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A b s t r a c t  

We look at the Big Match game, a variation of the repeated Matching Pennies game 
where if the first player plays tails the game ends with the first player receiving the last 
round's payoff. We study this game when the second player js implemented as a finite 
automaton. We show several results including: 

• If the first player knows the number of states of the second player's automaton 
then he can achieve the maximum score with a deterministic polynomial-time 
algorithm. 

• If a deterministic first player does not know the number of states of the second 
player then he can not guarantee himself more than the minimum score. 

• If we allow player one to run in probabilistic polynomial-time then he still cannot 
achieve the maximum score but he can get arbitrarily close. 

• In a slight variation of the Big Match, the first player cannot have an even close 
to dominant strategy. 

1 I n t r o d u c t i o n  

The king has a dilemma. Every year the crowned prince presents him with a sack of gold 
or a sack of stones. The king always loves to receive the gold but sees the stones as a slap 
in the face. Before the prince makes the presentation, the king has the option to order the 
guards to kill the prince. If the guards kill the prince, they will then tear open the sack to 
reveal the contents. If the sack contains stones then the king has justifiably eliminated the 
pesky prince. If, however, the sack contained gold then the masses will force the king from 
his throne for killing a prince bearing wonderful gifts. 
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L.S. Shapley IS] introduced the notion of stochastic games in 1953 as a generalization 
of repeated games. He showed that  finite discounted zero-sum games have a value, and 
that  both  players have stat ionary optimal strategies. In 1957, Gillette [G] considered a 
different kind of stochastic games called undiscounted stochastic games. He introduced the 
game above, The Big Match (though not called that  until [BF]), to show that  undiscounted 
stochastic games need not have a solution with both  players having stat ionary strategies. 

After Gillette, much work was done to find sufficient conditions for the existence of a 
value in undiscounted stochastic games. This question remained open until it was shown 
by J.F. Mertens and A. Neyman [MN] in 1981 and independently by Monash [M] in 1979 
that  all undiscounted stochastic games do in fact have a value. 

Although these games have a value, they need not have optimal strategies. In 1968, 
Blackwell and Ferguson [BF] showed that  for the Big Match, the king has no optimal 
strategy, and that  in order for the king to achieve a close to optimal final payoff, he must 
use a strategy that  depends on the entire history of the game. 

We are interested in continuing the work of Fortnow and Whang,  by extending it to 
more general stochastic games. In this paper, we look at the "bounded rationality" version 
of the Big Match where the prince has only a small memory. We model the prince by a 
deterministic finite au tomaton  and the king by a polynomial-t ime computer .  We view the 
Big Match as a variation on the Matching Pennies game studied by Fortnow and Whang.  

We show that  if the king (player P1) knows the number  of states of the au tomaton  that  
models the prince (player P2), then the king can guarantee himself either always receiving 
gold or justifiably killing the prince. If a deterministic king does not know the number  of 
states of the prince, then the king should learn to enjoy stones. 

If we allow the king some randomness then the situation changes dramatically. Even 
if the king has no idea of the size of the prince's memory, the king can still achieve near 
optimal conditions. 

We also show that  in a small variation of the big match, even a randomized king cannot 
achieve a close to optimal situation. 

2 P r e l i m i n a r i e s  

Consider the two player game Matching Pennies played by players P1 and P2: In each 
round P2 chooses an element of {Heads,Tails} and P1 tries to predict P2's  choice, winning 
1 point if he is correct, 0 points if he is not. P1 tries to maximize his score, while P2 tries to 
minimize P l ' s  score. We describe each round of this game by the following payoff matrix, 
in which P l ' s  moves are represented by lower case letters, P2's  moves by upper  case letters, 
and the entries are the payoffs to PI :  

Matching Pennies: 
H T 

h t  1 0 
t 0 1 
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Figure I: An automaton that plays the "change when caught" strategy. 

We are interested in the case where the game is played for an infinite number of rounds. In 
this case, we define the final payoff for P1 to be 

lim sup (a, + . . .  + an)In,  (1) 
Io,-.-~ o o  

where ai is the payoff received in the i th  round. If the players are allowed to use random- 
ization, then the final payoff is the expected value of Expression (1). 

A strategy ~2 for P2 is a function e2({h,t} x {H,T})* --~ {H,T}.  An element of the 
domain is a history of the game played so far; a2 maps these histories to next moves. A 
strategy for P1 is defined analogously. A recursive strategy is a strategy computable by a 
Turing machine. A polynomial-time strategy is a strategy computed by a Turing machine 
which computes the next move in polynomial-t ime in the length of the history. 

In this paper we will be mainly concerned with regular strategies. A regular strategy 
is a strategy realized (or played) by a deterministic finite automaton (DFA). We say a 
deterministic finite automaton M plays Matching Pennies (for P2) if each state of M is 
labeled with an H or a T (the move to be played), and each state has exactly two transitions 
from it, one labeled with h, the other with t (the move played by P1). 

For example, Figure 1 shows an automaton that  realizes the "change when caught" 
strategy for P2, which is to start  out by playing H and then switching moves whenever P1 
wins a point. 

Let $1 be a set of strategies for P1, and let $2 be a set of strategies for P2. Let o.1 E $1, 
and o.2 E $2. Let ~-(o.1, o'2) denote the final payoff to P1 given that  P1 and P2 play the 
strategies o.1 and o2 respectively. We say that  a strategy o1 E S1 is 

1. optimal for $1 against o2 if for every o~ E $1, lr(o.,, a2) > ~-(o-~, a2). 
2. e-optimal for $1 against o.2 if for every o.~ E $1, ~-(o.1, o2) _> ~r(o.~, o'2) - e. 
3. dominant for $1 against $2 if for every a~ E $2, al is optimal for $1 against a~. 

! I 4. e-dominant for $1 against $2 if for every o- 2 E $2, o.1 is e-optimal for $1 against o.2" 

Note that  if the phrase "for S~" is left out of the above definitions, then $1 is assumed to be 
the set of all strategies. Similarly, if the phrase "against $2" is left out, then $2 is assumed 
to be the set of all strategies. 

Fortnow and Whang [FW] show the following results about the Matching Pennies game: 
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T h e o r e m  2.1 There is a recursive strategy ~r 1 which is dominant  (for the set 
of all strategies) against the set of polynomial time strategies. [] 

T h e o r e m  2.2 There exists a polynomial-time strategy that is dominant  against 
the set of regular strategies and converges in a polynomial number o.f rounds. [] 

T h e o r e m  2.3 There exists a behavioral regular strategy a: .for which P1 has no 
optimal strategy, but Ve > O, 3 e-optimal strategy for P1. [] 

In Theorem 2.2, the converging refers to how fast the lim sup in the final payoff converges 
to optimal, and in Theorem 2.3, a behavioral regular strategy is a s trategy realized by a finite 
au tomaton  which is allowed to flip coins and move to new states based on this randomization. 

The game we consider in this paper is a slight modification of Matching Pennies, called 
the Big Match. The Big Match works the same way as Matching Pennies except for the 
following catch: If P1 ever plays t, the game is over, with the final payoff to P1 being 1 if P2 
played T in the last round and 0 if P2 played H.  If P1 always plays h, the game continues 
forever, and the final payoff to P1 is calculated as in the Matching Pennies game. In other 
words, the goal for P1 is to predict correctly a round in which P2 will play T. 

The Big Match game can be described by the following payoff matrix: 

H T  11L°1  
If P l  ever receives a starred payoff, then the game is over and that  is his final payoff. 

The games examined by Fortnow and Whang are repeated single matrix games. They 
are a special case of stochastic games, which are repeated games played on any number  of 
payoff matrices: after a round is played with one payoff matrix, the players play the next 
round at another (or possibly the same) payoff matrix, which is determined by a probabili ty 
distribution which is in turn determined by the previous matrix and players' moves. The 
Big Match is also a stochastic game, which involves three simple payoff matrices. 

More formally, A finite stochastic game (as defined by Blackwell and Ferguson) consists 
of three non-empty finite sets S, I ,  J, a real valued function a defined for all triples (s, i , j )  E 
S x I x J, and a function p which associates with each triple (s, i, j )  a probabili ty distribution 
p(.Is, i , j )  on S. An initial state so E S is known to both  P1 and P2. P l  chooses an i E I,  
and simultaneously, P2 chooses a j E J .  P1 is awarded a(s, i , j )  points and the game moves 
to state s' selected according to p(.ls, i , j ) .  The new state s' is announced to both  players, 
who again choose elements of I and J and again receive payoffs. They then move to another 
state and the process continues. The final payoff  to P l  is defined by 

lim sup (a 1 + - . .  + a~)/n,  (2) 
n ~ o o  

where ai is the payoff P1 receives in the i th round. Again, if the players are allowed to use 
randomization, then the final payoff is the expected value of Expression (2). 
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R e m a r k :  When Shapley introduced the notion of stochastic games in 1953, he con- 
sidered a different final payoff function than the one above, called the t3-discounted payoff. 
For fl E {0, 1}, the final discounted payoff to P1 is ~ 0 / 3 ~ a ~ ,  where a~ is the payoff to P1 
in round i. Shapley showed that  finite discounted zero-sum games have a value, and that  
both players have stationary optimal strategies. (In a zero-sum game, there are reward 
functions for both players, r l , r2 that  have the property that  rl = - r2 .  Since we consider 
optimal strategies for P1 only, we have disregarded the payoff function of P2. See also IS] 

and [PTV].) Gillette [G] in 1957 was the first to consider undiscounted stochastic games, 
i.e., the stochastic games in which the final payoff function is the average of the reward per 
round, as we described above. 

We can see that  Matching Pennies is a finite stochastic game with ISI = 1. We can also 
redefine the Big Match as the finite stochastic game with 

S = {0,1,2}, I = . l  = {0,1}, 
a(2, i , j )  = 5ij, a ( s , i , j )  = s f o r s = 0 , 1 ,  
p(2 ,0 , j )  = 2, p(2 ,1 , j )  = j,  
p( s , i , j )  = s f o r s = 0 , 1 ,  so = 2, 

where p(s, i, j )  = t means that  given (s, i, j ) ,  the next state is t with probability 1. 
Blackwell and Ferguson [BF] show tha t  for all e > 0, P1 can achieve an expected final 

payoff of at least 1 7 - e in the Big Match with a polynomial-time strategy, but for no strategy 
This means that  there is no dominant  is P1 guaranteed an expected final payoff of exactly 7" 

strategy for P l ,  but for all e > 0, P l  has a polynomial-time e-dominant strategy. In the 
next section, we will see how P l  can improve his expected payoff if P2 is played by a DFA. 

3 R e s u l t s  

We consider the Big Match for the case where P2 is restricted to (deterministic) regular 
strategies. In this case, we will often refer to P2 as a DFA. The first three theorems examine 
the effect of (1) knowing the number of states P2 has and (2) using randomization on P l ' s  
ability to dominate in the Big Match. The last theorem considers the effect of a slight 
modification of the payoffs of the Big Match on P l ' s  ability to dominate.  

T h e o r e m  3.1 For every k, there exists a deterministic polynomial-time strategy al .for P1 
that achieves the maximum final payoff of 1 against any k-state strategy for P2. 

Proo f i  Let P2 be a DFA with k states. P1 plays h for 3k rounds. Since P2 has only k 
states, P2 will enter a cycle that  will be repeated as long P1 plays h. Furthermore,  P1 can 
determine what this cycle is by examining the first 3k moves of P2. 

Suppose this cycle includes a T. Then P1 continues to play h through another iteration 
of the cycle up until the point where he knows T is the next move in P2's cycle. Then P1 
plays a t to match P2's T and achieves a final payoff of 1. 

In the case where this cycle includes no T's,  P1 simply plays h forever. This means that  
P2 will never exit his cycle, which consists solely of H's.  Thus P1 receives a payoff of 1 
each round, and hence a final payoff of 1. [] 
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Theorem 3.1 says that  there is a polynomial time strategy o1 which will be optimal 
against any DFA M as long as al is given the number of states of M as an additional input. 
We can say that  with some help, al dominates the set of regular strategies. Wha t  happens 
if P1 is not told the number  of states of P2? 

T h e o r e m  3.2 Let P2 be a DFA M and suppose P1 knows nothing about M except that it 
is a DFA. I f  P1 is deterministic, then he cannot guarantee himself a positive final payoff. 

P r o o f :  Assume P1 can guarantee a positive final payoff. Suppose P1 plays h forever. If 
M is a DFA which after some round always plays T, then the final payoff to P1 will be 0. 
Therefore, in order to guarantee a positive final payoff, P1 must  play t at some point. 

When P1 plays t, the game will end and P l ' s  final payoff will be 0 or 1 depending on 
whether P2 plays T on the last round. Thus our assumption implies that  P1 can predict a 
T for P2 at some point in the game. Let r be the round at which P1 plays t. It is possible 
that  M has an initial path of r + 1 states before any cycling occurs. But  this implies that  
P1 knows the label of a state of M that  has not yet been entered, which contradicts the 
assumption that  P1 knows nothing about  M. [] 

The situation changes dramatically if we allow P1 to use randomization. 

T h e o r e m  3.3 For all e > O, there exists a probabilistic strategy O" 1 for P1 that achieves an 
expected final payoff of > 1 - e against any DFA for P2. Furthermore, o'1 computes its next 
move in time polynomial in both the size of the history and the number of states of P2. I f  
P1 eventually plays t it will do so in expected number of rounds polynomial in the number 
of states of P2 and 1/e. 

P r o o f :  Let e > 0. Let o'1 be defined by the randomized algorithm given in Figure 2. 

Let us say that  P1 is tricked if the game ends in Case 2.2. Note that  if P1 is tricked 
then P l ' s  final payoff is 0. 

L e m m a  3.4 I f  P1 is never tricked, he achieves a payoff of 1. 

Proof." Say P1 is never tricked. One of three outcomes must  occur during the i th iteration: 

. 

. 

P1 repeats steps 20 and 30 forever, never reaching step 40. This means P1 always 
reaches the ELSE of step 30 and goes back to step 20 with a bigger value for k. 
Eventually, k will be bigger than the number  of states of P2. At this point, while P1 
plays h for 4k moves in step 20, P2 will be stuck in a cycle. Since P1 always reaches 
the ELSE of step 30, this means that  P2 is in a cycle which does not contain a T. 
Therefore, P1 will always go back to step 20 and play h forever, and P2 will remain 
stuck in its al l-H cycle, so P l ' s  final payoff will be 1. 

P1 repeats step 40 forever. Once per cycle, P1 plays t with probabil i ty p = e/2 ~. Since 
this occurs infinitely often, with probabili ty 1, P1 will play t at some point. At this 
point, P2 will also play T, because by assumption,  P1 is not tricked. Therefore P1 
will receive a final payoff of 1. 
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A L G O R I T H M  ~1: 

10: LET k := 10,p := c/2, i := 1. 
(k estimates the number of states of P2, i is the iteration, p is a probability.) 

20: PLAY h for 4k rounds. 
30: IF P2 appears to be in a cycle at the end of the 4k rounds 

(i.e., the pat tern of P2's  moves starts repeating for at least k rounds) 
AND this cycle contains a T, 

THEN G O T O  40. 
ELSE, LET k := 10k and GOTO 20. 

40: PLAY h UNTIL either 
CASE 1. P2 deviates from the detected cycle. In this case, G O T O  50. 
CASE 2. The next move in the detected cycle is T. In this case, PLAY t with probability p. 

CASE 2.1. P1 plays t, P2 plays T. 
Game ends with final payoff 1 to P1. 

CASE 2.2. P1 plays t, P2 plays H.  (P2 deviates from detected cycle). 
Game ends with final payoff 0 to P1. 

CASE 2.3. P1 plays h, P2 plays T. G O T O  40. 
CASE 2.4. P1 plays h, P2 plays H.  (P2 deviates from detected cycle.) GOTO 50. 

50: LET k := 10k,p := p/2, i := i + 1. 
60: GOTO 20. 

Figure 2: Probabilistic polynomial-t ime strategy which is e-optimal against regular strate- 
gies in the Big Match. 

3. P1 reaches step 50, updates  k to be 10k, and moves to iteration i + 1. In this case, 
one of these three outcomes must occur in iteration i + 1. 

The important  thing to note is that  eventually, one of the first two outcomes must  occur. 
Suppose outcome (3) occurred forever. Then eventually k would be bigger than the number  
of states of P2, and the detected cycle would be a real cycle. P2 could not deviate from 
this cycle, and thus we could not reach step 50 again, as deviation from the detected cycle 
is the only way to reach step 50. 

Therefore, there exists a i for which the i th iteration of the algorithm results in outcome 
(1) or (2). Therefore, if P1 is never tricked, then P1 achieves a final payoff of 1. [] Lemma 3.4 

During each iteration, P2 has only one opportuni ty  to trick PI :  once P2 plays H when 
P1 suspects a T should be played, P1 moves to the next iteration. Therefore, the probabili ty 
of P1 being tricked during iteration i is simply the probability that  P1 plays t for the round 
where P2 is a t tempt ing the trick, which is simply c/2 i. So the probabili ty that  P1 is ever 
tricked is < ~i~1 c/2i = c, and thus the probabili ty that  P1 is never tricked is > 1 - c. 1 

1This is not  an equali ty because P2 might  not  t ry  to trick P1 after a cer tain i terat ion.  
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Therefore, by the above Lemma, P1 achieves an expected final payoff of 

1. Pr(P1 is never tricked) + 0. Pr(P1 is tricked) > 1. (1 - c) = 1 - e. 

Now consider the running t ime of this algorithm. The only time that  the algorithm needs 
more than constant t ime to compute  its next move is for the moves that  occur immediately 
after step 20. Here we must examine the history of the game for cycles. Clearly this can be 
done in t ime polynomial in the length of the history. However, also note that  we need only 
examine the last 4k moves for the cycle. The proof  of Lemma 3.4 shows that  the value of 
k will never exceed 100 times the number  of states of P2. Therefore, any move can also be 
computed in t ime polynomial in the number of states of P2. 

Now suppose P1 plays t at some point which must happen in CASE 2. Since the cycle 
has length k, P1 will play t with in expected k /p  = k2i/e rounds. Since k > 10 i the expected 
number  of rounds in polynomial in the number  of states of P2 and 1/e. [] Theorem 3.3 

C o r o l l a r y  3.5 I f  $2 is any countable computable enumeration of recursive strategies for 
P2, then for all e > O, there exists a recursive, probabilistic strategy o'1 for P1 that achieves 
an expected final payoff of ~_ 1 - e against any strategy in $2. 

P r o o f i  We use the same style algorithm as before. Let a2(i) be the i th s trategy in some 
enumeration of $2. Assume P2 is using o'2(1) until we see a deviation from it. Then find 
the next i such that  a2(i) is consistent with what  P2 has played so far. Always play heads 
until the strategy we are currently considering says P2 will play T next. Then play t with 
probabili ty e/2 j+l, where j is the number  of times P2 has caused P1 to consider a different 
strategy. 

Note that  in this strategy cannot be computed in polynomial time, but  is computed by 
a Turing machine that  has access to another machine that  enumerates $2. [] 

Theorem 3.3 shows that  for any e > 0, there is a probabilistic polynomial t ime strategy 
o1 for P1 that  e-dominates the set of regular strategies. However, we shall see that  no 
strategy for P1 is dominant  for the class of probabilistic polynomial-t ime strategies against 
the set of regular strategies. 

T h e o r e m  3.6 For every strategy o'1 for P1, there exists an e > 0 and a DFA a2 for P2 
such that ~r(al, o-e) < 1 - e. 

N o t e :  The following proof  is based on a similar result in Blackwell and Ferguson [BF], who 
in turn credit the argument to Lester Dubins. 

P r o o f :  Suppose P2 always plays T. If P1 never plays t with positive probability, then P1 
receives a final payoff of 0. Therefore, let us assume that  at some point, P1 plays t with 
positive probability. Let m > 0 be the smallest initial number  of T's  P1 sees P2 play after 
which P1 plays t with positive probabili ty e > 0. Suppose P2 plays T ~ H  * (m T's followed 
by H ' s  thereafter). Then P l ' s  final payoff will be 0 with probabili ty > e, and therefore the 
expected value of P l ' s  final payoff at most 1 --/e. [] 

Let U be the set of probabilistic polynomial-t ime strategies for P1. 
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C o r o l l a r y  3.7 No strategy for P1 is dominant for U against the set of regular strategies. 

P r o o f :  Assume a~ is dominant  for U regular strategies. This implies that  o-~ is optimal 
for U against every DFA for P2. Theorem 3.6 says there is an e > 0 and a DFA a2 for 
P2 such that  ~(o-1, a2) ~_ 1 - c. However, Theorem 3.3 says there exists a strategy a~ in U 
that  achieves a payoff of at least 1 - e/2. Therefore, al is not optimal for U against o-2, and 
hence ~ is not dominant for U against the set of regular strategies. [] 

Finally, we give a variation of the Big Match game for which there is an e > 0 for which 
P1 cannot even e-dominate the class of regular strategies. We define the game Big Match 
H by the following payoff matrix: 

H T 

The only change is that  P l  receives a payoff of 2 instead of 1 if bo th  players play heads. 
As before, if P1 ever receives a starred payoff, then the game is over and that  is his final 
payoff. 

T h e o r e m  3.8 There is no (1/2)-dominant strategy for P1 against the class of regular 
strategies for P2 in the Big Match H game. 

P r o o f :  Assume not. Then there exists a strategy o-1 for P1 such that  for all strategies o-~ 
for P1 and all regular strategies o'2 for P2, we have 

o-2) >_ o-2) - 1/2. (3) 

Consider P l ' s  strategy against the strategy T* for P2 (P2 plays T forever). If P1 always 
plays h, then his final payoff will be 0. However, P1 could achieve a final payoff of 1 by 
playing t at any time. This contradicts Equat ion (3), and therefore P1 cannot play h forever. 

Let A(m) be the event that  P1 plays a t by round m. 

C l a i m  3.9 There exists an m such that Pr[A(m)] > 3/4. 

P r o o f :  Assume for all m that  Pr[A(m)] < 3/4. Then for all m, P r [P l ' s  first m moves are 
all h] > 3/4, and thus Pr[P1 always plays h] > 3/4. Therefore, against P2's  T* strategy, 
the expected final payoff of P1 is less than 0 • 3/4 + 1 • 1/4 = 1/4. But  this contradicts the 
above assumption that  P l ' s  strategy comes within 1/2 of the optimal strategy against P2's  
T* strategy. However, the strategy o-' 1 = T* gives P1 a final payoff of 1 against P2's  T*, 
which contradicts Equation (3). [] Claim 3.9 

Now consider P l ' s  strategy al against the strategy a2 ~- TmH * for P2. P1 cannot 
differentiate between this strategy and T* during the first m rounds, so by Claim 3.9, it is 
still true that  Pr[A(m)] > 3/4. Therefore, P l ' s  payoff is at most 1 . 3 / 4  + 2 . 1 / 4  = 5/4. 
Against cr2, P1 could have achieved a final payoff of 2 with the strategy H*. Again, this 
contradicts Equation (3). [] Theorem 3.8 
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4 Conclusion and Open Questions 

There has been much work in the area of bounded rationality in repeated matrix games (see 
for example [K, FW, PY]). However, to our knowledge, not much work has been done in 
the area of bounded rationality for general stochastic games. We would find it interesting 
to analyze bounded players in other stochastic games or prove general results about such 
games. 

The Big Match is also a simple version of a bargaining game where two players try 
to decide how to share a limited resource. Very little work has progressed on looking at 
bounded players in these types of games. 
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