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ABSTRACT
Many voting rules are based on some minimization principle. Like-
wise, in the field of logic-based knowledge representation and rea-
soning, many belief change or inconsistency handling operators
also make use of minimization. Surprisingly, minimization has not
played a major role in the field of judgment aggregation, in spite
of its proximity to voting theory and logic-based knowledge repre-
sentation and reasoning. Here we make a step in this direction and
study six judgment aggregation rules; two of them, based on dis-
tances, have been previously defined; the other four are new, and
all inspired both by voting theory and knowledge representation
and reasoning. We study the inclusion relationships between these
rules and address some of their social choice theoretic properties.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence:
Multiagent systems

General Terms
Theory

Keywords
Judgment aggregation, voting theory, aggregation rules, distance-
based merging

1. INTRODUCTION
In voting theory and in computational social choice, a large body

of work focuses on specific voting rules: how their winner sets
compare to each other; their social choice-theoretic properties; the
computational and communication complexity of winner determi-
nation; the theoretical and experimental study of manipulability
and control; the amount of information necessary to determine the
outcome; etc.

A judgment aggregation problem is specified by a set of logically
related issues, an agenda, on which the agents cast judgments. The
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judgments are typically boolean evaluations of the agenda issues. A
judgment aggregation rule amalgamates the individual judgments
into a collective set of judgments, which should adhere to the log-
ical relations of the agenda issues. Unlike in voting, the bulk of
the research in judgment aggregation focuses on possibility and
impossibility results: typically, one looks for minimal conditions
on the structure of the agenda, on the allowed judgment sets, or
on the properties of the logical system, implying the existence or
the non-existence of judgment aggregation rules satisfying a small
set of desirable properties (such as nondictatorship, unanimity, in-
dependence etc.); or else, one looks for a characterization of all
judgment aggregation rules satisfying a set of properties, possibly
under some domain restrictions. But the focus on specific rules and
their properties has been the topic of few papers. Still, there are a
few exceptions, that we list now.

• the premise-based procedure has been introduced in [13] un-
der the name “issue-by-issue voting" and studied in [7, 19].
For this procedure, the agenda is assumed to be partitioned
into two subsets: premises and conclusions. The premises
are logically independent. The individuals vote the premises
and the majority on each premise is used to find the collective
outcome for that premise. From these collective outcomes
on the premises, the collective conclusions are derived using
either the logical relationships among, or some external con-
straints regarding, the agenda issues. On the other hand, in
the conclusion-based procedure individuals decide privately
on the premises and express publicly only their judgments on
the conclusions.

• The more general sequential procedures [15, 4, 14] proceed
this way: the elements of the agenda are considered sequen-
tially, following a fixed linear order over the agenda (corre-
sponding for instance to temporal precedence or to priority)
and earlier decisions constrain later ones. Collective consis-
tency is guaranteed by definition. Of course, in the general
case, the result depends on the choice of the order, i.e. it
is (path-dependent). Premise-based procedures are specific
instances of sequential procedures.

• Quota-based rules [4, 2] are a class of rules where each
proposition of the agenda is associated with a quota, and the
proposition is accepted only if the proportion of individu-
als accepting it is above the quota. For example, uniform
rules take the same quota for all elements of the agenda. The
majority rule is a special case of quota-based rules. In [4]
sequential quota rules are also considered.
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• Distance-based rules [18, 20] assume a predefined distance
between judgment sets and/or profiles and choose as collec-
tive outcome the consistent judgment sets which are closest
(for some notion of closeness) to the individual judgments
(see Section 2.4).

Even if a few families of judgment aggregation rules have been
proposed and studied, still the focus on the research is more on the
search for impossibility theorems and axiomatic characterizations
of families of rules, which contrasts with voting theory, where vot-
ing rules are defined and studied per se.

In voting theory, quite a number of rules are based on some min-
imization (or maximization) process: for instance, Kemeny, Dodg-
son, Slater, ranked pairs, maximin etc. (We shall not recall the
definition of all these voting rules; the reader can refer, for in-
stance, to [1] for a survey.) Minimization is also a common way of
defining reasoning rules (such as belief revision operators, incon-
sistency handling procedures, or nonmonotonic inference rules) in
the community of logic-based knowledge representation and rea-
soning. Namely, typically one deals with inconsistency by look-
ing for maximal consistent subsets of an inconsistent knowledge
base. Belief revision often amounts to incorporating a piece of in-
formation to a knowledge base while minimizing the information
loss from the initial knowledge base. Similar minimization pro-
cesses are at work in reasoning about actions, belief update and
belief merging.

In contrast, with the exception of distance-based rules, min-
imization has rarely been considered for judgment aggregation.
Here we aim at filling this gap by proposing and studying a few
aggregation rules that we argue to be among the most natural
minimization-based rules. Our rules maximize the portion of a
profile we wish to keep. The way such a maximization is defined
depends on the specific rule. Thus, the maximization operated by
our aggregation rules is equivalent to minimizing the portion of
a profile we wish to remove. In other words, we call our rules
“based on minimization", but we could as well say that our rules
are based on maximization. Four of the rules we introduce here
are new, while two of them correspond, up to some minor details,
to judgment aggregation rules already proposed in the literature.
We relate them to similar rules in voting theory and/or knowledge
representation and reasoning. We study their interrelationships by
showing that in most cases, the proposed rules are inclusion-wise
incomparable. We also study their links with existing aggregation
rules such as sequential or quota-based rules, and some of their so-
cial choice theoretic properties (majority-preservation, unanimity,
monotonicity, reinforcement). It is important to note that none of
the rules introduced in this paper satisfies independence (neither do
sequential and distance-based rules). For many agendas, the inde-
pendence condition is sufficient for an impossibility result to occur
[16]. Moreover, when the propositions are logically related, inde-
pendence is a controversial condition [19].

2. JUDGMENT AGGREGATION RULES

2.1 General definitions
Let L be a propositional language built on a finite set of proposi-

tional symbols PS. Lastly, if S is a finite set of formulas of L thenV
(S) is the conjunction of all formulas in S. Cn denotes logical

closure, that is, Cn(S) = {α ∈ L | S |= α}.
Definition 1 (agendas, judgment sets, profiles)

• an agenda is a finite set X = {ϕ1,¬ϕ1, . . . ,ϕm,¬ϕm} of
propositional formulae of L, consisting of pairs of propo-

sitions ϕi,¬ϕi, and containing neither tautologies not con-
tradictions. The pre-agenda [X ] associated with X is [X ] =
{ϕ1, . . . ,ϕm}.

• a judgment set over X is a subset of X. A judgment set A
is complete if for every pair {ϕ,¬ϕ} in X, A contains either
ϕ or ¬ϕ. A judgment set A is consistent if

V{ϕ j|ϕ j ∈ A} is
satisfiable.

• an n-voter profile over X is a collection P = 〈A1, . . . ,An〉
where each Ai is a consistent and complete1 judgment set.

We now define judgment aggregation rules.2 As in voting the-
ory, we distinguish between deterministic rules, mapping a profile
to a single collective judgment set, and nondeterministic rules (or
correspondences), mapping a profile to a nonempty set of collective
judgment sets.

Definition 2 (judgment aggregation rules)

• a deterministic judgment aggregation rule is a mapping fn,X
associating with every profile P = 〈A1, . . . ,An〉 a consistent
judgment set fn,X (P). A deterministic aggregation rule fn,X
is complete if for every profile P, fn,X (P) is complete.

• a nondeterministic judgment aggregation rule (or judgment
aggregation correspondence) is a mapping Fn,X associating
with every profile P a nonempty set of consistent judgment
sets Fn,X (P).

Most of the time, when referring to judgment aggregation rules
we will keep n and X implicit when they are clear from the context,
i.e., fn,X (resp. Fn,X ) will be simply denoted as f (resp. F). Also,
by a slight abuse of language, if P = 〈A1, . . . ,An〉, then we will
write f (A1, . . . ,An) and F(A1, . . . ,An) instead of f (〈A1, . . . ,An〉)
and F(〈A1, . . . ,An〉).

As in voting theory, a rule can be obtained from a correspon-
dence using a tie-breaking mechanism. In the rest of the paper we
focus on nondeterministic rules, unless we state the contrary.3

Definition 3 (majoritarian aggregation)
The majority aggregation rule m is defined as: for every profile

P, M(P) is a singleton judgment set {m(P)} such that for every
ψ ∈ X, m(P) contains ψ if and only if a majority of agents have ψ
in their judgment set, that is, if and only if #{i|ψ ∈ Ai}> n

2 .
A profile P is majority-consistent if m(P) is a consistent judgment

set. A judgment aggregation rule F is majority-preserving if, for
every majority-consistent profile P, F(P) = M(P).

Aggregation conditions such as anonymity (a permutation on the
individual judgment sets does not alter the collective outcome) and
1In judgment aggregation consistent and complete judgment sets
are usually assumed. However, while consistency seems an indis-
pensable requirement, completeness can be dismissed, at least in
some contexts. Some works [10, 8] investigated what happens if we
allow voters to abstain from expressing judgments on some propo-
sitions in the agenda. We could also define profiles more generally
by allowing individual judgment sets to be incomplete. Most of our
results would not be altered, but some of the definitions, especially
distance-based rules, would be more complicated.
2Strictly speaking, a rule is a function; we keep the terminology
“rule” for the sake of the parallel with voting theory.
3One may also want to require that not only the output of a judg-
ment aggregation rule is a single judgment set A, but that this judg-
ment set is itself complete. Doing this amounts at having another
tie-breaking rule which, in case of a tie between ϕ and ¬ϕ, specifies
how to break it.
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neutrality (the elements of the agenda are aggregated in the same
way) can be defined as usual (and we omit their formal definitions).

There are two different views of aggregation rules: either we see
the output as a mere collection of consistent judgment sets, or we
see it as a closed logical theory.

Definition 4
Given a judgment aggregation rule F, and a profile P, we define

the logical theory TF (P) =
T{Cn(J) | J ∈ F(P)}.

Let F and F ′ be two aggregation rules. F and F ′ are equivalent
if for every profile P we have TF (P) = TF ′(P). F is at least as
discriminant as F ′ if for every profile P we have TF (P) ⊇ TF ′(P).
F and F ′ are incomparable if there exists two profiles P and Q such
that TF (P) 6⊆ TF ′(P) and TF (Q) 6⊆ TF ′(Q).

Thus, a formula α is in TF (P) if and only if it can be inferred
from every judgment set in F(P). Note that TF (P) being the inter-
section of consistent closed logical theories, it is itself a consistent
closed theory.

We now give a series of aggregation rules. In the following we
use the abbreviation maxcard for of maximal cardinality.

2.2 Rules based on maximal consistent judg-
ment sets

The first rule we consider is called the Young rule for judgment
aggregation, by analogy with the Young rule in voting, which out-
puts the candidate x minimizing the number of voters to remove
from the profile so that x becomes a Condorcet winner.

Definition 5 (Young rule for judgment aggregation)
Given a profile P = 〈A1, . . . ,An〉 and a subset of agents J ⊆

{1, . . . ,n}, the restriction of P to J is PJ = 〈A j, j ∈ J〉, and is called
a subprofile of P. Let MSP(P) be the set of maxcard majority-
consistent subprofiles of P. Then the Young judgment aggregation
rule Y maps P to RY (P) = {m(PJ) | PJ ∈MSP(P)}.

Intuitively, this rule consists in removing a minimal number of
agents so that the profile becomes majority-consistent. Or, equiva-
lently, we maximize the number of voters we keep of a given pro-
file. Obviously, if the profile P is majority-consistent, then no voter
needs to be removed and Y (P) = {m(P)}, hence Y is majority-
preserving.

Example 1 Consider the pre-agenda [X ] = {a,b,c,α = (a∨ b)∧
c,β = a∧b}, n = 9, and P = 〈A1, . . . ,A9〉:

a b c (a∨b)∧ c a∧b
A1 1 1 1 1 1
A2 1 1 1 1 1
A3 1 1 0 0 1
A4 0 1 1 1 0
A5 0 1 1 1 0
A6 1 0 0 0 0
A7 1 0 0 0 0
A8 0 0 1 0 0
A9 0 0 1 0 0

We have m(P) = {a,b,c,¬α,¬β}. There are three minimal in-
consistent subsets in m(P), namely {a,c,¬α}, {b,c,¬α}, and
{a,b,¬β}. In order to restore the consistency of m(P), it is suf-
ficient to remove one judgment set, and the possible choices are A1
or A2 (leading to accept c, ¬α, ¬β), A3 (leading to accept c, ¬β ),
or A6 or A7 (leading to accept b, c, ¬β). Therefore,

RY (P) = {{c,¬α,¬β},{c,¬β},{b,c,¬β}}
Note that TRY (P) = Cn(c∧¬β).

A refinement of RY could consist in keeping only the judgment
sets in RY (P) of maximal size (here, {c,¬α,¬β} or {b,c,¬β} ).
We do not explore this here.

The second proposal consists in looking for a minimal subset or
a minimal number of formulas in X to remove such that the profile
becomes majority-consistent.

Definition 6 (maximal subagenda rule)
Given a profile P = 〈A1, . . . ,An〉 on an agenda X, [X ] the pre-

agenda associated with X, and a sub-preagenda [Y ] ⊆ [X ], the re-
striction of P to Y is P↓Y = 〈A j∩Y,1≤ j≤ n〉. Let MSA(P) the set
of all maximal sub-preagendas [Y ] of [X ] (with respect to set inclu-
sion) such that P↓Y is majority-consistent. The maximal subagenda
judgment aggregation rule RMSA maps P to RMSA(P) = {m(P↓Y ) |
[Y ] ∈MSA(P)}.
Example 2 Take the same profile as in Example
1. The maximal majority-consistent sub-preagendas
are {a,b,c}, {a,b,α}, {a,c,β}, {b,c,β} and
{c,α,β}. Therefore RMSA(P) = {{a,b,c},{a,b,¬α},
{a,c,¬β},{b,c,¬β},{c,¬α,¬β}}.

Instead of looking for maximal majority-consistent subagen-
das with respect to inclusion we may look instead for maxcard
majority-consistent subagendas, which leads to the following judg-
ment aggregation rule, which corresponds, up to some minor de-
tails and for a specific choice of a distance function, to the endpoint
judgment aggregation rule defined in [18].

Definition 7 (maxcard subagenda rule)
Let MCSA(P) the set of all maxcard sub-preagendas [Y ] of [X ]

such that P↓Y is majority-consistent. The maxcard subagenda judg-
ment aggregation rule RMCSA maps P to RMCSA(P) = {m(P↓Y ) |
[Y ] ∈MCSA(P)}.
Example 3 Take the same profile as in Example 1.
The maxcard majority-consistent sub-preagendas are
the same {a,b,c}, {a,b,α}, {a,c,β}, {b,c,β} and
{c,α,β} as in Example 2. Therefore RMCSA(P) =
{{a,b,c},{a,b,¬α},{a,c,¬β},{b,c,¬β},{c,¬α,¬β}}.

RY considers a judgment set as a unit, which is either selected or
removed as a whole. Similarly, RMSA and RMCSA consider the judg-
ments on the agenda subset as a unit that is to be kept in its entirety
or got ridden of. A finer way of defining a judgment rule con-
sists in looking for maximal or maxcard majority-consistent sub-
sets of the set of elementary pieces of information consisting each
of a pair (element of the agenda, judgment on it elicited from an
agent). Equivalently, this comes down to weigh each element of
the agenda by the number of agents who support it, and then to
look for maxweight subagendas.

Definition 8 (maxweight subagenda rule)
For each ψ ∈ X and each profile P, let N(P,ψ) = #{i,ψ ∈ Ai}.

For any subagenda Y ⊆ X, the weight of Y with respect to P is
defined by wP(Y ) = ∑ψ∈Y N(P,ψ). Let MWA(P) be the set of all
consistent subagendas Y of X maximizing wP. The maxweight sub-
agenda judgment aggregation rule RMWA maps P to RMWA(P) =
{Y | Y ∈MWA(P)}.
Example 4 Take again the same profile as in Example 1. We
have N(P,a) = 5, N(P,¬a) = 4, N(P,b) = 5, N(P,¬b) =
4, N(P,c) = 6, N(P,¬c) = 3, N(P,α) = 4, N(P,¬α) = 5,
N(P,β) = 3, and N(P,¬β) = 6. Therefore we have RMWA(P) =
{{a,¬b,c,α,¬β},{¬a,b,c,α,¬β},{¬a,¬b,c,¬α,¬β}}.
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Although it looks entirely new, we will show soon that this nat-
ural rule corresponds to a rule already defined, in a totally different
way, in [9].

As it can be observed, RMSA, RMCSA and RMWA are majority-
preserving (the proof is straightforward for the first two ones and
easy for the third one).

2.3 A rule inspired from the “ranked pairs”
voting rule

The following rule is inspired from the ranked pairs rules in vot-
ing theory [22]. It consists in fixing first the truth value for the
elements of the agenda with the largest majority, and iterate, con-
sidering the elements of the agenda in the decreasing order of the
number of agents who support them, and fix their value to the ma-
joritarian value as long as this is possible without producing an
inconsistency.

Definition 9 (ranked agenda) Let Y = {ϕ∈X |N(P,ϕ) > n
2}, and

let ≥P the complete weak order relation on Y defined by ϕ �P ψ
if N(P,ϕ) ≥ N(P,ψ). RRA(P) is defined as follows: A ∈ RRA(P) if
there exists a linear order � on X refining ≥ such that RA(�,P) =
A, where RA(�,P) is defined inductively by

• reorder the elements of Y following�, i.e., such that ϕσ(1) �
. . .ϕσ(m);

• D := /0;

• for k := 1 to m do: if D∪ {ϕσ(i)} is consistent then D :=
D∪{ϕσ(i)};
• RA(�,P) := D.

Example 5 Take again the same profile as in Example 1. We have
Y = {a,b,c,¬α,¬β}, and c ∼P ¬β >P a ∼P b ∼P ¬α (where ∼P
and >P are respectively the indifference and the strict preference
relations induced from �P). Therefore, we have to consider twelve
linear orders�1: c�¬β� a� b�¬α;�2:¬β� c� a� b�¬α;
�3: c � ¬β � a � ¬α � b; �4: ¬β � c � a � ¬α � b;etc. For
each one of these twelve linear orders, c and ¬β are considered
first (in any order). Since c∧¬β is consistent, at this point of the
construction we have D = {c,¬β} = {c,¬a∨¬b}. If a is con-
sidered next, then, since D∪ {a} is consistent, D is updated to
{a,c,¬a ∨¬b}. Note that

V
D ≡ a ∧¬b ∧ c; since D has only

one model, there is no need to go further. If b is considered
next (i.e., after c and ¬β) then D is updated to {b,c,¬a∨¬b},
which has only one model ¬abc. Lastly, if ¬α is considered
next (i.e., after c and ¬β) then D is updated to {¬α,c,¬a∨¬b},
which is equivalent to ¬α∧ c∧¬a∧¬b. Therefore, RRA(P) =
{{a,¬b,c,α,¬β},{¬a,b,c,α,¬β},{¬a,¬b,c,¬α,¬β}}.

2.4 Distance-based rules
Distance-based judgment aggregation rules [20, 18] are derived

from distance-based merging operators for belief bases [12, 11].
The definition we give here is the same as in [9] (who call it “syn-
tactic distance-based belief merging”) and is slightly different (and
more widely applicable) than the definition in [20, 18].

Let ΦX be the set of all complete and consistent judgment sets
formed from X , that is, the set of all consistent judgment sets con-
taining either ϕ or ¬ϕ for each ϕ ∈ [X ]. Let d : ΦX ×ΦX 7→ R+

be a distance function between judgment sets from ΦX .4 Let
4We recall that d is a distance function if and only if for all
A,A′,A′′ ∈ ΦX we have (i) d(A,A′) = 0 if and only if A = A′, (ii)
d(A,A′) = d(A′,A), and (iii) d(A,A′)+d(A′,A′′)≥ d(A,A′′).

� : (R+)n 7→R+ be a symmetric, non-decreasing aggregation func-
tion such that, for every x, y, x1, . . . ,xn ∈ R, has the follow-
ing properties: �(x, . . . ,x) = x; �(x1, . . . ,xn) = 0 if and only if
x1 = . . . = xn = 0. The distance-based judgment aggregation rule
Rd,� induced by d and � is defined by:

Rd,�(A1, . . . ,An) = argmin
A∈ΦX

�(d(A,A1), . . .d(A,An)).

Here we consider only � = ∑ and � = max, and the Hamming
distance dH on complete judgment sets, defined as dH(A,A′) = |A\
A′|+ |A′ \A|. 5 Therefore we consider the two rules RdH ,∑ and
RdH ,max, which reduce to only one after the following easy result is
established:

Proposition 1 RdH ,∑ and RMWA are equivalent.

PROOF. Given two complete judgment sets A and A′, and ϕ∈X ,
define h(ϕ,A,A′) = 1 if ϕ ∈ (A \A′)∪ (A′ \A) and h(ϕ,A,A′) = 0
otherwise.

Now, for any profile P = 〈A1, . . . ,An〉 and any complete judg-
ment set A, we have

∑n
i=1 dH(A,Ai)

= ∑n
i=1 ∑ϕ∈X h(ϕ,A,Ai)

= ∑n
i=1
(
∑ϕ∈A h(ϕ,A,Ai)+∑ϕ6∈A h(ϕ,A,Ai)

)
= ∑n

i=1
(
∑ϕ∈A h(ϕ,A,Ai)+∑¬ϕ∈A h(ϕ,A,Ai)

)
= ∑n

i=1
(
∑ϕ∈A h(ϕ,A,Ai)+∑ϕ∈A h(¬ϕ,A,Ai)

)
= ∑ϕ∈A

(
∑n

i=1 h(ϕ,A,Ai)+∑n
i=1 h(¬ϕ,A,Ai)

)
= ∑ϕ∈A (n−N(P,ϕ)+N(P,¬ϕ))
= ∑ϕ∈A 2(n−N(P,ϕ))
= 2n∗ |A|−2wP(A)

Therefore, ∑n
i=1 dH(A,Ai) is minimum if and only if A ∈

MWA(P), that is, wP(A) is maximum. Since every element of
MWA(P) is a complete judgment set, MWA(P) is equal to the set
of all complete judgment sets minimizing ∑n

i=1 dH(A,Ai), which
allows us to conclude that RdH ,∑ and RWMA are equivalent. �

As a consequence, RdD,∑ is majority-preserving. This is however
not the case for RdD,∑, which is the only one of our rules failing to
satisfy majority-preservation.

Proposition 2 RdH ,max is not majority-preserving.

PROOF. Consider the agenda X = {a,¬a,b,¬b} and P =
〈{a,b},{a,b},{¬a,¬b}〉. Then RdH ,max(P) = {{a,¬b},{¬a,b}};
however, P is majority-consistent and M(P) = {{a,b}}. �

3. (NON)INCLUSION RELATIONSHIPS
BETWEEN THE RULES

Proposition 3 We have the following diagram (Table 1), where inc
means “inclusion-wise incomparable”.

PROOF. 1. For all profiles P, TRMSA(P)⊆ TRMCSA(P).
If Y ⊂ [X ] is a maxcard consistent sub-preagenda (w.r.t. P) of
[X ] then it is also a maximal consistent sub-preagenda (w.r.t.
P). Now, if α ∈ TRMSA(P), then α is inferred in every max-
imal consistent sub-preagenda, and a fortiori in every max-
card consistent sub-preagenda, therefore α ∈ TRMCSA(P).

5We could also consider the “drastic distance” dD, defined as
dD(A,A′) = 0 if and only if A = A′ and dD(A,A′) = 1 otherwise.
Taking d = dD and�= Σ leads to a judgment aggregation rule that
selects the judgment sets given by the highest number of agents,
while taking �= max also leads to a rule of no interest.
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RMSA RMCSA RMWA RRA RdH ,max

RY inc inc inc inc inc
RMSA ⊆ ⊆ ⊆ inc
RMCSA inc inc inc
RMWA inc inc
RRA inc

Table 1: Inclusion relations between the judgment aggregation
rules.

2. For all profiles P, TRMSA(P)⊆ TRMWA(P).
If Y ⊂ [X ] is a consistent sub-preagenda maximizing wP(Y ),
then m(P↓Y ) is a maximal consistent subagenda (w.r.t. P).
Now, if α ∈ TRMSA(P), then α is inferred in every maximal
consistent sub-preagenda, and a fortiori in every maxweight
consistent subagenda, therefore α ∈ TRMWA(P).

3. For all profiles P, TRMSA(P) ⊆ TRRA(P). In the construction
of RRA(P), let Z be the subset of X composed of the ψk such
that δ∧ψk is consistent. Z is a maximal consistent subagenda
w.r.t. P (it is consistent by construction, and maximal be-
cause every time a formula ψk is rejected, it is because it
produces an inconsistency with the formulas already present
in δ). Now, if α ∈ TRMSA(P), then α is inferred in every
maximal consistent subagenda, and a fortiori in Z, therefore
α ∈ TRRA(P).

4. RdH ,max is incomparable with all of the five other rules.
Let R be a majority-preserving rule. Take the profile P as
in the proof of Proposition 2. Then a↔ ¬b ∈ TRdH ,max(P),
whereas a↔ ¬b 6∈ TR(P) (since a↔ b ∈ TR(P)); and a ∈
TR(P), whereas a 6∈ TRdH ,max(P). Therefore, RdH ,max is in-
comparable with all of the five other rules.

5. RY is incomparable with RMSA and RMCSA.
Consider the following profile P, with pre-agenda [X ] =
{a,a→ (b∨ c),b,c,a→ (d∨ e),d,e}, and three agents with
the following information sets:

a a→ (b∨ c) b c a→ (d∨ e) d e
+ + + − + + −
+ + − + + − +
+ − − − − − −

The majoritarian aggregation obtained from this profile is
B = {a,a→ (b∨ c),¬b,¬c,a→ (d ∨ e),¬d,¬e}. The min-
imal inconsistent subsets of B are {a,a→ (b∨ c),b,c} and
{a,a→ (d∨e),d,e}, therefore, there B has 10 maximal con-
sistent subsets: 9 containing a, two of the three formulas
{a→ (b∨ c),¬b,¬c} and two of the three formulas {a→
(d∨e),¬d,¬e}, and one equal to B\{a}. These 10 maximal
consistent subsets correspond to 10 maximal subagendas; the
only maxcard consistent subagenda is B \ {a}, and in this
subagenda of B, ¬a is inferred. Therefore, TRMCSA(P) |= ¬a.
Now, all sub-profiles of P of size two is majority-consistent,
and each of them accepts a, therefore TRY (P) |= a. Therefore,
RY and RMCSA are incomparable. For TRY (P) 6⊆ TRMSA(P),
take the same profile as above and note that a ∈ TRY (P) but
a 6∈ TRMSA(P). For TRMSA(P) 6⊆ TRY (P), assume the pre-agenda
is extended with another agenda item f , on which the agents
vote +, +, -. We have f ∈ TRMSA but f 6∈ TRY .

6. RMWA(P) is incomparable with RMCSA.
Take the following seven agent profile P:

a b a∧b
3× + + +
2× + − −
2× − + −

We obtain that RMWA(P) = {{a,b,a ∧ b}}, while
RMCSA(P) = {{a,b},{a,¬a ∨ ¬b},{b,¬a ∨ ¬b}}. Thus
a ∈ TRMWA(P) whereas a 6∈ TRMCSA(P). For the converse,
in the example of item 5, we have ¬a 6∈ TRMWA(P) and
¬a ∈ TRMCSA(P).

7. RRA(P) is incomparable with RMCSA.
Same profile P as in point 5 of this proof. We have that
TRRA(P) |= a. Hence a ∈ TRRA(P) whereas ¬a ∈ RMCSA(P),
see item 5.

8. RMWA(P) is incomparable with RY .
Consider the pre-agenda, introduced in [21]:
[X ] = {ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6,ϕ7,ϕ8,ϕ9,ϕ10,ϕ11,ϕ12,ϕ13,
ϕ14}. The set of admissible judgment sets ΦX is:
A1 = {ϕ1,¬ϕ2,¬ϕ3,ϕ4,¬ϕ5,¬ϕ6,ϕ7,¬ϕ8,¬ϕ9,ϕ10,¬ϕ11,
¬ϕ12,ϕ13,ϕ14}
A2 = {¬ϕ1,ϕ2,¬ϕ3,¬ϕ4,ϕ5,¬ϕ6,¬ϕ7,ϕ8,¬ϕ9,¬ϕ10,ϕ11,
¬ϕ12,ϕ13,ϕ14}
A3 = {¬ϕ1,¬ϕ2,ϕ3,¬ϕ4,¬ϕ5,ϕ6,¬ϕ7,¬ϕ8,ϕ9,¬ϕ10,¬ϕ11,
ϕ12,ϕ13,ϕ14}
A4 = {¬ϕ1,¬ϕ2,¬ϕ3,¬ϕ4,¬ϕ5,¬ϕ6,¬ϕ7,¬ϕ8,¬ϕ9,¬ϕ10,
¬ϕ11,¬ϕ12,¬ϕ13,ϕ14}
A5 = {¬ϕ1,¬ϕ2,¬ϕ3,¬ϕ4,¬ϕ5,ϕ6,¬ϕ7,ϕ8,¬ϕ9,¬ϕ10,
¬ϕ11,¬ϕ12,¬ϕ13,¬ϕ14}
Let the profile be P = (A1,A2,A3).

We have that RY (P) = {A1,A2,A3}, hence ϕ13 ∈ RY (P).
However, as it can be observed in Table 8, the agents are
unanimous on issue ϕ13, but the only judgment set selected
by Rd,∑(A1,A2,A3) is A4 and ¬ϕ13 ∈ A4.

A ∈ΦX dH(A,A1) dH(A,A2) dH(A,A3) ∑
A1 0 8 8 16
A2 8 0 8 16
A3 8 8 0 16
A4 5 5 5 15
A5 8 6 4 18

Table 2: The sum of Hamming distances from an element in the set
ΦX to each of the agent’s judgment sets. The judgment set chosen by
RMWA(P) is A4.

9. RRA(P) is incomparable with RY .
We do not have TRRA(P) ⊆ TRY (P) as a consequence of item
3 and 5. For the converse, consider the following profile P,
with pre-agenda [X ] = {p,q, p∧q,r,s,r∧ s, t} and 18 agents
into six different groups:

p q p∧q r s r∧ s t
1× + + + − + − +
3× + + + − + − −
4× + + + + − − −
2× + − − + − − −
4× + − − + + + +
4× − + − + + + +
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We easily check that the minimal number of agents to re-
move so as to make the profile majority-consistent is two,
and that these agents are the two agents of the fourth group.
Therefore, t ∈ TRY (P), whereas t 6∈ TRRA(P).

10. RRA(P) is incomparable with RMWA.
Same profile as in item 8. We have φ13 ∈ TRRA(P), whereas
¬φ13 ∈ TRMWA(P).

Gathering all results, we get the diagram.
�

4. SOCIAL CHOICE THEORETIC PROP-
ERTIES

We consider now some important social choice-theoretic proper-
ties for judgment aggregation, and identify which of our six rules
satisfy them. Note that obviously, all our six rules satisfy neutrality
and anonymity.

4.1 Unanimity
Dietrich and List [6] define unanimity as follows.

Definition 10 (Unanimity principle [6]) For all profiles
〈A1, . . . ,An〉 in the domain of the aggregation rule f and all
ϕ ∈ X, if ϕ ∈ Ai for all individuals i, then ϕ ∈ f (A1, . . . ,An).

Given that we consider nondeterministc rules, we have two ver-
sions of unanimity, whether the unanimously approved formula
must be in some collective judgment set (weak unanimity) or in all
judgment sets (strong unanimity). Let F be a judgment aggregation
rule.

Definition 11

• F satisfies weak unanimity if for every profile P =
〈A1, . . . ,An〉 and all ϕ∈ X, if ϕ∈ Ai for all i, then there exists
a judgment set A ∈ F(P) such that ϕ ∈ A.

• F satisfies strong unanimity if for every profile P =
〈A1, . . . ,An〉 and all ϕ ∈ X, if ϕ ∈ Ai for all i, then for all
judgment sets A ∈ F(P) we have ϕ ∈ A.

Clearly, strong unanimity implies weak unanimity.

Proposition 4

• RY satisfies strong (and weak) unanimity;

• RMSA satisfies weak unanimity but not strong unanimity;

• RMCSA does not satisfy weak (or strong) unanimity.

• RMWA does not satisfy weak (or strong) unanimity.

• RRA satisfies strong (and weak) unanimity.

• RdH ,max does not satisfy weak (or strong) unanimity.
PROOF. 1. RY satisfies strong (and weak) unanimity

Straightforward from the fact that if α is unanimously ac-
cepted by N, it is consequently unanimously selected by all
consistent subsets of N.

2. RMSA satisfies weak unanimity but not strong unanimity;
RMCSA does not satisfy weak (or strong) unanimity
Let P be a profile on an agenda X , and ϕ ∈ X such that all
agents in P agree on ϕ. There exists a maximal consistent
agenda containing ϕ, and in this subagenda P entails ϕ, there-
fore RMSA satisfies weak unanimity.

Now, consider again the profile P of point 5 of Proposition 3.
Because there is a maximal consistent subagenda of P con-
taining ¬a, RMSA does not satisfy strong unanimity, and be-
cause the only maxcard consistent subagenda of P contains
¬a (and does not contain a), RMCSA does not even satisfy
weak unanimity.

3. RMWA does not satisfy weak (or strong) unanimity

See again the counterexample can be found in [21], which
we presented in point 7 of the proof of Proposition 3.

4. RRA satisfies strong (and weak) unanimity
Let P be a profile and YP ⊆ X be the subset of the agenda
consisting of all elements on which there is unanimity among
the agents. Because individual judgment sets are consistent,
the conjunction of all elements of Y is consistent. Now, when
computing RRA(P), the elements of Y are considered first,
and whatever the order in which they are considered, they
are included in δ because no inconsistency arises. Therefore,
for all α ∈ YP and all J ∈ RRA(P), we have α ∈ J.

5. RdH ,max does not satisfy weak (or strong) unanimity
Consider the pre-agenda
[X ] = {a,b,c,d,(a∧b∧ c∧d)∨ (¬a∧¬b∧¬c∧¬d)︸ ︷︷ ︸

α

},

and the profile P = 〈A1,A2〉 consisting of these two judgment
sets: A1 = {a,b,c,d,α} and A2 = {¬a,¬b,¬c,¬d,α}. The
elements of ΦX and their distances to A1 and A2 are given in
Table 3. As it can be observed from the table, the RdH ,max(P)
selects all A∈ΦX for which max(dH(A,A1),dH(A,A2)) = 3.
For all such A it holds that α 6∈ A. Since α ∈ A1 and α ∈
A2, for this P, RdH ,max does not satisfy the weak unanimity
property.

A ∈ΦX dH(A,A1) dH(A,A2) max
{a,b,c,d,α} 0 4 4

{a,b,c,¬d,¬α} 2 4 4
{a,b,¬c,d,¬α} 2 4 4
{a,b,¬c,¬d,¬α} 3 3 3
{a,¬b,c,d,¬α} 2 4 4
{a,¬b,c,¬d,¬α} 3 3 3
{a,¬b,¬c,d,¬α} 3 3 3
{a,¬b,¬c,¬d,¬α} 4 2 4
{¬a,b,c,d,¬α} 2 4 4
{¬a,b,c,¬d,¬α} 3 3 3
{¬a,b,¬c,d,¬α} 3 3 3
{¬a,b,¬c,¬d,¬α} 4 2 4
{¬a,¬b,c,d,¬α} 3 3 3
{¬a,¬b,c,¬d,¬α} 4 2 4
{¬a,¬b,¬c,d,¬α} 4 2 4
{¬a,¬b,¬c,¬d,α} 4 0 4

Table 3: The max of Hamming distances from an element in
the set ΦX to each of the agent’s judgment sets.

�

4.2 Monotonicity
There are two monotonicity properties defined in the judgment

aggregation literature. The monotonicity on an agenda issue [3, 17]
and the monotonicity on a judgment set [5]. Here we consider only
monotonicity on an agenda issue, which corresponds to a form of
monotonicity in voting.
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Definition 12 (Monotonicity [3]) For all ϕ ∈ X, individual i and
pair of i-variant profiles 〈A1, . . . ,Ai, . . . ,An〉, 〈A1, . . . ,A∗i , . . . ,An〉 ∈
Dom(F), with ϕ 6∈ Ai and ϕ ∈ A∗i , [ϕ ∈ A for some A ∈
F(A1, . . . ,An) implies ϕ ∈ A′ for some A′ ∈ F(A1, . . . ,A∗i , . . . ,An)]

Five of our rules satisfy a property related to monotonicity,
namely, insensitivity to reinforcement of approved formulas. The
exception is RdH ,max.

Definition 13 Let P be a profile over X and α ∈ X. P′ is called an
α-improvement of P if P′ = (A′i,A−i) where (a) ¬α ∈ Ai and A′i =
(Ai \{¬α})∪{α}), and (b) A′i is consistent. R satisfies insensitivity
to reinforcement of approved formulas if for all profiles P such that
α ∈ TR(P) and all α-improvements P′ of P, we have R(P′) = R(P).

Proposition 5 RMSA, RMCSA, RMWA and RRA satisfy insensitivity
to reinforcement of approved formulas. RdH ,max does not satisfy
this property.

PROOF. 1. We consider RMSA. Assume that α ∈ TRMSA(P).
Let X ′ ⊆ X be a maximal agenda for which P↓X ′ is majority-
consistent. Because α ∈ TRMSA(P), we must have α ∈ X ′.
Obviously, P′↓X ′ is majority-consistent as well and moreover
m(P′↓X ′) = m(P↓X ′) (1). Moreover, it entails that all maximal
majority-consistent subagenda for P′ contain some maximal
majority-consistent subagenda for P′ (2). Now, let X ′ ⊆ X
be a maximal agenda for which P′↓X ′ is majority-consistent.
If α 6∈ m(P′↓X ′) then a fortiori α 6∈ m(P↓X ′), which contra-
dicts (2). Therefore, α ∈ m(P′↓X ′), and because of (2), it
is also a maximal majority-consistent subagenda for P. We
have shown that the maximal majority-consistent subagen-
das for P and P′ coincide, therefore RMSA(P) = RMCSA(P′).
The proof for RMCSA is similar.

2. Now, we consider RRA. Let α ∈ X and assume that
α ∈ TRRA(P). Then all subagendas in RRA(P) contains
α. Let P′ be an α-improvement of P. Then N(P′,α) >
N(P,α), N(P′,¬α) < N(P,¬α) , whereas for all ϕ 6= α,¬α,
N(P′,ϕ) = N(P,ϕ). Note that in ≥P′ , α appears either at an
earlier position or in the same position as in ≥P. Therefore,
if �′ be an order refining ≥P′ , when α is considered in �, it
must be consistent with D, otherwise there would be an or-
der � refining ≥P resulting in a subagenda not containing α.
Therefore α belongs to all subagendas in RA(P′).

3. We consider RdH ,max. Consider the pre-agenda [X ] =
{a,b,¬(a→ b)∨ (a∧b)︸ ︷︷ ︸

α

}6, and profile P for three agents:

voters a ¬a b ¬b α ¬α
1 − + − + − +
2 − + + − − +
3 + − + − + −

and its b-reinforcement (in the first voter’s judgment set) P′:

voters a ¬a b ¬b α ¬α
1 − + + − − +
2 − + + − − +
3 + − + − + −

As it can be observed from table 4, b ∈ TRdH ,max(P), since
RdH ,max(P) = {{¬a,b,¬α}}.
However, as it can be observed from Table 5, although b ∈
TRdH ,max(P′), it is not the case that RdH ,max(P) = RdH ,max(P′)
since RdH ,max(P′) = {{a,b,α},{¬a,b,¬α}}.

6Observe that α enforces that a holds.

A ∈ΦX dH(A,A1) dH(A,A2) dH(A,A3) max
{a,b,α} 3 2 0 3

{¬a,b,¬α} 1 0 2 2
{a,¬b,α} 2 3 1 3

{¬a,¬b,¬α} 0 1 3 3

Table 4: The max of Hamming distances from an element in
the set ΦX to each of the agent’s judgment sets in profile P.

A ∈ΦX dH(A,A′1) dH(A,A2) dH(A,A3) max
{a,b,α} 2 2 0 2

{¬a,b,¬α} 1 0 2 2
{a,¬b,α} 3 3 1 3

{¬a,¬b,¬α} 0 1 3 3

Table 5: The max of Hamming distances from an element in
the set ΦX to each of the agent’s judgment sets in profile P′.

4. We consider RMWA i.e., RdH ,∑. Let P be a profile P =
(A1, . . . ,Ak, . . . ,An) and its a α-reinforcement, a profile P′ =
(A′1, . . . ,A

′
k, . . . ,A

′
n) = (A1, . . . ,A∗k , . . . ,An). Let ΦX be the set

of all consistent and complete judgment sets over an agenda
X . For any B ∈ ΦX , we can write, without the loss of gener-
ality that

dH(B,A1)+, . . . ,+dH(B,Ak), . . . ,dH(B,An) = K(B)+dH(B,Ak)

and

dH(B,A′1)+, . . . ,+dH(B,A′k), . . . ,dH(B,A′n) = K(B)+dH(B,A∗k).

If α ∈ TRdH ,max(P), then for all A ∈ RdH ,Σ(P), we have that
α ∈ A.Assume that α ∈ TRdH ,max(P).

Observe that the distance dH can be defined as
∑ϕ∈A h(ϕ,A,Ai), where h(ϕ,A,Ai) = 0 if ϕ ∈ A and
ϕ ∈ Ai and h(ϕ,A,Ai) = 1 otherwise. Since for all i 6= k,
Ai = A′i, dh(A,Ai) = dh(A,A′i). Since A∗k\{α} = Ak\{¬α},
we have that dh(A,A∗k) = dh(A,Ak)−1. Consequently

n

∑
j=1

dH(A,A j) = K(A)+dH(A,Ak) (1)

and
n

∑
j=1

dH(A,A′j) = K(A)+dH(A,Ak)−1.

We can conclude that the winners for P′ have a lower score
than the winners for P.

By the definition of RdH ,∑, for all A◦ ∈ΦX , A◦ 6∈ RdH ,max(P):
n

∑
i=1

dH(A,Ai) <
n

∑
i=1

dH(A◦,Ai). (2)

Hence

K(A)+dH(A,Ak) < K(A◦)+dH(A◦,Ak). (3)

Assume that there exists among those A◦, one such that A◦ ∈
RdH ,Σ(P′) and A◦ 6∈ RdH ,σ(P). In this case

n

∑
i=1

dH(A,A′i)≥
n

∑
i=1

dH(A◦,A′i). (4)
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From (4) it would follow that

K(A)+dH(A,Ak)−1≥ K(A◦)+dH(A◦,A′k). (5)

From (3) and (5) it follows that

K(A◦)+dH(A◦,A′k)+1≤ K(A◦)+dH(A◦,Ak). (6)

If ¬α ∈ A◦ then (6) is impossible (recall that A′k and Ak only
differ on the judgment for α, in that α ∈ A′k and ¬α ∈ Ak). If
α ∈ A◦ then

K(A◦)+dH(A◦,A′k)+1 = K(A◦)+dH(A◦,Ak).

However, since K(A◦) + dH(A◦,Ak) > K(A) + dH(A,Ak),
and the winners of RdH ,Σ(P′) have a lower score than the win-
ners of RdH ,Σ(P), it cannot be the case that A◦ ∈ RdH ,Σ(P′).

�

As for RY , reinforcement is not satisfied. Consider the agenda
X = {a,¬a,b,¬b,a∧b,¬(a∧b),c} and the profile P

Voters a ¬a b ¬b a∧b ¬(a∧b) c ¬c
1,2 + − + − + − + −
3,4 + − − + − + + −

5 + − − + − + + −
6,7,8,9 − + + − − + − +

P is not majority consistent and we obtain that RY (P) = {{b,¬(a∧
b)}} by removing one of the judgment sets {a,¬b,¬(a ∧ b),c}
from P. Consequently {¬a,b,¬(a∧ b)} ∈ TRY (P). Consider now
the profile P′, which is a ¬a-reinforcement on P (in the judgment
set of the 5th voter).

Voters a ¬a b ¬b a∧b ¬(a∧b) c ¬c
1,2 + − + − + − + −
3,4 + − − + − + + −

P′ is majority consistent and we obtain RY (P) = {{¬a,b,¬(a∧
b),r}}. Consequently {¬a,b,¬(a∧ b),r} ∈ TRY (P′) and RY (P) 6=
RY (P′)

4.3 Separability
We define a judgment aggregation version of the separability

property defined by [23]. The same property is called consistency
in [24]. It is also sometimes called reinforcement.

Definition 14 (Separability) For all profiles P1,P2 ∈ Dom(F),
with P1 = 〈A1, . . . ,An1〉 and P2 = 〈B1, . . . ,Bn2〉, we define P1 + P2
as the n1 + n2-profile 〈A1, . . . ,An1 ,B1, . . . ,Bn2〉. Then we say that
a rule R satisfies separability if for every judgment sets P1,P2 such
that α ∈ TR(P1) and α ∈ TR(P2), then α ∈ TR(P1∪P2).

Proposition 6 None of the six aggregation rules RY , RMSA, RMCSA,
RMWA and RRA and RdH ,max satisfies separability.

PROOF. A single profile will suffice for the first five rules: let
X = {p,¬p,q,¬q, p∨ q,¬p∧¬q} and the 10-voter profile as fol-
lows: voters p ¬p q ¬q p∨q ¬p∧¬q

1,2,3 + − − + + −
4,5 − + − + − +

6,7,8 − + + − + −
9,10 − + − + − +

Consider also the two subprofiles P1 consisting of voters 1 to
5 and P2 consisting of voters 6 to 10. Note first that P1 and

P2 are majority-consistent, and that their majoritarian aggrega-
tion is m(P1) = {p,¬q, p∨ q} and m(P2) = {q,¬p, p∨ q}. Since
the five aggregation rules satisfy majority-consistency, for all R ∈
{RY ,RMSA,RMCSA,RMCIS,RRA} we have R(P1) = {{p,¬q, p∨q}}
and R(P2) = {{q,¬p, p∨q}}; therefore, p∨q∈ TR(P1) and p∨q∈
TR(P2). Now, we claim that p∨q 6∈ TR(P1∪P2) = TR(P).

• RMSA: note first that m(P) = {¬p,¬q, p ∨ q}. There are
three maximal subagendas for P, namely {p,¬p,q,¬q},
{p,¬p, p∨q,¬p∧¬q} and {q,¬q, p∨q,¬p∧¬q}. Whereas
p∨ q is inferred in the latter two, it is not in the first one,
therefore p∨q 6∈ TRMSA(P).

• RMCSA: same proof, noticing that the two maximal subagen-
das are also maxcard subagendas.

• RMCIS: we have N(P, p) = 3, N(P,¬p) = 7, N(P,q) = 3,
N(P,¬q) = 7, N(P, p∨ q) = 6 and N(P,¬(p∨ q)) = 4. The
only consistent subagenda of X of maximum weight is
{¬p,¬q,¬(p∨q)}, therefore p∨q 6∈ TRMCIS(P).

• RRA: reordering the elements of X following � we get ¬p,
¬q, p∨q, ¬p∧¬q, p, q; therefore RRA(P) = {¬p,¬q,¬p∧
¬q}, and RRA(P) 6|= p∨q.

• RY : the maxcard consistent subsets of judgments are all
subsets of voters containing {4,5,9,10} and exactly two
among {1,2,3} and two among {6,7,8}. Therefore RY (P) =
{{¬p,¬q,¬p∧¬q}}, and p∨q 6∈ TRRA(P).

Finally, we consider RdH ,max. Consider the pre-agenda [X ] =
{p,q,r, p→ (q∧ r)}, and the 5-voter profile P:

voters p q r p→ (q∧ r)
1,2,3 + + − −
4,5 + + + +

Consider also the two sub-profiles P1 consisting of voters 1,
2 and 3, and P2 consisting of voters 4 and 5. Observe that
RdH ,max(P1) = {{p,q,¬r,¬(p → (q ∧ r))}} and RdH ,max(P2) =
{{p,q,r, p→ (q∧ r)}} , thus p ∈ TRdH ,max(P1) and p ∈ TRdH ,max(P2).
However, RdH ,max(P) = {{p,q,¬r,¬(p → (q ∧ r))},{p,q,r, p →
(q∧r)},{¬p,q,¬r, p→ (q∧r)},{p,¬q,r,¬(p→ (q∧r))}}, there-
fore p 6∈ TRdH ,max(P). �

5. CONCLUSION
We have studied six judgment aggregation rules (two of which

were not totally new, but had not been studied from the point of
views of the properties we considered). Table 5 summarizes the re-
sults on the properties considered for the rules. We also considered
the possible inclusion relations between the presented rules, which
were summarized in Table 1.

With the rules we propose we have not exhausted all the possibil-
ities for judgment aggregation rules. For example, the Young rule
RY can be refined further; more distance-based rules can be spec-
ified by other pairs of distance measure and aggregation function
already featured in [11, 18]. The pool of interesting and signifi-
cant judgment aggregation rule properties is not exhausted either.
Lastly, it is vital to consider the computational properties of the
rules we introduce, such as complexity of winner determination
(see [9]). Another issue that we need to investigate is the strategic
aspect of our aggregation rules (as done in judgment aggregation
[3], that is, how voters can strategically submit insincere judgment
sets in order to induce specific outcomes. These computational and
manipulation issues will be addressed in a companion paper.
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Majority
Pres.

Weak
Unan.

Strong
Unan.

Reinf.
App. F.

Separ.

RY X X X X no
RMSA X X no X no
RMCSA X no no X no
RMWA X no no X no
RRA X X X X no

RdH ,max no no no no no

Table 6: Summary of the results for the social theoretic prop-
erties of the judgment aggregation rules.
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