoff for each player is better than their worst-possible
payoff for some mixed-strategy. Then there is a pro-
gram equilibrium where each player picks a program
that has the same payoffs for each player.

2.2 LATER WORK

Monderer and Tennenholtz [Monderer 06] consider
“mediated equilibrium” where agents can optionally
use a mediator that behaves in a pre-specified way
based on messages received from agents. They show
that this model generalizes Tennenholtz and show a
number of folk theorems for arbitrary numbers of play-
ers.

Kalai, Kalai, Lehrer and Samet [Kalai 07] consider a
model of “commitments.” Each player has a set of
devices that represent a total function from the other
player’s device to an action of a finite two-player game.
There are additional “voluntary devices” that allow a
player to play an action of the original game and the
other player cannot react to that choice of action.

In this model Kalai et al. prove a stronger version of
Tennenholtz’s Theorem 1. A correlated play is a arbi-
trary distribution on the set of pairs of actions of both
players (whereas a mixed strategy only allows product
distributions on the sets of pairs).

Theorem 2 (Kalai-Kalai-Lehrer-Samet) Fix a
finite two-player game G and correlated strategies of
the players on that game such that are individually ra-
tional, that is the payoff for each player is better than
their worst-possible payoff for some mixed-strategy.
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Then there is a set of devices (including voluntary
devices) for both players and a mixed-strategy equi-
librium over devices with the same payoffs for each
player.

Note the players choose mixed-strategies over devices
yet still can achieve equilibrium for correlated strate-
gies in the original game. One can get a similar result
for Tennenholtz’s model if one allows mixed-strategies
and apply the techniques of the proof of Theorem 2.

Peters and Szentes [Peters 08] consider the model
where each player can play a first-order formula over
the integers which gets the Gödel-numbering of the
formula for the other player as well as its own. This is
equivalent to allowing the players to play total func-
tions in the arithmetic hierarchy (computable in the
halting problem, the halting problem relative to the
halting problem, etc.) They get results similar to The-
orem 1 and 2 in their model even when allowing more
than two players.

Halpern and Pass [Halpern 08] consider mediation
based on cryptographic assumptions with players of
limited computational power.

3 OUR MODEL

Let G = (A1, A2, u1, u2) be a two-player finite normal-
form game. Each Ai is a finite set of actions and a
payoff function ui : A1 × A2 → <≥0. We require non-
negative payoffs to make discounting effective and in
any finite game we can additively scale each payoff to
make all the payoffs nonnegative and keep the same
strategic considerations.

Player i has action space Ai and receives utility
ui(a1, a2) when each player i chose action ai.

In the program equilibria model, each player does not
directly choose an action, rather they choose a pro-
gram Pi. We allow a program to be an arbitrary Tur-
ing machine. Let 〈Pi〉 represent the code for program
Pi. Alternatively we can allow program to be chosen
from any Turing-complete programming language (in-
cludes nearly all common languages including C, Java,
Basic as long as there is no a priori bound on memory).

Each Pi will receive two inputs, 〈P1〉 and 〈P2〉, the
codes for the programs produced by the players de-
noted by Pi(〈P1〉, 〈P2〉). Since we allow arbitrary Tur-
ing machines, Pi(〈P1〉, 〈P2〉) may have an arbitrary
output or may not output at all because it doesn’t
halt. Let ai be the output of Pi(〈P1〉, 〈P2〉), where we
say ai = ⊥ if there was no output or the output was
not in Ai. Let ti be the number of computation steps
used by Pi(〈P1〉, 〈P2〉) before it outputs ai where we
say ti =∞ if the machine didn’t halt or didn’t output

an action in Ai.

We discount the utility by the running time. Fix δ
with 0 < δ < 1. In current technology, think of δ
about 1− 10−12.

Let a1, a2, t1 and t2 be the actions and times as de-
scribed above where each Player i plays program Pi.
Here are the payoffs in the program equilibria game:

• If a1 6= ⊥ and a2 6= ⊥ then each Player i receives
utility δtiui(a1, a2).

• If a1 = a2 = ⊥ both players receive zero utility.

• If a1 6= ⊥ and a2 = ⊥ then Player 2 re-
ceives zero utility and Player 1 receives utility
δt1 maxb∈A2 u1(a1, b).

• If a1 = ⊥ and a2 6= ⊥ then Player 1 re-
ceives zero utility and Player 2 receives utility
δt2 maxb∈A1 u2(b, a2).

One could also consider using discounting functions
that use both running times such as δt1+t2 or δmax(t1,t2)

or use min instead of max when one machine doesn’t
give an action. Our results hold in those models as well
but we don’t want to punish one player because the
other player’s program used a large or infinite amount
of time.

A Nash Equilibrium of the game G is a pair of mixed
strategies σi for each player where σi is a probability
distribution over Ai and σi maximizes the expected
payoff for player i if other player plays their equilib-
rium strategy. Our Program Equilibrium is a Nash
equilibrium where the strategies are now distributions
over deterministic programs.

4 FOLK THEOREM

For a game G the pure minimax utility for player 1 is

α1 = min
a2∈A2

max
a1∈A1

u2(a1, a2)

and the pure maximin utility for player 2 is

α2 = min
a1∈A1

max
a2∈A2

u1(a1, a2).

A game G has a non-empty interior of individually
rational strategies if each player can possibly achieve
better than their pure minimax, specifically for i ∈
{1, 2},

αi < max
a1∈A1

max
a2∈A2

ui(a1, a2).

A correlated play of a game G is when the actions
a1 and a2 are drawn from some joint distribution D
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over A1 ×A2. A correlated play is purely individually
rational if the expected utilities of each player over D
is at least their pure maximin utility.

Theorem 3 For every game G with nonnegative pay-
offs and a non-empty interior of individually rational
strategies, and any purely individually rational corre-
lated play on G with distribution D and every ε > 0
there is some δ < 1 such that there is a Nash Equi-
librium in the mixed program equilibrium game where
each player’s expected utility is within ε of their ex-
pected utility over D.

Like Kalai et al. [Kalai 07], we achieve correlated ac-
tions with only mixed strategies. We use techniques
similar to Kalai et al. to achieve the correlation though
our programs are otherwise quite different than those
used by Kalai et al. or Tennenholtz [Tennenholtz 04].

Note we achieve a true Nash equilibrium, not merely
an ε-Nash. However we can achieve equilibrium on
only a dense subset of the correlated strategies for two
reasons:

1. There are an uncountable number of distribution
D but only a countable number of distributions
possibly generated by the countable set of Turing
machines.

2. In equilibrium the programs use a small but non-
zero amount of computation time which leads to
a tiny amount of discounting.

In Section 4.1 we give an example to show why we
need a non-empty interior.

Proof of Theorem 3:

Assume that under D, both players achieve an ex-
pected payoff more than ε higher than their minimax
payoffs. We can achieve this, if needed, by modifying
D to put a small amount of weight on the action pairs
that give each player their maximum utility.

Since the expected utilities of the players are contin-
uous as a function of D choose n and a distribution
E such that the each probability of choosing any ac-
tion pair (a1, a2) according to E is a multiple of 2−n

and the expected utilities of both players according
to D and E differ by at most ε/2. Fix a function
f : {0, 1}n → A1 ×A2 such that

Pr
r

(f(r) = (a1, a2)) = Pr
E

(a1, a2)

where r is chosen uniformly over {0, 1}n.

In equilibrium each player i chooses a string ri uni-
formly over {0, 1}n and plays the following programs.

P1(〈P1〉, 〈P2〉) :
If 〈P2〉 is not as below

Simulate P2(〈P1〉, 〈P2〉)
If P2(〈P1〉, 〈P2〉) outputs action a2

output action a1 that minimizes u2(a1, a2).
Otherwise

Pull r2 from 〈P2〉.
Play action a1 where f(r1 ⊕ r2) = (a1, a2).

P2(〈P1〉, 〈P2〉) :
If 〈P1〉 is not as above

Simulate P1(〈P1〉, 〈P2〉)
If P1(〈P1〉, 〈P2〉) outputs action a1

output action a2 that minimizes u1(a1, a2).
Otherwise

Pull r1 from 〈P1〉.
Play action a2 where f(r1 ⊕ r2) = (a1, a2).

Suppose both players play according to the equilibrium
strategy. In which case the “Otherwise” clause will
kick, r1⊕ r2 will be uniformly distributed over {0, 1}n
and the expected payoff for player i will be δtβi where
t is the number of steps used by each program and βi is
the expected payoffs according to E . Choose δ so that
(1 − δt)βi ≤ ε/2 for each i and the payoffs for each
player is at most ε worse than the expected payoffs in
G under D.

Suppose Player 1 plays the equilibrium strategy but
Player 2 deviates (the reverse case is similar). We
have two cases.

If Player 2 plays a different program than above than
either Player 2’s program doesn’t halt and Player 2
receives zero utility, or Player 2’s program halts with
some action a2 and Player 1’s program will play the
a1 that minimizes u2(a1, a2). At best Player 2 will
achieve her pure minimax payoff which by assumption
is more than ε less than Player 2’s payoff in G un-
der D and thus strictly less than Player 2’s program
equilibrium payoff.

Player 2 can also deviate by playing the program above
but not choosing r2 according to the uniform distribu-
tion. But since r1 is chosen uniformly, r1 ⊕ r2 will
be uniform independent of the distribution chosen by
Player 2. Since the running time of the program is
independent of the choice of r2, Player 2 will not gain
(or lose) by deviating in this way. �

4.1 EMPTY INTERIOR

We give an example as to why we need non-trivial
strategies to achieve for our folk Theorem (Theo-
rem 3). Consider the game in Figure 2.

An expected payoff of (1, 3) can be achieved by the
correlated play of playing (U,L) and (D,R) each with
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L R
U 1, 5 1, 4
D 0, 1 1, 1

Figure 2: A Game with an Empty Interior of Individ-
ually Rational Strategies

probability 1/2 or the mixed strategy of player 2 al-
ways playing R and player 1 playing U with with prob-
ability 2/3 and D with probability 1/3 or some com-
bination of the two.

In either case if we used the programs in the proof
of Theorem 3, player 1 could deviate by just imme-
diately playing U since it still receives a utility one 1
but with less time and thus less of a discount. Any
program equilibrium achieving expected payoff (1, 3)
would have Player 1’s program either immediately
playing U or D with a positive probability of the pro-
gram playing U . However in that case Player 2 could
benefit by just playing L and thus there is no program
equilibrium achieving an expected discounted payoff
close to (1, 3).

5 LARGEST INTEGER GAME

Our folk theorem can be extended to some infinite
games that don’t even have a Nash Equilibrium.

Consider the following 2-player infinite game, Largest
Integer. Each Player i choose an integer ai.

• If a1 > a2 then Player 1 receives 100 and Player
2 receives 0.

• If a2 > a1 then Player 2 receives 100 and Player
1 receives 0.

• If a1 = a2 then both players receive 50.

Largest Integer has no Nash equilibrium since for any
mixed strategy of Player 1, player 2 can play a large
enough integer to achieve 100 − ε for any ε > 0 and
vice versa. For similar reasons there is no equilibrium
in Tennenholtz’s model or any of the other models de-
scribed in Section 2.

We can achieve a discounted equilibrium of 50 − ε as
follows:

P1(〈P1〉, 〈P2〉) :
If 〈P2〉 is not as below

Simulate P2(〈P1〉, 〈P2〉)
If P2(〈P1〉, 〈P2〉) outputs action a2

output action a1 = a2 + 1.
Otherwise Output 1.

P1(〈P1〉, 〈P2〉) :
If 〈P1〉 is not as above

Simulate P1(〈P1〉, 〈P2〉)
If P2(〈P1〉, 〈P2〉) outputs action a1

output action a2 = a1 + 1.
Otherwise Output 1.

If a player deviates from the equilibrium strategy they
will receive a payoff of zero, either because they ran
forever or because the other player will play a larger
number.

Using similar ideas from the proof of Theorem 3, we
can get a general folk Theorem for the Largest Integer
game.

6 FUTURE DIRECTIONS

In Section 5 we gave a folk theorem for a countable
game. Can we prove a folk theorem for a general class
of games.

What happens if we have more than two players?
What if we look at a family of games paramaterized by
some value n? In the parameterized setting, the num-
ber of players could also depend on the parameter.

Can we use the Kleene recursion theorem [Kleene 38]
to eliminate the need for each program to have its own
code as input?

6.1 COMPUTATIONALLY HARD GAMES

Consider a standard chess game and say the payoff is
100 for winning, 50 for a draw and 1 for losing (so
it is better to lose than to keep playing indefinitely).
The only Nash equilibrium is best play and this is also
the only equilibrium in previous models of program
equilibriums and commitment. But neither man nor
machine plays best play in chess because of the com-
putationally difficulty in searching the full game tree.
We can’t prove that there is some unknown quick al-
gorithm that does play perfectly but for the sake of
the argument let us assume no such algorithm exists.

For a reasonable choice of δ, say δ = 1 − 10−12,
best play no longer becomes an equilibrium in the
discounted time model since searching the game tree
would drop the discounted payoff to less than just im-
mediately resigning.

Instead discounting suggests a method of playing that
more closely matches how humans and computers play
chess: Doing an carefully pruned search of small num-
ber of levels of the game tree and then apply some
evaluation function that gives a belief of winning from
that position as well as a belief in a possible increase
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in value from further exploration, optimizing the time
with the amount of discount given up in the search.

It would be extremely difficult if not impossible to ex-
actly characterize such an equilibrium. One could try
to characterize equilibria of other simpler but still com-
putationally difficult games.

6.2 DISCOUNTED TIME IN
COMPUTATIONAL COMPLEXITY

Are there interesting applications of discounted time
outside of game theory? In computational complexity
when we talk about time it usually represents a hard
limit in the running time, solving the problem in time
t(n). So we are happy, say, if we can solve the problem
in one hour and miserable if it takes 61 minutes. But
our real gradation of happiness over the running time
is not so discontinuous.

Let us consider discounting the value of a solution by
a δt factor for an algorithm that uses t steps, so a
small increase in the running time yields only a small
decrease in utility. When t is small, δt is about 1− εt,
a linear decrease. For t large, δt is about e−εt, an
exponential decrease.

There is also a time-independent flavor to this notion.
After time t the additional discount for continuing for
another r steps is δr, independent of t.

We can also recover traditional complexity classes.
DTIME(O(m(n))) is the set of languages computable
in time t such that for some constant c > 0, δt > c for
δ = 1− 1

m(n) .

Abbott and Garcia-Molina [Abbott 88] had considered
non-hard deadlines in databases though not specifi-
cally using a discount factor.

Some possible applications of discounted time in com-
putational complexity and algorithms.

• What does average case and expected time mean
in the discounted time model?

• What if you take the value of the solution of some
approximation problem and discount it with the
time taken? Can you determine the optimal point
to stop?
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