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ABSTRACT
We initiate the study of congestion games with variable de-
mands where the (variable) demand has to be assigned to
exactly one subset of resources. The players’ incentives to
use higher demands are stimulated by non-decreasing and
concave utility functions. The payoff for a player is defined
as the difference between the utility of the demand and the
associated cost on the used resources. Although this class of
non-cooperative games captures many elements of real-world
applications, it has not been studied in this generality, to our
knowledge, in the past.

We study the fundamental problem of the existence of
pure Nash equilibria (PNE for short) in congestion games
with variable demands. We call a set of cost functions C
consistent if every congestion game with variable demands
and cost functions in C possesses a PNE. We say that C is
FIP consistent if every such game possesses the α-Finite Im-
provement Property for every α > 0. Our main results pro-
vide a complete characterization of consistency of cost func-
tions revealing structural differences to congestion games
with fixed demands (weighted congestion games), where in
the latter even inhomogeneously exponential functions are
FIP consistent.

Finally, we study consistency and FIP consistency of cost
functions in a slightly different class of games, where every
player experiences the same cost on a resource (uniform cost
model). We give a characterization of consistency and FIP
consistency showing that only homogeneously exponential
functions are consistent while no functions are FIP consis-
tent.
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1. INTRODUCTION
Resource allocation problems play a key role in many ap-

plications. Whenever a set of demands needs to be satisfied
by scarce resources, the goal is to find the most profitable or
least costly allocation of the resources to the demands. Ex-
amples are traffic networks Beckmann et al. (1956); Rough-
garden (2005); Smith (1979); Wardrop (1952) and telecom-
munication networks Johari and Tsitsiklis (2006); Kelly et al.
(1998); Srikant (2003). A common characteristic of these ex-
amples is that the allocation of resources is determined by
a finite number of independent players, each optimizing an
individual objective function. A natural framework for ana-
lyzing such non-cooperative games are congestion games as
introduced by Rosenthal (1973). In a congestion game, there
is a set of resources and a pure strategy of a player consists
of a subset of resources. The cost of a resource depends only
on the number of players choosing the resource, and the pri-
vate cost of a player is the sum of the costs of the chosen
resources. Under these assumptions, Rosenthal proved the
existence of a pure Nash equilibrium (PNE for short).

In the past, the existence of PNE has been analyzed in
many variants of congestion games such as scheduling, rout-
ing, facility location, network design, each variant with un-
weighted and weighted players, see Ackermann et al. (2009);
Anshelevich et al. (2008); Chen and Roughgarden (2009);
Gairing et al. (2006); Ieong et al. (2005); Milchtaich (2006).
Most of these previous works have a common feature: given
a set of resources whose cost increases with increasing con-
gestion, every player allocates a fixed demand to an avail-
able subset. While obviously important, such models do
not take into account a fundamental property of many real-
world applications: the intrinsic coupling between the qual-
ity or cost of the resources and the resulting demands for
the resources. A prominent example of this coupling is the
flow control problem in telecommunication networks. In this
setting, players receive a non-negative utility from sending
data and the perceived costs increase with congestion. In
this and other examples, the demands will be reduced if the
resources are congested, and increased if the resources are
uncongested. Allowing for variable demand is, thus, a natu-
ral prerequisite for modeling the tradeoff between the benefit
for demand, and the quality of the resource.

There is a large body of work addressing the issue of vari-
able demands: Cole et al. (2006); Low and Lapsley (1999);
Kelly et al. (1998); Shenker (1995); Srikant (2003) in the



context of telecommunication networks and Beckmann et al.
(1956); Haurie and Marcotte (1985) in the context of traffic
networks. Most of these works assume that the (variable)
demand may be fractionally distributed over the available
subsets of resources. This assumption together with con-
vexity assumptions on the cost and utility functions implies
the existence of a PNE by Rosen’s theorem (Rosen (1965)).
Allowing a fractional distribution of the demand, however,
is obviously not possible in many applications. For instance,
the standard TCP/IP protocol suite uses single path rout-
ing, because splitting the demand comes with several practi-
cal complications, e.g., packets arriving out of order, packet
jitter due to different paths delays etc.

We initiate the study of congestion games with variable
demands, where the (variable) demand has to be assigned
to exactly one subset of resources. We impose standard eco-
nomic assumptions (cf. Haurie and Marcotte (1985); Kelly
et al. (1998); Shenker (1995)) that every player is associated
with a non-decreasing and concave utility function measur-
ing the utility for the demand. The payoff for a player is
defined as the difference between the utility and the associ-
ated congestion cost on the used resources where the cost of
a player on a resource is the product of the cost function,
and the player’s demand.

There are two fundamental goals from a system design
perspective: (i) the system must be stabilizable, that is,
there must be a stable point (PNE) from which no player
wants to unilaterally deviate; (ii) myopic play of the play-
ers should guide the system to a stable state. Because the
utility functions are only known to the players (as they are
private information) and not available to the system de-
signer, we study the above two issues with respect to the
used cost functions (which represent the technology associ-
ated with the resources, e.g., queuing discipline at routers,
latency function in transportation networks, etc.).

Let C be a set of cost functions and let G(C) be the set of
all congestion games with variable demands and cost func-
tions in C. We say that C is consistent if every game in G(C)
possesses a PNE. We say that C is FIP consistent if for every
game in G(C), every sequence of unilateral α-improvements
(improvements that add at least α to the payoff of the de-
viating player, see Monderer and Shapley (1996)) is finite.
The main goal of this work is to investigate consistency and
the α-FIP of the used cost functions.

Connection to Prior Work.
Already earlier work investigated the impact of the cost

structure on the existence of PNE and the α-FIP in variants
of congestion games, see Altman et al. (2002); Fotakis et al.
(2005); Libman and Orda (2001); Orda et al. (1993). In a
previous paper (Harks and Klimm, 2010), we characterized
the set of cost functions that are consistent w.r.t. weighted
congestion games. Specifically, for this class of games a set
of cost functions is consistent if and only if it either contains
only affine functions or certain exponential functions, see
Table 1.

The existence of PNE with respect to the cost struc-
ture also plays a fundamental role in the vast literature on
Cournot oligopoly games in the economic theory of imper-
fect competition. In a Cournot oligopoly game, there is a set
of firms each producing quantities so as to satisfy an elastic
demand. The production cost for every player is modeled
by a convex cost function and the interaction between the

firms comes from the price determination mechanism which
is dependent on the total supply on the market. Note that
congestion games with variable demands can be interpreted
as a natural generalization of the Cournot oligopoly game.
In Johari and Tsitsiklis (2005) it is proved that Cournot
oligopoly games are basically equivalent (in terms of the
set of Nash equilibria) to congestion games with variable
demand and a single resource (which are termed Cournot
oligopsonies in Johari and Tsitsiklis (2005)). The model
proposed in this article is more general since the strategy
space of players involves not only quantities but also sets of
allowable subsets of resources (markets).

The pioneering work of Cournot (1838) established the ex-
istence of an equilibrium point for this model assuming zero
costs and concave inverse demand functions. Further exis-
tence results for more general cost functions have been estab-
lished by many researchers, among others Novshek (1985);
Roberts and Sonnenschein (1976).

In the seminal paper by Orda et al. (1993), the authors
address the issue of uniqueness of PNE in congestion games
with fixed splittable demands. They give sufficient condi-
tions for uniqueness of PNE for several classes of cost func-
tions. In the final section of their paper, the following ques-
tion is raised (we quote from the paper):

”Several other open questions of practical value
deserve attention. For example, in many net-
works users are restricted to route their flow along
a single path with strict rules of changing them.
Under such circumstances an NEP may not ex-
ist at all and complicated oscillatory behavior is
likely to arise.”

Our Results.
We initiate the study of congestion games with variable

demands and focus on the existence of pure Nash equilibria
and the finite improvement property. Our main results are
structural characterizations of the existence of PNE and the
α-FIP with respect to the cost structure. Specifically, we
show the following:

Let C be a set of non-negative, strictly increasing and twice
differentiable cost functions. We prove that C is consistent
if and only if exactly one of the following cases hold: (a) C
contains only affine functions c(`) = ac ` + bc with ac > 0,
bc ≥ 0; (b) C contains only homogeneously exponential func-
tions such that c(`) = ac e

φ` for some ac, φ > 0, where ac
may depend on c, while φ must be equal for all c ∈ C. More-
over, we characterize the α-FIP in congestion games with
variable demands. We prove that C is FIP consistent if and
only if C contains only affine functions. Note that this im-
plies that congestion games with elastic demands and non-
affine cost do not possess a (generalized ordinal) potential
function, in general. The formal results appear as Theo-
rems 2 and 3. We show that our results remain valid for
games with network structure and, thus, our characteriza-
tions settle the questions raised by Orda et al. (1993) for
network congestion games involving variable demands.

We then investigate a slightly different class of games
known as uniform games. They differ from the previously
studied games in the definition of the players’ payoff func-
tions. In uniform games the cost for a player on a resource
is not multiplied with the demand of that player. Uniform
games haven been first introduced by Koutsoupias and Pa-



Table 1: Existence of PNE and the α-FIP in conges-
tion games with variable demands with proportional
costs and uniform costs. Note the fundamental
structural difference to weighted congestion games
(with fixed demands) where in the proportional and
uniform cost model there is always a PNE and the
α-FIP for affine and inhomogeneously exponential
cost functions. The results (1) are from Fotakis et al.
(2005), the results (2) are from Panagopoulou and
Spirakis (2006), results (3) and (4) are from Harks
et al. (2009) and Harks and Klimm (2010), respec-
tively. All other results of this table are presented
in this paper.

var. demands var. demands fix. demands
prop. costs unif. costs prop. & unif.

costs PNE α-FIP PNE α-FIP PNE α-FIP

affine yes yes no no yes (1) yes (1)

hom. exp. yes no yes no yes (2) yes (2)

inhom. exp. no no no no yes (3) yes (3)

other no no no no no (4) no (4)

padimitriou (1999) in the context of scheduling games (also
known as the KP-model), see also several follow-up papers,
e.g., Fotakis et al. (2005); Gairing et al. (2006); Ieong et al.
(2005); Milchtaich (2006). As noted by Koutsoupias and Pa-
padimitriou (1999), uniform costs are motivated by schedul-
ing applications, where the cost function is frequently used
to model the achieved makespan which is (under round-robin
processing) equal for every job on the same resource. Uni-
form cost structures play also a key role in telecommunica-
tion networks. In large-scale telecommunication networks,
it is highly desirable to charge every player the same cost re-
gardless of the actual resource consumption of every player,
because every resource needs only to communicate a single
value to the players giving rise to an efficient and scalable
implementation, see Johari and Tsitsiklis (2009) and Srikant
(2003).

Our second main result provides a complete characteriza-
tion of consistency of a set of cost functions for the uniform
cost model. We prove that C is consistent w.r.t. uniform
cost games if and only if C contains homogeneously expo-
nential functions such that c(`) = ac e

φ` for some ac, φ > 0,
where ac may depend on c, while φ must be equal for all
c ∈ C. Surprisingly, this characterization reveals that uni-
form games need not possess a PNE, even if costs are affine.
We also characterize the α-FIP in the uniform cost model.
We prove that C is FIP consistent if and only if C = ∅.
For the case of homogeneously exponential cost functions,
however, we derive an improvement dynamic converging to
a PNE, thus, showing that the improvement graphs of the
resulting games are weakly acyclic.

Our results are summarized in Table 1.

Main Ideas and Outline.
After introducing the basic model in Section 2, we prove

the ”only if” direction of our first result (Theorem 2) in Sec-
tion 3. In the proof, we first establish a connection between
weighted congestion games and congestion game with vari-

able demands. Given a weighted congestion without PNE,
we derive a congestion game with variable demands using
the same cost functions that also has no PNE. The proof
idea relies on a careful design of feasible (concave and differ-
entiable) utility functions which preserve the improvement
cycles of the original weighted congestion game. Thus, we
can use an earlier result of Harks and Klimm (2010) stat-
ing that a set of cost functions is consistent w.r.t. weighted
congestion games if and only if this set contains either affine
functions or certain exponential functions. The hard part of
completing the ”only if” direction lies in excluding inhomo-
geneously exponential cost functions. We prove that these
functions are not consistent by studying a class of congestion
games with fixed resource dependent demands. We identify
a subclass of these games with inhomogeneously exponential
cost functions for which we construct a congestion game with
variable demands. We show that the thus constructed game
fulfills the invariant of preserved improvement cycles with
respect to the original game. While this part of the proof
is perhaps the most technical, we obtain as a side-product
of our analysis a novel characterization of the existence of
PNE for congestion games with resource dependent demands
showing that only affine functions are consistent.

In Section 4, the ”if” part is proven. We introduce a novel
potential function concept that we term essential general-
ized ordinal potentials. The idea is to require that there is
a real-valued function that must increase only for a subset
of improving moves. We further introduce local essential
potentials, where this property must hold only for a global
maximum of the potential. For games with homogeneously
exponential cost functions, we derive a local essential poten-
tial completing the ”if” direction (games with affine costs
are exact potential games). In Section 5, we investigate a
class of games that we term uniform congestion games with
variable demands. We give similar characterizations of con-
sistency of cost functions, yielding that only homogeneously
exponential cost functions are consistent. We prove the ”if”
direction by deriving an essential potential. We conclude the
paper in Section 6 by presenting new research directions.

2. PRELIMINARIES
Congestion games with variable demands are strategic

games G = (N, X̄, (πi)i∈N ), where N = {1, . . . , n} is the
non-empty and finite set of players, X̄ = ×i∈N X̄i is the
non-empty set of strategy profiles, and πi : X̄ → N is the
individual payoff function that specifies the payoff value of
player i for each state x̄ ∈ X̄. We define strategies and payoff
functions using the general notion of a congestion model. A
tuple M = (N,R,X, (cr)r∈R) is called a congestion model
if N is a set of players, R is a finite set of resources, and
X = ×i∈NXi where Xi ⊆ 2R is the set of configurations
available to player i. Every resource r ∈ R is endowed with
a cost function cr : R≥0 → R≥0. In a congestion game
with variable demands, every player i ∈ N is allowed to
choose a configuration xi ∈ Xi and a non-negative demand
di ∈ R≥0 that she places on all resources in xi. The incen-
tive to use higher demands is stimulated by a utility func-
tion Ui : R≥0 → R≥0 that measures the benefit that player
i receives from choosing a certain demand. Note that this
benefit is independent of the resources chosen and depends
solely on the chosen demand.

Let M = (N,R,X, (cr)r∈R) be a congestion model and
let (Ui)i∈N be a collection of utility functions. We define



a congestion game with variable demands and proportional
costs as the game G(M) = (N, X̄, π), where X̄ = (X,R≥0),
π = (πi)i∈N and πi

(
x, d
)

= Ui(di) −
∑
r∈xi dicr

(
`r
(
x, d
))
,

and `r
(
(x, d)

)
=
∑
j∈N :r∈xj dj . We call `r

(
x, d
)

the load

on resource r under strategy (x, d). Note that these games
are maximization games. A configuration x ∈ X together
with a demand profile d ∈ Rn≥0 forms a strategy profile x̄ =
(x, d). Note that proportional costs have been used before
in Goemans et al. (2005) for the case of weighted congestion
games.

We use standard game theory notation; for a set S ⊆ N
we denote by −S its complement and by X̄S = ×i∈SX̄i we
denote the set of strategy profiles of players in S. Instead of
X̄−{i} we will write X̄−i, and with a slight abuse of notation
we will sometimes write a strategy profile as x̄ = (x̄i, x̄−i)
meaning that x̄i ∈ X̄i and x̄−i ∈ X̄−i.

For a constant α ≥ 0, a pair
(
x̄, (ȳi, x̄−i)

)
∈ X̄×X̄ is called

an α-improving move of player i if πi(x̄) + α < πi(ȳi, x̄−i).
We denote by Iα(i) the set of α-improving moves of player
i ∈ N , and we set Iα =

⋃
i∈N I

α(i). We call a sequence of

strategy profiles γ = (x0, x1, . . . ) an α-improvement path if
every tuple (xk, xk+1) ∈ Iα. A strategy profile x̄ ∈ X̄ is a
pure Nash equilibrium, or PNE for short, if (x̄, ȳ) /∈ I0 for all
ȳ ∈ X̄. G has the α-finite improvement property (α-FIP) if
every α-improvement path is finite. Let C be a class of cost
functions. We call C consistent w.r.t. congestion games with
variable demands (or simply consistent) if every congestion
game with variable demands and cost functions in C admits
a PNE. C is FIP consistent if every congestion game with
variable demands and cost functions in C has the α-FIP.

The following two assumptions contain mild restrictions
on feasible utility functions and cost functions and are stan-
dard in the literature, see Haurie and Marcotte (1985); Kelly
et al. (1998); Shenker (1995).

Assumption 1. For every resource r ∈ R the cost function
cr : R≥0 → R≥0 is twice continuously differentiable and
strictly increasing.

We denote by C2(R≥0) the set of functions satisfying As-
sumption 1.

Assumption 2. For every player i ∈ N the utility func-
tion Ui : R≥0 → R≥0 is differentiable, non-decreasing and
concave.

Remark 1. In contrast to most of the works in the area of
Cournot games or congestion games with splittable demands
(e.g., Haurie and Marcotte (1985); Kelly et al. (1998); Orda
et al. (1993)), we do not assume semi-convexity of cost func-
tions.

3. NECESSARY CONDITIONS
At first we present some simple but useful observations.

It is easy to see that consistent cost functions cannot have
bounded marginal costs. Formally, if C is consistent, then
c(x) + xc′(x) → ∞ as x → ∞ for all c ∈ C. To see this,
assume that there is c ∈ C with c(x) + xc′(x) < M for some
M ∈ R>0. Consider a game with one resource and cost
function c and one player with utility function U(x) = (M+
1)x. The payoff of the player increases with the demand,
thus, this game does not admit a PNE.

Moreover, the following lemma will be useful throughout
this paper. It simply uses the first-order optimality condi-
tion of a PNE.

Lemma 1. Let (x∗, d∗) be a PNE. Then, we have U ′i(d
∗
i ) =(

∂ d∗i
∑
r∈xi cr(`r(x

∗, d∗))
)
/ ∂d∗i for all i ∈ N with d∗i > 0,

and U ′i(d
∗
i ) ≤

(
∂ d∗i

∑
r∈xi cr(`r(x

∗, d∗))
)
/ ∂d∗i for all i ∈ N

with d∗i = 0.

Necessity of Affine or Exponential Costs.
First, we establish a connection between congestion games

with variable demands and weighted congestion games. We
will exploit this connection to show that consistent cost func-
tions for congestion games with variable demands must be
either affine or exponential.

Let M = (N,R,X, (cr)r∈R) be a congestion model and(
dw
i

)
i∈N be a vector of demands with dw

i ∈ R>0. The cor-
responding weighted congestion game is the strategic game
Gw(M) = (N,X, π), where π is defined as π = ×i∈Nπi,
πi(x) =

∑
r∈xi d

w
i cr

(
`r(x)

)
and `r(x) =

∑
j∈N :r∈xj d

w
j . Note

that these games are cost minimization games. We will show
that whenever there is a weighted congestion game Gw(M)
that does not admit a PNE, then there is also a congestion
game with variable demands G(M) under the same conges-
tion model without a PNE. The proof of this result is con-
structive, i.e., given the weighted congestion game Gw(M)
and the corresponding vector of demands dw

i , we construct
a congestion game with variable demands not possessing a
PNE.

Note that the main difficulty lies in the fact that in con-
gestion games with variable demands the strategy space
is strictly larger than in weighted congestion games. We
overcome this issue by designing for every player i a util-
ity function Ui that allows us to restrict a priori the set
of equilibrium demands of player i to a small environment
(ti − σ, ti + σ) around a target demand ti. To this end,
recall that Lemma 1 establishes that in every PNE player
i’s marginal utility equals her marginal cost given that her
demand is strictly positive. Our basic idea is to define the
utility function Ui of player i such that the following two
properties are guaranteed: (i) player i always has an inter-
est to play a positive demand; (ii) for every possible value
C′ of player i’s marginal costs, the equation U ′i(di) = C′ is
met only for di ∈ (ti − σ, ti + σ). As we will see, we can
find smoothed 2-wise linear utility functions that suit our
purposes.

We define the piecewise linear function through the se-
quence of points S =

(
(τ0, υ0), (τ1, υ1), . . . , (τk, υk)

)
as the

function

gS (x) =

{
υi +

υi−υi−1

τi−τi−1
(x− τi), if x ∈ [τi, τi+1),

υk, if x ∈ [τk,+∞).
(1)

Since we are interested in obtaining non-decreasing and con-
cave functions we will assume in the following that the se-

quence of slopes
(
υi−υi−1

τi−τi−1

)
i=1,...,k

is positive and non-in-

creasing. To obtain differentiable functions, we choose a
sufficiently small σ > 0 and replace the function g on every
set (τi − σ, τi + σ), i = 1, . . . , k by a non-decreasing and
differentiable function such that the functional values and
first derivatives in τi−σ and τi+σ comply.1 We denote the
corresponding smoothed piecewise linear function by gσ

(
S
)
.

By designing special smoothed 2-wise linear functions, we
obtain the following lemma.
1For instance, we can choose a suitable quadratic function
on every interval (τi − σ, τi + σ).



Lemma 2. LetM be a congestion model, (ti)i∈N ∈ Rn>0 a
vector of target demands with tmin =mini∈N{ti} and tmax =

maxi∈N{ti}. Let M > max
{ 2

∑
r∈R cr(T )

tmin
,
∑
r∈R

(
cr(T ) +

(tmax +σ) max`∈[tmin,T ] c
′
r(`)

)}
, where T =

∑
j∈N (tj + σ)

and σ < tmin / 2. Let G be the congestion game with vari-
able demands and utilities Ui = gσ((0, 0), (ti,Mti)) for all
i∈N . Then, d∗i ∈(ti−σ, ti+σ) for all i ∈ N and every PNE
(x∗, d∗) of G.

Proof. For contradiction, suppose there is a PNE x̄∗ =
(x∗, d∗) of G and i ∈ N with d∗i /∈ (ti − σ, ti + σ). First, as-
sume d∗i > ti+σ. As cr is strictly increasing, we may assume
without loss of generality that there is r ∈ xi with cr(d

∗
i ) >

0. Lemma 1 implies 0 = U ′i(d
∗
i ) =

∑
r∈x∗i

(
cr(`r(x̄

∗)) +

d∗i c
′
r(`r(x̄

∗)
)
> 0, which is a contradiction.

Now, suppose d∗i = 0 and thus πi(x
∗, d∗) = 0. We de-

note by ȳ = (x∗i , ti − σ, x∗−i, d
∗
−i) the strategy profile in

which player i chooses her demand equal to ti − σ instead.
Note that πi(ȳ) = M(ti − σ)−

∑
r∈x∗i

cr(`r(ȳ)). Using that

in equilibrium d∗i < ti + σ, we get πi(ȳ) ≥ M(ti − σ) −∑
r∈R cr(T ), which is positive asM > 2

∑
r∈R cr(T ) / tmin >∑

r∈R cr(T ) / (ti−σ). This is a contradiction to the assump-
tion that d∗i = 0.

Finally, let us assume that 0 < d∗i < ti − σ. Referring to
Lemma 1, we obtain U ′i(d

∗
i ) = ∂ (d∗i

∑
r∈xi cr(`(x̄

∗))) / ∂d∗i .
In particular,

M =
∑
r∈xi

(
cr(`(x̄

∗)) + d∗i c
′
r(`(x̄

∗))
)

≤
∑
r∈R

(
cr(T ) + (ti + σ) max

`∈[tmin,T ]
c′r(`)

)
,

which contradicts the choice of M .

We are now ready to state our first main theorem.

Proposition 1. Let M be a congestion model and let
Gw = (N,X, πw) be a corresponding weighted congestion
game with the vector of demands (dwi )i∈N . If Gw does not
admit a PNE, then there exists a congestion game with vari-
able demands G(M) to the same congestion model, that does
not admit a PNE.

In Harks and Klimm (2010) it is shown that for weighted
congestion games, a set C of (twice continuously differen-
tiable) cost functions is consistent if and only if one of the fol-
lowing cases holds: (i) C contains only affine functions; (ii) C
contains only exponential functions of type c(`) = ac e

φ`+bc
for some constants ac.bc, φ ∈ R where ac and bc may depend
on c while φ is a common constant for all c ∈ C. By Proposi-
tion 1, we obtain the following result as an immediate corol-
lary.

Corollary 1. If C ⊆ C2(R≥0) is consistent w.r.t. con-
gestion game with variable demands then one of the follow-
ing cases holds: (i) C contains only affine functions; (ii) C
contains only exponential functions.

The upper result even holds when regarding only network
congestion games with variable demands, see the discussion
in Harks and Klimm (2010). Because we only need to con-
sider non-negative and strictly increasing cost functions with
unbounded marginal costs, for an affine cost function c, we
can assume that c(`) = a ` + b with a > 0, b ≥ 0. For an

exponential function c(`) = a eφ`+ b we can assume a, φ > 0
and b ≥ −a. The function c is called homogeneously expo-
nential if b = 0 and inhomogeneously exponential otherwise.
Moreover, when we say that a set C of functions contains
only exponential functions, we assume that there is a uni-
versal constant φ > 0 such that every c ∈ C can be written
as c(`) = ac e

φ` + bc for some constants ac > 0, bc ≥ −ac.

Excluding Inhomogeneously Exponential Costs.
Next, we show that any inhomogenously exponential func-

tion c(`) = a eφ`+b with a, φ > 0 and b 6= 0 is not consistent
w.r.t. congestion games with variable demands. In partic-
ular, for every such function c there is a congestion game
with variable demands and cost equal to c on all resources
that does not admit a PNE. In order to prove this result,
we first investigate congestion games with resource depen-
dent demands. A complete characterization of the set of
cost functions that is consistent w.r.t. this class of games
is given. We will use a further refinement of this character-
ization to show that inhomogenously exponential function
are not consistent w.r.t. congestion games with variable de-
mands. Let us first define congestion games with resource
dependent demands.

Definition 1. Let M = (N,F,X, (cr)r∈R) be a conges-
tion model and let (di,r)i∈N,r∈R be a matrix of demands.
The corresponding congestion game with resource depen-
dent demands is the game G(M) = (N,X, π), where π
is defined as π = ×i∈Nπi, πi(x) =

∑
r∈xi di,r cr

(
`r(x)

)
and

`r(x) =
∑
j∈N :r∈xj dj,r.

We call a congestion game with resource dependent demands
simple if each player has a unique demand per strategy, that
is, for all i ∈ N and xi ∈ Xi there is dxi ∈ R>0 such that
di,r = dxi for all r ∈ xi.

Restricting the strategy sets to singletons, we obtain sche-
duling games on unrelated machines as a special case. Harks
et al. (2009) showed that congestion games with resource
dependent and affine costs always admit a PNE. Here, we
strengthen their result providing a complete characterization
of cost functions that are consistent w.r.t. congestion games
with resource dependent demand.

Theorem 1. A set C ⊆ C2(R≥0) of cost functions is con-
sistent w.r.t. congestion games with resource dependent de-
mands if and only if C contains only affine functions.

Instead of proving this Theorem, we will give a proof of
the following technical lemma which strengthens the result
of Theorem 1 and which will be the key to provide a complete
characterization of the set of cost functions that is consistent
w.r.t. congestion games with variable demands.

Lemma 3. Let ∆ > 0 be arbitrary. Theorem 1 holds
even for simple congestion games with resource dependent
demands, where for each player one of the following holds:
(i) Player i has exactly one strategy, that is, Xi = {xi} with
xi ⊆ R; (ii) Player i has exactly two strategies that she uses
with demands that differ by ∆, that is, Xi = {xi, x̂} and
|dxi − dx̂i | = ∆ with xi, x̂i ⊆ R.

Proof. Since the class of games considered in Lemma 3
contains weighted congestion games, it suffices to show that
any exponential function is not consistent. To this end let
us fix the function c(`) = a eφ` + b with a, φ ∈> 0 and



b ≥ −a and consider for p, q ∈ N>0 the congestion model
M = (N,R,X, (cr)r∈R) with 5 players and 6q+ p resources
R = {r1, . . . , rp, s1, . . . , s2q, v1, . . . , v2q, w1, . . . , w2q}. Only
the first two players i ∈ {1, 2} have two strategies and will
be called non-trivial players. Their strategy spaces are X1 =
{x1, x̂1}, x1 = {r1, . . . , rp, s1, . . . , s2q}, x̂1 = {v1, . . . , v2q}
and X2 = {x2, x̂2}, x2 = {r1, . . . , rp,w1, . . . , w2q}, x̂2 =
{s1, . . . , s2q}. The players 3, 4, and 5 have only one strategy
and serve only to increase the costs on some of the resources.
They will be called trivial players. Their strategies equal
X3 =

{
x3

}
=
{
{r1, . . . , rp}

}
, X4 =

{
x4

}
=
{
s1, . . . , s2q},

X5 =
{
x5

}
=
{
{v1, . . . , v2q}

}
. The strategy spaces are

shown in Figure 1. Observe that the strategies of the two
non-trivial players are disjoint. For the non-trivial players
i ∈ {1, 2}, we set di,r = 2 ln 2

φ
for all r ∈ xi and di,r =

(2 + p
q
) ln2
φ

for all r ∈ x̂i.
Assume that the demand of the non-trivial players 3, 4,

and 5 are given by d3,r = ln(a3) / φ, d4,r = ln(a4) / φ, and
d5,r = ln(a5) / φ for all r ∈ R, where a3, a4, a5 > 1 are
parameters. We will carefully choose the parameters a3, a4,
and a5 such that

γ =
(
(x1, x2, x3, x4, x5), (x̂1, x2, x3, x4, x5),

(x̂1, x̂2, x3, x4, x5), (x1, x̂2, x3, x4, x5), (x1, x2, x3, x4, x5)
)

is an improvement cycle. Calculating the costs of the respec-
tive deviating non-trivial player in γ, we obtain the following
necessary and sufficient conditions

25 p a3 + 24 q a4 > (2 + p/q) 23+p/q q a5 (G1)

23 p a3 + 24 q > (2 + p/q) 23+p/q q a4 (G2)

(2 + p/q) 23+p/q q a5 > 23 p a3 + 26+p/q q a4 (G3)

(2 + p/q) 25+p/q q a4 > 25 p a3 + 24 q. (G4)

First, note that the right hand side of inequality (G1) and
the left hand side of inequality (G3) are equal. This is due
to the fact that the second strategy of the first player can
be seen as an outside option of player 1 since none of the
resources in that strategy is contained in one of the strategies
of the other non-trivial player 2. Thus it is sufficient to
consider the inequality

25 p a3 + 24 q a4 > 23 p a3 + 26+p/q q a4

⇔ p a3 >
8

3
2p/q q a4 −

2

3
q a4 (G1’)

instead of (G1) and (G3). Once this conditions is satisfied
one can choose a5 appropriately. Inequalities (G2) and (G4)
give rise to

p a3 > 2p/q(2q + p) a4 − 2 q, (G2’)

2p/q(2q + p) a4 − q/2 > pa3, (G4’)

respectively. It is left to show that inequalities (G1’), (G2’),
and (G4’) can be satisfied simultaneously. To this end, ob-
serve that the function f(x) = 2x(x − 2

3
) + 2

3
is strictly

increasing for x ≥ 0. As f(0) = 0, the function f is strictly
positive for every x > 0. This implies that the inequality
2p/q( p

q
− 2

3
) + 2

3
> 0 holds for all p, q ∈ N>0.

We define a4 > max {1, 1 /
(
2p/q( p

q
− 2

3
) + 2

3

}
and a3 =

2p/q(2q/p+ 1) a4 − q
p
. Since q > 0, clearly a3 and a4 satisfy
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Figure 1: Strategy spaces of the of the congestion
games constructed in the proofs of Lemma 3 and
Proposition 3. The non-trivial players 1 and 2 each
have two strategies shown by boxes with solid lines
while the trivial players 3, 4 and 5 each have a single
strategy drawn as dashed boxes. The resources with
dotted circles as well as the trivial players 6 and 7
are used only in the proof of Proposition 3.

(G2’) and (G4’). As for (G1’), note that

p a3 −
8

3
2p/q q a4 +

2

3
q a4

= a4

(
2

3
q − 2

3
2p/q p− 2p/q p

)
− q > 0.

We set

a5 =
25pa3 + 24qa4 − 23pa3 − 26+p/qqa4

2(2 + p/q)23+p/qq

=
1

(2 + p/q)23+p/qq
(12pa3 + (23 − 25+p/q)qa4).

Clearly, a5 satisfies (G1) and (G3). It is left to show, that
a3, a4, and a5 are not smaller than 1. Since a4 > 1 by
definition, (G1’) implies a3 >

q
p
( 8

3
2p/q − 2

3
) > 1. As for a5,

inequality (G3) gives rise to

a5 >
pa3

(2 + p
q
) q 2p/q

+
8 a4

(2 + p
q
) q

= a4−
q

(2 + p
q
) q 2p/q

+
8 a4

(2 + p
q
) q

> 1+
23+p/q q − 1

(2 + p
q
) 2p/q

> 1

Thus, we have found a3, a4, a5 > 1 such that γ is an im-
provement cycle, establishing that the corresponding game
does not admit a PNE.

As a corollary of this result, we obtain that for every
non-affine function c, there is a simple congestion game
with resource dependent demands Grd = Grd(M) with costs
equal to c on all resources that has an improvement cycle
γ = (x1, x2, . . . , xs, x1). Let dki denote the unique demand
that player i puts on all resources in her strategy xki and con-
sider a congestion game with variable demands G = G(M)
to the same model, where the utility of each player is con-
stant. Clearly, the cycle

γ′ =
((
x1, (d1

1, . . . , d
1
n)
)
,
(
x2, (d2

1, . . . , d
2
n)
)
, . . .

. . . ,
(
xs, (ds1, . . . , d

s
n)
)
,
(
x1, (d1

1, . . . , d
1
n)
))



is also an improvement cycle for the congestion game with
variable demand G. We have established the following.

Proposition 2. For a set C ⊆ C2(R≥0) the following
three are equivalent: (i) C contains only affine functions;
(ii) C is FIP consistent w.r.t. congestion games with vari-
able demands; (iii) C is consistent w.r.t. congestion games
with resource dependent demands.

Note that for any non-affine cost function c, there is a
congestion game with variable demands and costs equal to c
with an improvement cycle. However, there might be PNE
outside that cycle. In the following, we will show that ev-
ery exponential function is not consistent w.r.t. congestion
games with variable demands. To this end, let c be an ar-
bitrary exponential function. Using Lemma 3, there is a
simple congestion game with resource dependent demands
Grd that does not admit a PNE, see also Figure 1. Our
basic idea is to construct a congestion game with variable
demands G where players 1 to 5 have access on the same re-
sources. We design the players’ concave and non-decreasing
utility functions such that for any PNE (xi, x

∗
−i, d

∗
i , d
∗
−i) in

which player i plays configuration xi, the equilibrium de-
mand d∗i is close to fixed resource dependent demand dxi as
in the proof of Lemma 3. The key to make this idea work
is to introduce additional resources (which are drawn with
dotted circles in Figure 1) so as to ensure that the play-
ers’ marginal costs enforce these equilibrium demands. As
it turns out, this manipulation can only be done for the case
of inhomogenously exponential cost functions. To illustrate
this idea, we give an example. If we add two resources with
cost c(`) = ex + 1 to a players’ strategy who plays a de-
mand equal to 1, her costs are increased by 2e+ 2 while her
marginal costs are increased by 4e+2. If we instead add one
resource with the same cost and a trivial player who plays
a demand equal to ln(2 + e−1), then her costs are increased
by 2e + 2 as well, but her marginal costs are increased by
4e + 3. In this fashion, we can increase the marginal costs
of one configurations more than in some other configuration
while leaving their differences in costs constant. Since in-
creasing the marginal cost of a configuration, decreases the
equilibrium demand, the key challenge is to manipulate the
players’ marginal costs in order to enforce them play the
right equilibrium demands.

We are now ready for the main result of this section.

Proposition 3. Any inhomogenously exponential func-
tion is not consistent w.r.t. congestion games with variable
demands.

Remark 2. The above result also holds for network con-
gestion games, see the construction in Figure 2.

Below, we can restrict our search space for consistent cost
functions to affine functions and homogeneously exponential
functions. In the next section, we will show that both classes
of functions are consistent.

4. CONSISTENT COST FUNCTIONS

Affine Functions.
We will first show below that games with affine cost func-

tions are exact potential games and, thus, they possess a
PNE and the α-FIP for every α > 0.
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Figure 2: Network representation of the conges-
tion games constructed in the proof of Proposi-
tion 3. Here, resources correspond to the edges
of the graph. Each player i is associated with a
pair (si, ti) of nodes. The set of strategies of each
player equals the set of her directed (si, ti)-paths.
By adding sufficiently many resources to the path
that is indicated by the dashed line, the set of every
players undominated non of the non-trivial players
will use this path in equilibrium.

Proposition 4. Let G be a congestion game with vari-
able demands and affine cost functions. Then, P (x, d) =∑
i∈N Ui(di)−

∑
r∈xi cr

(∑
j∈{1,...,i}:r∈xj dj

)
di is an exact

potential function. Thus, G possesses a PNE and the α-FIP
for every α > 0.

Homogeneously Exponential Cost Functions.
In the following lemma, we will prove that for every im-

provement step at least one of the following actions also
yields an improvement: (i) adapting the configuration only
while leaving the demand constant, (ii) adapting the de-
mand only while leaving the used resources constant. For-
mally, we call a subset I ′ ⊆ I of improving moves essential
if {ȳ : (x̄, ȳ) ∈ I ′} = ∅ implies {ȳ : (x̄, ȳ) ∈ I} = ∅ for all
x̄ ∈ X̄. Such subsets exist since the set of improving moves
I itself is essential. A function P : X̄ → R is called a lo-
cal essential potential of G if x̄ ∈ argmaxȳ∈X̄P (ȳ) implies
{ȳ : (x̄, ȳ) ∈ I ′} = ∅. Clearly, x̄ is a PNE.

Lemma 4. Let G be congestion game with variable de-
mands and homogeneously exponential costs. Then, I ′ ={(

(x, d), (yi, x−i, d)
)
∈ I
}
∪
{(

(x, d), (x,∆i, d−i)
)
∈ I} is an

essential subset of improving moves.

We will use the above Lemma to prove that every conges-
tion game with variable demands and homogeneously expo-
nential costs admits a local essential potential and thus a
PNE.

Proposition 5. Let C be a set of homogeneously expo-
nential cost functions. Then, C is consistent.

We are now ready to state the main result of this paper.



Theorem 2. A set C ⊆ C2(R≥0) of strictly increasing
cost functions is consistent if and only if one of the follow-
ing cases holds: (i) C contains only affine functions c(`) =
a ` + b, a > 0,b ≥ 0; (ii) C contains only homogeneously
exponential functions c(`) = a eφ`, a, φ > 0, where φ is a
universal constant of all functions in C.

Proof. Corollary 1 and Proposition 3 imply the ”only if”
part. Proposition 4 and Proposition 5 prove the ”if”part.

The characterization of the set of FIP consistent cost func-
tions follows from Proposition 2.

Theorem 3. A set C ⊆ C2(R≥0) of cost functions is FIP
consistent if and only if C contains only affine functions
c(`) = a `+ b with a > 0, b ≥ 0.

Our characterizations also hold for network congestion games
thus resolving the question raised in. Orda et al. (1993).

5. UNIFORM COST MODEL
In the last section, we assumed that the cost function of

a resource defines a per-unit-price for every player on that
resource. Thus, the actual cost for a player is the product
of the per-unit-price and the demand of that player. In
this section, we will assume that the cost functions on the
resources define uniform costs (or per-player costs), that is,
every player pays the same costs regardless of her demand.

Let M = (N,R,X, (cr)r∈R) be a congestion model and
let (Ui)i∈N be a collection of utility functions. We de-
fine the corresponding uniform congestion game with vari-
able demands as the strategic game G(M) = (N, X̄, π),
where X̄ = (X,R≥0), π = ×i∈Nπi and πi

(
x, d
)

= Ui(di) −∑
r∈xi cr

(
`r
(
x, d
))
, and `r

(
(x, d)

)
=
∑
j∈N :r∈xj dj .

Most surprisingly, in the uniform cost model, there is a
congestion game with variable demands and linear cost func-
tions without PNE (Example 1). This is in stark contrast to
Proposition 4 establishing that every congestion game with
variable demand in the proportional cost model possesses a
PNE. We will shed light on this dichotomy by obtaining a
complete characterization.

Necessary Conditions.
As in the proportional cost model, we can restrict our

search space for consistent cost functions to affine and ex-
ponential functions. With a slight modification in the proof
of Proposition 1 one can establish that every functions that
is not consistent w.r.t. weighted congestion games is also
non-consistent w.r.t. uniform congestion games with vari-
able demands. Like this, we get the following immediate
corollary.

Corollary 2. If C ⊆ C2(R≥0) is consistent w.r.t. uni-
form congestion games with variable demands then one of
the following cases holds: (i) C contains only affine func-
tions; (ii) C contains only exponential functions.

While the upper result seemingly establishes a structural
similarity between the games with proportional costs, it
turns out that they behave completely different. As already
mentioned, uniform congestion games variable demands and
affine costs need not possess a PNE. This holds even for two
player games in which the cost function cr on all resources
r ∈ R equals the identity as illustrated in the following ex-
ample.

Example 1. Regard the model M = (N,R,X, (cr)r∈R),
where N = {1, 2} and R = {1, . . . , 46}. Each resource has
the cost function c(`) = `. We set X = ×i∈NXi, X1 ={
{r1, . . . , r22}, {r23, . . . , r39}

}
, and X2 =

{
{r23, . . . , r30} ∪

{r40, . . . , r46}, {r1, . . . , r4} ∪ {r31, . . . , r39}
}

. Define R1,2 =
{r1, . . . , r4}, R1,0 = {r5, . . . , r22}, R2,1 = {r23, . . . , r30},
R2,2 = {r31, . . . , r39}, and R0,1 = {r40, . . . , r46}. The play-
ers’ strategy spaces are depicted in Figure 3.

For the utility functions U1 and U2 of player 1 and 2, re-
spectively we chose strictly concave, increasing and twice
continuously differentiable functions satisfying U1(0) = 0,
U1(1) = 32, U1(2) = 53, U ′1(1) = 22, U ′1(2) = 17 and
U2(0) = 0, U2(1) = 32, U2(2) = 46, U ′2(1) = 15 U ′2(2) = 13,
respectively. Clearly, such functions always exists, for in-
stance one can choose polynomials of degree seven to fit the
equations above.

Using that the cost functions are equal to the identity,
the equilibrium conditions for the Nash equilibrium (x∗, d∗)
imply U ′i(d

∗
i ) = |xi| for d∗i > 0. Said differently, in any PNE

in which player i plays configuration x∗i and has positive
demand d∗i , the equation d∗i = U ′−1

i (|x∗i |) holds. Note that
since the utility functions are strictly concave, the deriva-
tives U ′1 and U ′2 are convertible and thus their inverse func-
tions U ′−1

1 and U ′−1
2 are well-defined. Now, remark that

the utility functions Ui of player i is chosen such that in
equilibrium d∗i ∈ {0, 1, 2}, since

U ′−1
1 (|R1,2 ∪R1,0|) = 1, U ′−1

1 (|R2,1 ∪R2,2|) = 2,

U ′−1
2 (|R2,1 ∪R0,1|) = 1, U ′−1

2 (|R1,2 ∪R2,2|) = 2.

Thus, for any equilibrium (x∗, d∗) we get

(x∗1, d
∗
1) ∈

{
(R1,2 ∪R1,0, 1

)
,
(
R2,1 ∪R2,2, 2

)
,(

R1,2 ∪R1,0, 0
)
,
(
R2,1 ∪R2,2, 0

)}
,

(x∗2, d
∗
2) ∈

{(
R2,1 ∪R0,1, 1

)
,
(
R1,2 ∪R2,2, 2

)
,(

R2,1 ∪R0,1, 0
)
,
(
R1,2 ∪R2,2, 0

)}
.

Remark that the latter two strategies of players 1 and 2
with zero demand are indistinguishable in the sense that
they always give the same payoff to every player. First, we
will show that there is no PNE in which both players chose
a strictly positive demand. We calculate that

π1

(
(R2,1∪R2,2, 2), (R2,1∪R0,1, 1)

)
− π1

(
(R1,2∪R1,0, 1), (R2,1∪R0,1, 1)

)
= U1(2)−3 · |R2,1|−2 · |R2,2|−(U1(1)−1 · |R1,2|−1 · |R1,0|)
=
(
53−3 · 8−2 · 9

)
−
(
32−1 · 4−1 · 18

)
= 11− 10 = 1,

and similarly

π2

(
(R2,1∪R2,2, 2), (R1,2∪R2,2, 2)

)
− π2

(
(R2,1∪R2,2, 2), (R2,1∪R0,1, 1)

)
= 2− 1 = 1,

π1

(
(R1,2∪R1,0, 1), (R1,2∪R2,2, 2)

)
− π1

(
(R2,1∪R2,2, 2), (R1,2∪R2,2, 2)

)
= 2− 1 = 1,

π2

(
(R1,2∪R1,0, 1), (R2,1∪R0,1, 1)

)
− π2

(
(R1,2∪R1,0, 1), (R1,2∪R2,2, 2)

)
= 17− 16 = 1,

establishing that neither of these 4 strategy profiles consti-
tutes a PNE. Note that each of these strategy profiles guar-



antees a strictly positive payoff to each player while choos-
ing d∗i = 0 gives a payoff equal to zero. Hence, both players
have an incentive to choose a positive demand which to-
gether with the observation that γ is an improvement cycle
establishes that this game does not admit a PNE.

r1 r2 r3 r4 r5 r6 r7 r8 r9

r10 r11 r12 r13 r14

r15 r16 r17 r18 r19

r20 r21 r22

r23 r24 r25 r26 r27 r31 r32 r33 r34 r35
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x2 x̂2

x̂1

x1

Figure 3: Strategies of the uniform cost congestion
game with variable demands with identity cost and
no PNE considered in Example 1.

Using this example as a blueprint, one can show the fol-
lowing more general result.

Proposition 6. Any affine function is not consistent w.r.t.
uniform congestion games with variable demands.

In order to show a negative result for inhomogenously expo-
nential functions, we will follow the same line of argumen-
tation as for the proportional cost model. To this end, we
first introduce the notion of uniform congestion games with
resource dependent demands. Let M = (N,F,X, (cr)r∈R)
be a congestion model and let (di,r)i∈N,r∈R be a matrix
of facility-dependent demands. The corresponding uniform
congestion game with resource dependent demands is the
strategic game G(M) = (N,X, π), where π = ×i∈Nπi is
defined as πi(x) =

∑
r∈xi cr(`r(x)), `r(x) =

∑
j∈N :r∈xj dj,r.

Proposition 7. Any inhomogenously exponential func-
tion is not consistent w.r.t. uniform congestion games with
resource dependent demands.

Using the same idea as in the proof of Proposition 3 the
non-consistency of inhomogenously exponential functions car-
ries over to uniform congestion games with variable demands.

Proposition 8. Any inhomogenously exponential func-
tion is not consistent w.r.t. uniform congestion games with
variable demands.

Sufficient Conditions.
For uniform congestion games with variable demands and

homogenous exponential costs, we establish the existence
of a PNE by deriving an essential potential function which
generalize the potentials considered by Monderer and Shap-
ley Monderer and Shapley (1996). Recall that a subset
I ′ ⊆ I of improving moves is essential if {ȳ : (x̄, ȳ) ∈ I ′} = ∅
implies {ȳ : (x̄, ȳ) ∈ I} = ∅ for all x̄ ∈ X̄. This definition

motivates the concept of essential generalized ordinal poten-
tials. Let G = (N, X̄, π) be a strategic game. The function
P : X̄ → R is called an essential generalized ordinal potential
of G if for all strategy profiles x̄ ∈ X̄ there is an essential
subset of improving moves I ′ such that (x̄, ȳ) ∈ I ′ implies
P (ȳ) > P (x̄). Clearly, a maximizer of P is a PNE.

Proposition 9. Let G = (N, X̄, π) be a uniform conges-
tion game with variable demands and homogenous exponen-
tial costs. Then, G admits an essential generalized ordinal
potential and possesses a PNE.

Combining Corollary 2 and Propositions 6, 8, and 9, we state
the main result of this section.

Theorem 4. A set C ⊆ C2(R≥0) of cost functions is con-
sistent w.r.t. uniform congestion games with variable de-
mands if and only if C contains only homogeneously expo-
nential functions. There is no set of FIP consistent func-
tions.

6. CONCLUSIONS AND OPEN PROBLEMS
We considered the fundamental problem of the existence

of PNE and convergence properties of improvement dynam-
ics in congestion games with variable demands. We obtained
several characterizations of the cost structure with respect
to the existence of PNE and the α-FIP. Since our model is
general enough to closely capture many elements of practical
applications, we are confident that our results help under-
standing the behavior of myopic play in real systems. We
conclude the paper by outlining several research directions
that deserve further attention.

While the present work addressed the existence of PNE
(and the α-FIP) with respect to the cost structure (without
constraining the strategy space and the utility functions), it
is natural to ask for combinatorial properties of the strategy
spaces (such as singletons strategies or strategies given by
bases of a matroid) that ensure the existence of PNE for
general cost functions. Alternatively, one can restrict the
set of feasible utility functions (e.g., assume linear functions)
and ask for the existence of PNE. Also the case of symmetry
within the set of players (with respect to their utilities, their
strategies or both) is open.

Another research direction is to investigate the price of an-
archy (stability) in congestion games with variable demands.
It would be interesting to characterize the price of anarchy
for affine cost functions, because in this case there always
exists a PNE.

The design and the analysis of improvement dynamics is
fundamental and deserves further investigation. Because our
model captures many elements of TCP/IP routing protocols
(involving unsplittable routings and elastic demands), it is
of practical importance to further investigate the stability
and scalability of distributed improvement dynamics.
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