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Abstract 

If one has attributed certain initial beliefs to an agent, it is sometimes possible to 
reason about further beliefs the agent must hold by observing what conclusions one's 
own reasoning mechanism draws when given the initial beliefs as premises. This tech- 
nique is called simulative inference. In an earlier paper, we described a logic of belief 
in which the reasoning that generates beliefs is modeled explicitly as a computational 
process. We used this logic to characterize a class of computational inference mecha- 
nisms for which simulative inference is sound, under the assumption that the observer 
and the observed have similar mechanisms. In this paper, we present a different form 
of simulative inference, and show that unlike the earlier form, it is sound even for some 
mechanisms that perform defeasible inference. 

1 Introduction 

In [4], we introduced a semantics of  belief that avoids the logical omniscience problem 

by describing the generation of  a belief set from initial premises as a finite computational 

process. In the model, each agent has a belief machine, an abstraction of  a computational 

inference mechanism, which is described by the two recursive functions ASK and TELL. 
Each is a function of  two arguments, the first being a state of  the machine, and the second 

a sentence of  a logic. The value of  ASK(S, ~o) is either yes or no, indicating whether 

an agent whose belief machine is in state S believes the sentence ~o or not. TELL is the 
machine's state transition function: the value of  TELL(S, tp) is another state, the one to 

which a machine starting in state S will go when qo is asserted. 
We take "o~ believes cp" to mean that agent o~ can decide with little effort that sentence 

~o follows from what he has learned. If  a sentence follows from what oL has learned, but it 

would take a significant amount of  reflection to discover this connection, then we do not 
say that o~ believes that sentence, only that with sufficient time he could come to believe 

it. Therefore, the functions ASK and TELL needn't  describe an agent's entire reasoning 
capability; they are merely intended to describe the inferences the agent makes easily and 

automatically. 

71 



Our motivation for introducing this computational model of belief was to explore the 
technique of simulative inference, which is reasoning about another agent's beliefs by sim- 
ulating its inference processes with one's own. The idea is that if an agent is known to 
believe ~o, and by introspective observation we see that believing qo would cause us to be- 
lieve ~b as well, then we can attribute belief in ~b to the other agent. Using the vocabulary 
of our model of belief, this type of reasoning can be formalized by the assumption that all 
agents' belief machines are characterized by the same ASK and TELL functions, and the 
following inference rule (where So is the initial state of the belief machine): if cz believes 
~ 1 ,  . . . , ~ O n ,  and ASK(TELL(So, ~ 1 ,  . . . , ~ n ) ,  ~b ) = y e s , ,  then o~ believes ~b. 

Even under the assumption that our inference mechanism is identical to that of the agent 
we are simulating, this style of reasoning may or may not yield correct results, depending 
on the type of inference the mechanism performs. For example, here is a natural example 
of a way one might characterize the conclusions an agent makes easily and automatically: 
if a sentence can be proved in fewer than five steps (in a given proof system) from what 
the agent has learned, then that is an "easy" inference, so the agent believes the sentence; 
otherwise, the agent doesn't currently believe it. This characterization is simple to encode 
as a belief machine, by making the machine a theorem prover that prunes its search at 
five steps. For this characterization of easy inference, simulative inference is not a valid 
reasoning technique. If an agent has learned only qo, and ~b can be proved in fewer than 
five steps from cp, then the agent also believes ~b, and this fact can (correctly) be discovered 
by simulative inference. Once we know that the agent believes ~o and ~,, we might apply 
simulative inference again, discover that X can be proved in fewer than five steps from 
and ~b, and conclude that the agent also believes X. But if X takes more than five steps to 
prove from cp alone, then the agent does not in fact believe X, so our conclusion would be 
wrong. 

While the idea of simulative inference has long been present in the literature (e.g. Moore 
[7]), no previous semantics of belief could be used satisfactorily to characterize inference 
mechanisms for which the technique is appropriate. In [5] we gave a set of constraints 
relating the functions ASK and TELL, and showed that simulative inference is sound given 
any belief machine that satisfies these constraints. We also showed that a certain set of 
inference rules, which includes the rule of simulative inference, is refutation complete for 
a certain kind of sentence (sentences that don't use universal quantification into positively 
embedded belief contexts). The details of the model are reviewed briefly in Section 2. 

1.1 Simulative Inference and Nonmonotonic Belief Machines 

If an agent's set of beliefs can only be augmented when the belief machine is TELLed a 
new sentence, then the belief machine reasons monotonically. If, on the other hand, some 
previously held beliefs might be discarded in the light of new information, then the machine 
reasons nonmonotonically. There are two distinct types of nonmonotonic reasoning that a 
belief machine might perform. First, if the belief machine discovers that the premises it has 
been TELLed are not consistent, it might revise its beliefs in a way that involves choosing 
one or more of the input sentences to discard in order to avoid the inconsistency. Belief 
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machines that can revise their beliefs in this way are permitted under the constraints given 
in [5], and therefore the rule of simulative inference given there can be sound for such 
machines. 

The other way a belief machine might reason nonmonotonically is by tentatively draw- 
ing conclusions that are not strictly entailed by the TELLed sentences, and then withdrawing 
those conclusions if necessary in light of information TELLed at a later time. In this case it 
is not previously TELLed input sentences that are being discarded, only sentences that were 
inferred (defeasibly) from the inputs. Using a machine that reasons in this way, the type of 
simulative inference described in [5] is not sound. Suppose an agent believes that Tweety is 
a bird, and has no further information about Tweety. The agent might believe that Tweety 
can fly. Then suppose the agent learns that in fact Tweety is a penguin. This new informa- 
tion does not contradict anything the agent had learned explicitly, but it may well cause it 
to cease believing the inferred proposition that Tweety can fly. Given a belief machine that 
reasons in this way, the rule of simulative inference as we have stated it is nonmonotonic: 
when applied to the singleton premise set {B(a,  bird(tweety))} (meaning "a believes that 
Tweety is a bird"), the rule licenses the conclusion B(a, f lies( tweety) ), but when applied 
to 

{ B ( a, bird( tweety ) ) , B ( a, penguin( tweety ) ) } , 

which contains the former premise set, it does not license that same conclusion. The 
premises to which simulative inference is applied are the inputs to the belief machine, so if 
the belief machine reasons nonmonotonically from those premises, then the inference rule 
is nonmonotonic as well (and therefore is not sound). In this paper, we present a different 
form of simulative inference that is sound for a class of belief machines that includes some 
that perform defeasible inference. 

Consider an agent who believes that all birds except penguins fly, and assumes that a 
given bird is not a penguin unless it has reason to believe otherwise. The fact that this agent 
believes Tweety is a bird is not sufficient evidence to conclude that he believes Tweety 
flies. However, if we also know explicitly that he doesn't believe Tweety is a penguin, then 
we would be justified in concluding that he believes Tweety flies. This demonstrates that 
simulative inference using a belief machine that reasons defeasibly may require information 
about the absence of certain beliefs, as well as information about the presence of beliefs. 

If a belief machine is able to perform negative introspection, then there is a way to 
enter information about the absence of a belief into a simulation. Let me be a special 
indexical constant that each agent uses to refer to itself. A belief machine has negative 
introspection if whenever it answers no to a sentence ~o, it answers yes to -~B(rne, ~o). For 
a machine with negative introspection, if -~B(a, ~o) is true, then so is B(ee, -~B(rne, ~o)). 
This yields a sentence -~B(rne, ~o) that can be TELLed to a simulation of a~'s reasoning. 
We will show that for belief machines with negative introspection, the rule presented in this 
paper is complete. 
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2 The Computational Model 

For the details of the computational model of belief, see [5]. We summarize here. 
Models assign truth values to formulas of a language L, which is ordinary first-order 

logic plus a belief operator B.  ,Where a is a term and qo is a sentence (a formula with no free 
variables), B(o~, ~o) is a formula whose intended meaning is that a believes qo. In [5], the 
formula qo was allowed to have open variables, so that quantifying-in (e.g. 3 z B ( a ,  P ( z ) ) )  
was possible, but in this paper we only consider a simpler language that doesn't  permit 
quantifying-in. Note that the belief ~o is a sentence of L i tself--the language used by the 
belief machine's ASK/TELL interface is the same as the language of the observer. Belief 
contexts can be nested to arbitrary depth, e.g. B(a ,  B(b,  B(c,  P(d))) ) .  

A belief machine is a structure (F, So, TELL, ASK, ), where F is a set of states, So E F 
is the initial state (the state the machine is in before having been TELLed anything), and 
TELL and ASK are the state transition function and the query function, as described above. 
ASK and TELL are defined only for sentences. Note that ASK and TELL are part of the 
semantics, not symbols of the language L. 

A model is a structure like a model for ordinary FOL, but augmented with a function that 
maps each individual in the domain to a belief state. We will be interested in the truth values 
of formulas given a particular belief machine, so the machine is a parameter of the model 
structure rather than a constituent thereof. In other words, when we ask if B(a ,  qO) l?gically 
entails B (a, ~b), we are not asking if there is any belief machine that would conclude ~b from 
qo. Rather, we are asking about the belief machine we have already chosen. Where m is a 
belief machine, an m-model  is a structure (D, I ,  7), where D is the domain of individuals, 
I is an interpretation function, and '7 is a function mapping each individual in D to a belief 
state in F. The notation [rl M means the denotation of term r under model M .  

Let m = (F, So, TELL, ASK) be a belief machine, and M = <  D , I , ' 7  > an m-  
model. For any term a and sentence qo, the belief atom B ( a ,  ~) is true under M if 
ASK(7([aIM),  qo) = yes,  i.e. if the belief machine of the agent denoted by a answers 

yes to the query qo. 
The notation B .  S means the belief set of belief state S, i.e. 

B . S = {qolasg(s ,  ~o) = yes} .  

We write the rule of simulative inference as follows, where the formulas above the line 
are the premises, the formula below the line is the conclusion, and the rule applies only 
when the condition written below it holds: 

B ( a , ~ ) , . . . ,  B(,~, ~o,~) 

B(o~,~,) 

if ASK(TELL(So,  ~ol,. . . , ~on), ~b) = yes. 

To the semantics introduced in [4], we now add an indexical constant me,  which will 
be necessary for constructing an introspective belief machine. Expressions will now be 
evaluated with respect to a model M = (D, I ,  '7) and a reasoner r E D.  Denotations of 
terms are as before, except that [reel M'r = r. 
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3 Simulative Consistency Checking 

In what follows, we will say that a sequence of sentences ~Pl , . . . ,  cp~ is acceptable if 

ASK(TELL(So ,  qOl, . . . , ~On), ~i) = yes  

for all 1 < i < n,  and if all initial subsequences of ~ol,. • •, qOn are also acceptable (defined 
recursively). That is, a sequence is acceptable if, as each of its elements is TELLed to 
a belief machine starting in the initial state, the machine continues to believe all of the 
elements that have been entered so far. For example, it may be the case for a particular 
machine that the sequence P(c) ,  Q(d) is acceptable, but the sequence P(c) ,  ~ P ( c )  is not. 
If  one were to TELL such a machine P(e)  followed by ~P(c ) ,  it would detect that the two 
input sentences contradict each other, and therefore choose one of them not to believe. 

In order to obtain the completeness result in [5], we found it necessary to introduce 
another inference rule that involves a different form of simulation. The rule says that if a 
sequence of sentences is not acceptable (a condition that can be detected by simulation), 
then its elements cannot be believed simultaneously. It can be expressed as follows, where 
± stands for an arbitrary contradiction: 

B ( ~ , ~ o ~ ) , . . . ,  B (~ ,  ~On) 
± 

if  ASK(TELL(So ,  qo l , . . . ,  qgn), ~oi) = no for some 1 < i < n. 

We will call this rule simulative consistency checking. Theorem 1 states that it is sound 
for any belief machine that satisfies the following three constraints. These constraints are 
identical to ones used in [5] except that the condition of monotonic acceptability used in 
[5] has been replaced by the weaker condition of acceptability. These weakened constraints 
permit machines that perform defeasible inference. 

C1 (closure) For any belief state S and sentence ~o, i f  

ASK(S ,  ~o) = yes  

then 

B .  TELL(S,  qo) = B .  S. 

C1 says that TELLing the machine something it already believed does not change its belief 
set. This does not mean that the belief state may not change--for  example, qo might be 
tentatively assumed as a defeasible inference in state S, but believed with full confidence in 
state TELL(S,  ~o). 

C2 (finite basis) For any belief state S, there exists an acceptable sequence o f  sentences 

~Ol ,. • • , ~On such that 

B .  TELL(go,  ~ol , . . . ,  ~On) = B - S  
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Constraint C2 says that for each belief state, a state with the same belief set can be reached 
from the initial state by TELLing the machine a finite, acceptable sequence of sentences. It 
requires that even if a particular state can be reached only via a non-acceptable sequence, 
there is another state with the same belief set that can be reached via an acceptable sequence. 

C3 (commutativity) For any belief state S and acceptable sequence of  sentences ~1, . . . , ~9n, 
and for  any permutation p o f  the integers 1 . . .  n, the sequence cpp(1),..., qOp(n) is also ac- 
ceptable; and 

13. TELL(S, ~ 0 1 , . . .  , ~ n )  = 13" TELL(S, ~ p ( 1 ) , - . . ,  ~ p ( n ) ) .  

C3 says that if a sequence of sentences is acceptable, then it is acceptable in any order, and 
the belief set of the resulting state does not depend on the order. Note that this constraint 
does permit the belief machine to take order into account when deciding how to handle 
contradictory (i.e. non-acceptable) inputs. 

Theorem 1 (Soundness  of Simulative Consistency Checking) Given a belief machine sat- 
isfying constraints C1-C3, i f  

ASK(TELL(So,  ¢Pl , . . . ,  ¢Pn), ¢Pi) = no 

for some 1 < i < n, then { B ( a ,  ¢Pl) ,-- . ,  B(c~, ¢Pn)} is unsatisfiable. 

Proof:  We will prove the contrapositive of the above statement. Assume that 

{B(oq ¢p1), . . . ,  B(ot, ¢pn)} 

is satisfiable, i.e. that there exists some state S such thatASK(S,  qoi) = yes  for all 1 < i < 
n. By the finite basis constraint, there is some acceptable sequence of sentences ¢1, • • •, Cm 
such that 

13. TELL(So,  ¢ 1 , . . . ,  ~3m) = 13" S ,  

which means that 

ASK(TELL(So,  ¢ 1 , - - - ,  ¢m),  ¢Pi) = yes,  1 < i < n. 

By the closure constraint, if we take a machine in state TELL(So ,C1 , . . .  ,~bm) and TELL 

it each of the cpi in turn, the resulting states will all have the same belief set as the original 
state, which means that the entire sequence 

~ 1 ,  • • • , ~ b m ,  q 0 1 ,  • • • , t o n  

is acceptable. Therefore, the commutativity constraint applies; it says that the sequence 

~O1, • • • , ~9n, ~ I ,  • • • , ~3m 

is acceptable, which by the definition of acceptability means that the initial subsequence 
qOl, . . . ,  ~On is acceptable. [] 
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4 Negative Introspection 

A belief machine has negative introspection if it satisfies the following constraint: 

C4 (negative introspection) For every state S and sentence ~, if 

ASK(S, ~o) = no 

then 

ASK(S, ~B(me,  qg) ) = yes. 

Note that negative introspection is a form of defeasible inference: if cp ~ /3 • So and 
~o E/3.  TELL(So, ¢p), and the machine is introspective, then ~B(me ,  ~o) is believed in state 
So but is retracted in state TELL(So, ¢p). 

For any belief machine satisfying the negative introspection constraint, the following 
inference rule is clearly sound: 

~ B ( ~ , ~ )  
B(oL,~B(me, ~))" 

5 Completeness 

The combination of the roles of simulative consistency checking and negative introspection 
is complete in the following sense: for any finite set • of belief literals (formulas of the 
form B(a,  99) or ~B(a ,  ~o)), if • is unsatisfiable, then there is a refutation proof ff ~- _L. 
The completeness holds for any belief machine that satisfies the four constraints already 
presented (closure, finite basis, commutativity, and negative introspection) as well as the 
following, which is the converse of negative introspection: 

C5 (negative faithfulness) /f 

A S K ( S , - B ( m e ,  7~) ) = yes 

then 

ASK(S, go) = no. 

Theorem 2 (Completeness for Belief Literals) For any belief machine satisfying constraints 
C1-C5, and for any finite set of belief literals 

¢ = {B(~, ~ ) , . . . ,  B(~, ~),-~B(~, ¢~, ),..., -~8(~, era)}, 

if • is unsatisfiable then ~ F- _k. 
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Proof: Assume that ff is unsatisfiable. That means there is no belief state S such that 
ASK(S,~pi) = yes for all 1 < i _< n and such that ASK(S,¢i) = no for all 1 _< i _< 
m. Since the negative faithfulness constraint holds, there must be no state S such that 
ASK(S, cpi) = yes for all 1 < i < n and ASK(S, ~B(me, ¢i))  = yes for all 1 < i < m. 
Therefore, the sequence ~Ol,..., qOn, ~B(me, ¢1) , - - - ,  ~B(me, era) must not be accept- 
able. 

A proof ff [- _L can be constructed as follows: from each literal ~B(ol, ¢i),  the rule of 
negative introspection licenses the conclusion B (or, ~B (me, ¢i)).  Then, from 

B(oq ~ol), . . . , B(o~, qOn), B(o6 ~B(me, ¢ 1 ) ) , - . . ,  B(o~, ~B(me, era)), 

the rule of simulative consistency checking licenses the conclusion _1_, since the sequence 
qOl,. . . ,  qOn, ~B(me, ¢1), .  • •, ~B(rne, Ore) is not acceptable. [] 

This completeness for sets of belief literals has the following corollary: for any belief 
machine satisfying constraints C1-C5, if the rules of simulative consistency checking and 
negative introspection are added to a set of inference rules that is complete for ordinary first 
order logic, then the resulting set of rules is complete for the entire logic (in the same sense 
of completeness used in Theorem 2: if a finite theory is unsatisfiable, then it has a refutation 
proof). 

The completeness result shown in [5] for the original simulative inference rule was more 
general: the logic used in that paper permitted quantifying-in, and the completeness result 
applied to theories containing not only unquantified belief formulas such as B(a, P(c)) ,  but 
also to theories containing existentially quantified-in belief formulas such as 3xB (a, P(x)), 
though not universally quantified-in formulas such as gxB(a, P(x)). It remains an open 
question whether the same completeness condition obtains for the inference rules presented 
here. 

6 Simulative Inference for Machines With Negative 
Introspection 

From the rules of simulative consistency checking, negative introspection, and reductio ad 
absurdum, a new simulative inference rule can be derived: 

B ( a , ~ l ) , . . .  , B(o~, ~On) 

if ASK(TELL(So, ~ 0 1 ,  • • • ,  ~ O n ,  ~B(me ,  ¢)) ,  X) = no for some 
x • go1,. . . ,   On, -,B(me, ¢)} 

The premises and conclusion of this rule are the same as those of the original simulative 
inference rule. Only the ASK/TELL condition under which it applies is different. Theorem 3 
shows the derivation of the new inference rule. 
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Theorem 3 For any term a and sentences ~1, . . . , ~n and ¢, i f  

ASK(TELL(So, ¢P1,-.., ¢Pn, ~ B ( m e ,  ¢)),  X) = no 

for some X E {~Pl,. . . ,  ~On, -~B(me, ¢)}, then there is a proof 

using the rules of  simulative consistency checking, negative introspection, and reductio ad 
absurdum. 

Proof: The proof can be constructed as follows: begin with the premises 

B(a ,  qOl),... ,  B(aqon), 

and make the assumption ~B(a ,  ¢) for the purposes of deriving a contradiction. From 
the assumption, the negative introspection rule licenses the conclusion B(a ,  ~ B ( m e ,  ¢)). 
From this conclusion and the original premises, the rule of simulative consistency checking 
licenses the conclusion Z, since the sequence ~Pl,. . . ,  ~B(rae, ¢)  is not acceptable. Dis- 
charging the assumption, we can conclude B(a ,  ¢) by reductio ad absurdum. Here is the 
proof in tabular form: 

1. B(a ,  c/91),... , B(o~, ~on) 
2. Assume ~B(a ,  ¢)  
3. B(c~, -~B(me, ¢)) 
4. ± 
5. 

[] 

premises 

2, negative introspection 
1,3, simulative consistency checking 
reductio ad absurdum 

7 Related Work  

The classical possible worlds model of Hintikka [3] suffers from the "logical omniscience" 
problem, meaning that agents in that model must believe all of the logical consequences of 
their beliefs. Our computational model of belief is one of many later alternatives that model 
believers in a more realistic (i.e. computationally feasible) way. 

The model of algorithmic knowledge of Halpern, Moses, and Vardi [2] is similar to ours 
in that it models an agent's belief state as the state of a computational mechanism, and its 
belief set as the set of sentences accepted by that mechanism in its current state. Halpem et 
al. do not treat the subject of simulative reasoning. 

Konolige's deduction model [6] is also similar, and does include a mode of inference 
similar to our simulative inference. Konolige uses a very specialized model of belief com- 
putation, namely the exhaustive application of deductive inference rules. Our ASK~TELL 
model is fundamentally much more general, but our soundness and completeness results 
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are obtained only under certain constraints on ASK and TELL that reduce this generality. 
The relative expressiveness of the two models is an interesting topic, which we have dis- 
cussed at length in [5]. Reasoning in the deduction model is limited to deductive inference; 
Konolige suggests that one might extend the model to allow nonmonotonic reasoning, but 
to our knowledge this possibility has not been explored. 

Chalupsky and Shapiro [1] describe a proof system in which simulative inference is 
a defeasible rule. This is a useful idea, because the assumption that the observer and the 
observed have identical reasoning mechanisms is likely to be wrong at times. However, 
as we have shown, even in cases where the approximation is correct, simulative inference 
may give incorrect results, depending on the kind of reasoning performed in the simulation. 
Our contribution has been to demonstrate conditions under which simulative inference is 
guaranteed to be sound. 

In the work of van Arragon [8], the observer uses a default reasoning tool, and the ob- 
served is a user who reasons in the same way as the tool. Rather than using a simulative 
technique, the observer uses an axiomatic description of the conditions under which the 
user is able to make an inference. Given that the user and the observer use identical rea- 
soning methods, it seems unlikely that reasoning with a declarative description of the user's 
behavior could be as efficient as simulating his behavior using the observer's own mech- 
anism. Van Arragon's metalanguage differentiates between sentences the user believes as 
default assumptions and those he believes as incontrovertible facts. This contrasts with our 
language, which has only a single belief operator, leaving the distinction between defaults 
and facts to be made by the operation of the belief machine. 

8 Conclusions 

In an earlier paper, we introduced a model of belief in which reasoning is modeled as 
computation performed by a belief machine. We presented a rule of simulative inference, 
which allows an observer to draw conclusions about what an agent must believe by running 
a simulation of the agent's belief machine. 

In this paper, we have presented another form of simulative inference under the same 
model of belief. We have shown that the new rule is sound for a broader class of belief 
machines, a class that includes machines that reason nonmonotonically from consistent 
inputs. Furthermore, we have shown that when the belief machine exhibits the properties 
of negative introspection and negative faithfulness, the rule is complete for the subset of the 
logic in which quantifying-in is disallowed. 
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