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ABSTRACT. We develop a revealed-preference theory for multiple agents. Some 
features of our construction, which draws heavily on Jeffrey's utility theory and on 
formal constructions by Domotor and Fishburn, are as follows. First, our system 
enjoys the "small-worlds" property. Second, it represents hierarchical preferences. 
As a result our expected utility representation is reminscent of type constructions in 
game theory, except that our construction features higher order utilities as well as 
higher order probabilities. Finally, our construction includes the representation of 
conditional preferences, including counterfactual preferences. 

1. INTRODUCTION 

Two aspects of game theory are very evident nowadays. The first is tha t  it has become an 
indispensable tool, not only in economics but  in a variety of other disciplines as well, from 
philosophy and psychology to  political science and computer science. The other is tha t  
game theory lacks comprehensive foundations of the scope and depth found in single- 
agent decision theory. Evidence of this limitation can be found in the many debates 
concerning backward induction problems, admissibility, and other examples in which the 
traditional game theoretic predictions are either paradoxical or ambiguous. It would be 
quite handy to have a Savage-style characterization of game theory, which would clarify 
the assumptions underlying different solution concepts, and therefore also the contexts in 
which each one applies. 

What  would such a theory look like? At a minimum it should involve a set of agents 
and a set of intuitive objects (such as events or acts), individual preferences over these 
objects for each agent tha t  can plausibly be elicited from people via interrogation or 
observation, and a representation of each such individual preference ordering in terms of 
subjective probability and utility particular to the individual agent. 

In this paper we will provide a theory that  has these properties. Somewhat paradoxi- 
cally, while our primary motivation is this multi-agent setting, the bulk of our construction 
can be explained already in the single-agent setting; the extension to  the multi-agent set- 
ting then becomes obvious. Indeed, we are critical of existing foundations of decision 
theory (and in particular of Savage's framework), and believe that  our theory provides 
bet ter  foundations. However, rather than waste our ammunition by attacking Savage's 
theory, whose shortcomings can be (and have been) well camouflaged, we simply note 
that  we are not aware of any successful a t tempt  to generalize Savage's framework to the 
multi-agent setting, and claim that  it is no accident. 

After such boasting we must introduce a caveat. One of the attractive features of 
Savage's framework is the treatment of causality, as embodied in the notion of an act. 
Although we believe that  acts fit in quite naturally in the theory we are about  to present 
and are working to incorporate them, in this version of the paper acts will play no role. 
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For this reason we are also not yet in a position to tackle the paradoxes of game theory 
with our framework (that too is next on our agenda). 

The main ingredients of our construction can be relayed concisely by reference to sev- 
eral existing lines of research in decision theory, on which we draw liberally (the following 
will not make sense to the reader unfamiliar with the references, but the rest of the paper is 
self contained). From Jeffrey [Jef65] we borrow the scalable expected utility construction 
with the "small worlds" property. We then specialize and extend the framework. We first 
specialize it by constructing a particular algebra on which to define Jeffrey utilities, one 
that involves higher-order preferences (that is, preferences over preferences). Applying 
results due to Domotor [Dora78] we immediately get an expected-utility representation 
of higher-order preferences, albeit a problematic one. Among its chief deficiencies is the 
lack of account for the dynamics of preferences, or how preferences change in the face 
of new evidence (including counterfactual evidence - this turns out to be an important 
point). We then exploit the structure of our hierarchical construction, and, adapting and 
reinterpreting a relatively unknown construction due to Fishburn [Fis82], we strenghten 
the expect-utility representation and avoid these deficiencies. In both cases the resulting 
expected utility representation is in the spirit of existing type constructions in game the- 
ory [MZ85, HS96], but whereas these nest only probabilities our representation nests both 
probabilities and utilities. The work which comes closest to our approach is, to the best 
of our knowledge, [EW96]. Yet, our representation turns out to be quite different from 
the one in JEW96], and extends to conditional and counterfactual preferences. 

The next section contains the bulk of the technical material, and presents our single- 
agent construction. In the following section we harvest the fruit of this construction by 
easily extending it to the multi-agent case. We conclude with a brief summary. 

2. HIERARCHICAL CONDITIONAL PREFERENCES: THE SINGLE AGENT CASE 

As we have said, most of the work in our construction is done already in the single-agent 
case, which we explain in this section. Before we begin the construction, let us point out 
three important ingredients in it: 

1. "Small worlds" property: One need not be required to express preference only (or 
even at all) among entities that depend on objects which are sufficiently rich to 
resolve all ambiguity (by way of contrast, Savage's preferences are defined on acts, 
which in turn are defined relative to states which are such rich objects). 

2. "Hierarchical preferences": One can assign preferences over preferences, us in pre- 
ferring smoking to not smoking but wishing one didn' t  have that  preference. 

3. "Conditional preferences" (including counterfactual preferences): One should be 
able to specify how one's preferences change in the face of new evidence, including 
evidence given a prior probability of 0. 

Although we believe these criteria to be desirable and are proud that  our theory meets 
them, we don't  request the reader to accept this desirability as self evident. We mention 
them now because it is helpful to keep them in mind when following the stages of the 
construction; in particular, the next three subsections correspond to these three criteria. 

2.1. F o u n d a t i o n :  Je f f rey  ut i l i ty .  The technical development in this subsection is 
due to Jeffrey [Jef65] and Domotor [Dom78]. We start  with a set of possible worlds W, 
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and a finite Boolean algebra A of subsets of W. A preference ordering on A is a complete 
and transitive binary relation ,.~ between nonempty pairs E, F E A. 

Def in i t ion  1. An expected utility representation of an ordering ~ on a finite a/gebra A 
is a pair (p,u), where p : A ~ [0, 1] /s a probability function and u : A - {g} ~ R is a 
utility function such that: 

1. For all nonempty E,  F E A, u(E) >_ u(F) if and only if E ~ F 

2. p(E) > 0 for al /nonempty E e A, and u (W)  = 0 

K 3. u ( E ) p ( E ) =  ~ u(Ek)p(Ek) for any finite, measurable partition {Ek}k=l o r e  

Notice the remarkable structure of this definition, as compared to the expected utility 
representations of von Neumann and Morgenstern, Savage, and others. Here preferences 
on events are represented by their relative utilities rather than their relative expected 
utilities, and the probabilities only serve to constrain the utilities via the last condition. 
One way to think about Jeffrey utilities is as simultaneously playing the role of traditional 
(e.g., Savage) utilities and traditional conditional expected utilities (or CEUs, where 
CEU(E)  = EU(E[E)) .  This is a direct reflection of the "small worlds" property; since 
the events among which one expresses preference are under-specified states of the worlds, 
the utility of each event has an expectation flavor to it. The Jeffrey value of an event, 
defined as the product of its probability and utility, can be thought of as representing 
the event's standard (unconditional) expected utility. Note tha t  in Jeffrey's framework 
probability and value are additive functions, but utility is not. 

Remm.k  2. Since the probability of any nonempty event is positive, we have that p( FIE ) = 
p(E n F) /p (E)  is always well de6ned. Henee, (3) can be equivalently written in the con- 
ditional form u(E) = ~ k  u(Ek)p(EkIE) • 

The question is whether there exist conditions on the ordering that  guarantee the 
existence of an expected utility representation. Jeffrey [Jef65] gives a number of such 
conditions, which constrain not only the ordering but also the algebra itself. Similar con- 
ditions are provided by Bolker [Bo167]. These sets of conditions are sufficient to guarantee 
the existence of an expected utility representation, and have the additional advantage 
of being fairly intuitive. In the long version of this paper we present these conditions. 
Here, however, we proceed to present an alternative axiomatization, provided by Domotor 
[Dora78]. Domotor's axiomatization has two advantages - it constrains only the ordering 
but not the algebra, and is a necessary as well as sufficient condition for representability 
via Jeffrey utility (Theorem 4 below). However, it suffers the disadvantage of being highly 
technical and unintuitive, and so we introduce the relevant axiom by reference only. 

Def in i t ion  3. A preference ordering is regular if  and only if it satisfies J2 in [Dom78]. 

T h e o r e m  4 [Domotor 1978]. A preference ordering on a finite algebra is regular if and 
only if  it admits a (real-valued) expected utility representation. 

R e m a r k  5. If the aigebra is infinite, Theorem 4 continues to hold, the only difference 
being that probability and utility are allowed to take nonstandard (i.e., infinitesimal) 
values. 
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2.2. A stat ic  expected  ut i l i ty  representa t ion  of  hierarchical  preferences. We 
now proceed to construct a particular Jeffrey/Domotor structure, one that will capture 
the hierarchical nature of the agent's preferences while still enjoying the small-worlds 
property. 

We first construct a large-worlds ontology, and then use it to define a hierarchical 
small-worlds framework. We start with a set W of possible worlds; a possible world is 
to be thought of as a rich object that completely captures the truth of all propositions, 
including the agent's preferences. Next, we introduce a function ,~, which associates with 
each possible world a regular ordering over 2w; ,~.,w is to be thought of as extracting from 
each possible world w the agent's preferences at w. 

Remark  6. The reader familiar with modal logic will note the difference between this 
construction and Kripke-style possible-worlds semantics. I~'om the conceptual point of 
view, in the latter a possible world settles on the truth value of objective facts, whereas 
here a possible world settles the truth value of all propositions, including the subjective 
ones. From the technical standpoint, in a Kripke structure each world is mapped by the 
accessibility relation to a set of worlds, whereas here each world is mapped by ~ to a total 
ordering on the power set of worlds. 

We are actually not interested in the entire algebra 2 w, but rather in a specific sub- 
algebra, A, which is defined as follows. We start with a finite Boolean algebra Ao (a 
sub-algebra of 2 w, and ultimately also of A). A0 is thought of as describing the objective 
events, ones that do not capture the agent's mental state. These are the objective events 
the agent is aware of, or is capable of imagining. There is no requirement that these 
"exhaust" the space of objective events in any sense. 

Next, for all nonempty E , F  E Ao, let [E ~ F] = { w ] E ~ w  F}, [E ,~ F] = 
{w [ E,-,~, F},  and f E Z  F] = [ E ~  F]U [E,--, F]. 

Let B0 be the set generated from propositions [E ~- F], [E ,,- F], where E, F e A0, 
by closing off with respect to finite intersections. Then B0 is a r-system, and contains 
both the empty set O = [E ~ El and W = [E ,,, El. Elements of/30 correspond to partial 
ordering on A0; B0 describes the set of zer0-order preferences. 

Let A1 = AoUBo be the algebra generated by propositions E where E E A0 or E E B0. 
Clearly, both A0 and B0 are sub-algebras of A1. Again, let BI be the 1r-system of finite 
intersections of propositions [E ~ F], [E ,-- F], where now E, F E Ai. Elements of B1 
represent first-order preferences. 

Now recursively define the n-th order (n > 1) algebras and preferences as follows: 

• An = A n - l O B n - 1 ,  

• Bn is the set of all finite intersections of propositions [E ~ F], [E ,~ F], where 
E, F E An. 

Let A = U, An be the algebra generated by events E E An, n _> 0. Then E E A ff 
and only if E E An for some n. Let B be the r-system generated by [E ~ F], [E N F], 
where E, F E A. Notice that B C A, and hence A = A O B. Therefore, further iteration 
is superfluous: all the preferences on events in A are already included in A. 

Remark  7. Recall that A is the sub-algebra of 2 w in which we are interested. It might 
be asked why not define the preferences ~ only on A, and turn the above construction 
into a fixpoint definition. It turns out, however, that in a later development in this paper 
(when we define mixture operations) we will need to include events outside A. 
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We are now close to achieving our first goal, an expected-utility representation of hier- 
archical preferences. What  we are after is, for each w, giving the ordering ,.~,w an expected 
utility representation. Our work is done almost automatically by the Jeffrey/Domotor re- 
sult. We simply need to note the following: 

L e m m a  8. If an ordering over an aJgebra is regular, so is its projection to any sub-a/gebra. 

Since A is a sub-algebra of 2 W, for every w E W the restriction of ~w to A is also 
regular, and therefore admits an expected utility representation. 

So it would seem that  we have accomplished our goal, but in fact there are several 
interrelated reasons for dissatisfaction: 

• The requirement that  every possible (i.e., nonempty) event be given a non-zero 
probability is conceptually problematic, since it doesn't allow the agent to recognize 
certain events as meaningful (or "possible") and disbelieve them at the same time. 
In particular, in the multi-agent setting, this will prohibit representing dominated 
strategies as actual but  disbelieved possibilities. 

• Beyond the conceptual difficulty, the above requirement has unpleasant technical 
ramifications. In particular, since A is in general infinite, the representation we 
have uses nonstandard (i.e., infinitesimal) probabilities and utilities. 

• The current theory does not account for the way in which preferences (and thus 
probabilities and utilities) change in the face of new information; for this reason we 
term it "static." In particular, there is no obvious role for Bayesian conditioning, 
and no account of counterfactual conditioning. 

• Perhaps most damningly, the current theory really does not make use of the hierar- 
chical construction, beyond the weak use in the Lemma 8. In particular, nothing in 
the theory constrains the relationship between preferences at different levels, con- 
tradicting intuition that  such "coherence" constraints ought to exist. 

We now proceed to develop a theory that  does not have these shortcomings. 

2.3. A dynamic expected utility representation of  hierarchical preferences. 
Recall that  the expected utility representation afforded by the Jeffrey/Domotor construc- 
tion involves probabilities and utilities that  obey the following equation: 

u(E) = ~ u(Ek)p(EklE) (1) 
k 

First on our agenda is to strenghten this property, and ensure that  the probability and 
utility obey the equation 

uCE) = (2) 
k 

where p is a conditional probability system (CPS). Recall that ,  given an algebra A, 
a CPS (aka Popper function) p assigns to every non-empty conditioning event E E A 
a probability function over A n E. Furthermore, PE agrees with Bayesian conditioning 
whenever possible: for any nonempty E,F, G E A, such that  G C F C E, pE(G) = 
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pE(F)pp(G). If E = W, and the unconditional probability of F is positive (that is, 
p(F) = pw(F) > 0), then the above formula yields 

pF(C) = p ( C l  F )  = p(Gn F) p(£) 
If we manage to guarantee (2) we will have escaped the first two limitations of the (1)- 

based representation discussed above. Now let's go a step further. Consider any E E An 
and F E B~. Our claim is that,  given the intuition behind our construction, E ought 
to be probabilistically independent of F; the lower order events do not determine the 
higher order preferences, and vice versa. From this it follows that  our expected utility 
representation should validate the following property: 

. ( E  n F) = n F)pE(Ek), (3) 

Note that  (1) is obtained as a special case of (3) by selecting p(E) > 0 and F = 
W. Note also that  we have now escaped the third and fourth limitations of (1)-based 
representation. 

How do we obtain (3)? We do so by leveraging a relatively unknown construction due 
to Fishburn [Fis82]. His motivation was different from o u r s -  giving a conditional version of 
Savage's construction. However, we will adapt and reinterpret the mathematics to fit our 
intended, interpretation. Fishburn starts with preferences defined on pairs (x, E), where 
the first argument is an act, and the second an environmental event, t In our interpretation, 
events EnF,  where E E An and F E Bn play the role of (act,event) pairs (F,E). In other 
words, acts are viewed as being themselves events: they represent (generally incomplete) 
descriptions of the agent's conditional preferences (and hence beliefs), and characterize 
conditional revealed-preference behavior. 

We proceed now with the technical construction. 

M i x t u r e s .  Let R be the set of all expected utility representations (p, u) on some 
algebra A. 

For any two representations (p', u'), (p", u") E R, and for any A E [0, 1], we define their 
(A-)mixture to be a new representation (p, u) = (p',u')A(p", u") such that: 

p(E) = p'Ap"(E) == Ap'(E) + (1 - A)p"(E) 

u(E) = u'Au"(E) = Au'(E)p'(E) + (1 - A)u"(E)p"(E) 
p(E) 

For any two nonempty subsets of representations x,y  E 2 R, we define their A-mixture 
as the (nonempty) subset 

= {O,, u) e R I (P, u) = (P', e x, (p",u") e 

1 We don ' t  d iscuss  F i s h b u r n ' s  inul t ion at  l eng th  here,  bo th  because  ours  is different and  because  his 
is pe rhaps  problemat ic .  Briefly, however,  t he  event  is t aken  from an algebra  on a set of s t a t e s  of na ture ,  
and  the  act  is t aken  from a mix tu re  set. An act z can be t h o u g h t  of as a probabil i ty measu re  on 
env i ronmen ta l  events ,  and  in this  in te rpre ta t ion  the  represen ta t ion  is an  interest ing mix between yon 
N e u m a n n - M o r g e n s t e r n  and  Savage: the  agent  chooses object ive lotteries,  and  Nature  chooses  the  con tex t  
in which the  lot tery is performed.  Whi le  the  lotteries are object ive,  the  probabil i ty of an  (external)  event  
in the  con tex t  of ano the r  event  is subject ive ,  and  can  be uniquely  derived from the  agen t ' s  preferences 
on pai rs  ( z , E ) .  Unfor tuna te ly ,  some of t he  hypo theses  in t roduced  by F i shburn  in order to derive his 
represen ta t ion  are qui te  unappea l ing  in the  sugges ted  in te rpre ta t ion ,  and  this  is probably why the  resul t  
never  ga ined  much  popular i ty .  
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Defini t ion 9.  A nonempty subset x E 2 R is (mixture) convex if, for any A E [0, 1], 
X = X A X .  

Let M C 2 R be the set of all convex subsets of R. M has the useful property of being 
closed with respect to mixtures, as the following proposition shows. 

Propos i t ion  10. For any x , y  E M,  and for any A E [0, 1], xAy E M.  

Many decision-theoretic treatments postulate that  the set of objects on which prefer- 
ences are defined is a mixture set: 

Defini t ion 11. A set X is a mixture set with respect to a mixture operation xAy if, for 
any x , y  E X and A,/~ E [0, 1], 

1. x l y = x  

2. xAy = y(1 - A)x 

3. (= y)gy = z( g)y 

The set M defined above turns out to have the desired structure. 

Propos i t ion  12. M is a m/xture set. 

AxlomRtizatlon. As before, let M be the set of all convex subsets of R. For any 
x e M, let Ix[ = {w [there exist (p, u) e x that  represents ,.~=}. 

R e m a r k  13. Note that the overload/.ag of the [...] operator is quite helpful. To begin 
with, [ E ~  F[ and [x] are of  the same type, but the relationship is even tighter. Define 
IE ~- FI = {(p,u) l uCE) > u(F)} and IE ~ FI = {(p,u) l u(E) = u(F)}. Note that both 
these types of set are convex, as are their finite intersections. Moreover, since E ~ F if 

(~) 
and only i f u (E)  (>__) u(F) ,  then [E (~) F] = lIE (~) FI]. 

With this machinery, given a regular preference ordering ~ we can define the induced 
partial ordering ~* on pairs ( x ,E ) ,  where x E M and E E A. 

• (x, E) ~* (y, F)  if and only if Ix[ n E ~ [y] n r 

• (x, E) ~ '  (y, F)  if and only if Ix[ n E ,-~ [y] n f 

R e m a r k  14. Notice that (x, E)  is ranked if and only if [x] n E is nonempty. Hence, it 
is immediately ver//Jed that ~* is asymmetric and transitive, and .-,* is symmetric and 
transitive. Yet, ~ * is not negatively transitive, and ..~* is not the symmetric complement 
of ~-* . 

We assume that  mixtures of possible preferences are also possible. 

A0. If z, y E M correspond to nonempty Ix[, [y], then [xAy] is also nonempty for all 
AE (0, 1). 

Next, we introduce four additional axioms. The first explicitly relates to mixtures. 
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A1. (Substitution) For all E, F E A and x, y, z, t E M, if (x, E) ,~* (z, F) and (y, E) ~* 
(t, F) then (x½Y, E) .~* (z½t, F). 

The second axiom also relates to mixtures, and ensures a classical (i.e., standard) 
representation. 

A2. (Archimedean) {a :  (xay, E) ,~..* (z, F)} and {j3: (z, F) ,.~* (xf~y, E)} are closed sub- 
sets of [0,1]. 

We remark that A2 is imposed in order to obtain a classical representation: its main 
role is to ensure that probabilities and utilities can be taken to be standard-valued. 

The third axiom is fairly uninteresting. Its main role is to avoid triviality. 

A3. (Relevance) There exist x, y E M such that (x, W) ~* (y, W). 

Finally, the fourth axiom is a consistency requirement. 

A4. (Consistency) For all E, F, G E A, G C [E ~ F] implies G A E ~ G N F. 

The axiom says, somewhat tautologically, that in the context of the agent's preference 
of E to F (i.e., whenever G C [E ~ F]), E is indeed preferred to F. 

Theorem 15. Under J2 and A O -  A4, there exists a conditional representation (p, u) 
such that: 

1. p :  A x (A - {~}) ~ [0, 1] is a conditional probability system 

2. u is a real-valued utility hmction, defined for all (x, E) E M x A  such that [x]NE ~ g,  
with the following properties: 

• u(x, E) (~) u(y, F) ~ and o~y ff [=] n E ~ [y] n F 

• u(x ,E)  = ~ u ( x ,  Ek)pE(Ek) for any finite, measurable partition {Ek} orE. 

R e m a r k  16. f f  F is an element of B,  the representation speclializes to ut(F N E) = 
u'(F N E~)pE(Ek), where u' is defined by u'([x] n E) = u(x, E), whenever F N Ek ~ g 

for all k. Furthermore, h e we take F to be the whole set W, we get u' ( E) = Z u' ( Ek )pE( Ek ). 

3. MULTI-AGENT CONSTRUCTION 

The construction introduced in the previous section can be easily generalized to the multi- 
agent case. As was mentioned in the introduction, although this the multi-agent case is 
our primary motivation, this section is brief because it is a straightforward extension of 
the single-agent case. 

Let I = {1,...,n} be a set of agents. Agent i • I is assumed to have preferences 
(and hence beliefs) not only about the basic events in a finite algebra A0 and its own 
preferences, but on other agents' preferences as well. (In the treatment here we have all 
agents share the base algebra A0, though this can be relaxed.) 

As in the single-agent case, W represents a set of possible worlds, and ..~,~, is a function 
associating to each pair (i, w) a regular preference ordering on 2 W. 

For any E, F • A0, we denote by [E ~ '  F] the proposition {w • W ] E ~ F} ("i 
(strictly) prefers E to F"), and by [E ~ '  F] the set {w • W I E ~ F} ("i is indiffer- 
ent between E and F"). We denote by B~ the I--system obtained by taking all finite 
intersections of propositions [E ~ F] and [E ~ F]. 

We recursively define n-th order (n > 1) algebras and preferences: 
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• A .  = A . - i  U ( U ~ e l B ~ _ l )  , 

• B~ (i fi I) is the set of all finite intersections of propositions [E ~ F], [E .-,' F], 
where E, F E A~. 

• A -- U,A~ is the algebra generated by events E G An (n > 0), and B i is the 
7r-system generated by [E ~ F], [E ~ '  F], where E, F fi A. 

Again, weob ta ina  Jeffrey-style representation of agent i 's preferences, for a l i A ,  and 
i E I:  

u~(E)p'(E) =Eui(Ek)p'(Ek). 

Moreover, under the same conditions introduced in the single-agent case, we get a 
Fishburn-style representation for pairs (E, F)  E A x B ~, which satisfies 

u'(E N F) = E u~(Ek N F)p~(Ek) 

whenever E n F ¢ g .  

4. CONCLUSIONS 

We presented a decision-theoretic approach aimed at overcoming several well-known lim- 
itations of existing constructions, limitations that become particularly apparent - and 
disturbing - in multi-agent applications. Our approach enjoys several advantageous fea- 
tures, including the ability to represent: 

• Preferences on incomplete descriptions of the world. 

• Conditional behavior, even contingent on disbelieved (counterfactual) events. 

• Higher-order preferences (and hence beliefs). 

The current limitations include: 

The axioms are not optimized for the proposed interpretation. That  is, we glue 
together constraints drawn from Domotor (or Jeffrey) and from Fishburn. Together 
these are sufficient to guarantee the representation we seek, but there is no reason 
to believe that  they are necessary. 

we do not account for 'agent causality', or actions. 

As a result, we are not yet in a position to apply our construction to game theoretic 
situations. 

We view the first limitation as more of a mathematical annoyance than anything else, 
and are actively working on removing the second one. We leave the explicit application 
of our theory to game theoretic problems to a future paper. 
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