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ABSTRACT
This paper presents a logic for reasoning about informa-
tion change in multi-agent settings based on epistemic arrow
deletion in Kripke models.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General—Philosophical foun-
dations; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Modal logic, Repre-
sentation languages; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Theory

Keywords
Public announcement logic, Dynamic Epistemic Logic, up-
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1. INTRODUCTION
There are two main lines of work on modal logics for public

announcements. The first, due to Plaza [10, 11], defines the
public announcement of ϕ as the operation [ϕ]p on Kripke
models that deletes all ¬ϕ-worlds (along with any epistemic
arrows pointing to or from these worlds). The second, due
to Gerbrandy and Groeneveld (GG) [6], defines the public
announcement of ϕ as the operation [ϕ]g on Kripke mod-
els that deletes only the epistemic arrows that lead to ¬ϕ-
worlds. Plaza’s line of work led to the development of the
popular approach to Dynamic Epistemic Logic (DEL) due
to Baltag, Moss, and Solecki [1, 2, 13]. The BMS approach
defines operations on Kripke models that, intuitively speak-
ing, perform a finite number of Plaza announcements, each
of which an agent may entertain as one of the possible can-
didates for the one Plaza announcement that did in fact
occur. BMS updates can be used to reason about a variety
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of communicative types, including public and private com-
munications, those with and without deception, and many
others [1, 12, 13].

Plaza announcements and their BMS generalizations are
based on the principle of deleting worlds, whereas GG an-
nouncements are based on the principle of deleting arrows.
In a previous paper [8], we the authors argued that it is
sometimes more convenient to delete arrows than it is to
delete worlds. This led us to a generalization of GG an-
nouncements based on our notion of arrow updates. Ar-
row updates specify a partition of epistemic arrows into
two categories: those we want to keep and those we want
to delete. This specification consists of a finite number of
triples (ϕ, a, ϕ′) indicating that the a-arrows pointing from
ϕ-worlds to ϕ′-worlds are to be kept; arrows that do not
meet the conditions of any triple are to be deleted. Arrow
updates define operations on Kripke models in which, intu-
itively speaking, agents respond to new information accord-
ing to a common arrow-deletion policy that can be identified
with a certain multi-agent belief change. While we showed
that every arrow update produces a model-change operation
equivalent to the change produced by a BMS update [8],
common knowledge of the arrow update arrow-deletion pol-
icy seems to make it impossible for arrow updates to express
private communications familiar from the BMS framework.

In this paper, we extend our previous work by develop-
ing GAUL, the theory of Generalized Arrow Update Logic
(Section 2). GAUL arrow updates generalize our previous
work by dropping the assumption of a common update pol-
icy, allowing us to prove that arrow updates are just as ex-
pressive as BMS updates (Section 3). There is therefore
a perfect match between the BMS generalization of Plaza
announcements and our arrow update generalization of GG
announcements. Further, we show that GAUL arrow updates
are at worst poly-exponentially less succinct than BMS up-
dates, though this improves to being at worst polynomi-
ally less succinct if the Plaza announcements making up the
BMS updates do not themselves contain additional BMS up-
dates or if we allow arrow updates to contain BMS updates
(Section 3). We also show that GAUL arrow updates are
sometimes exponentially more succinct than BMS updates
(Section 3). We then provide some concrete examples of
scenarios in which we believe it is more convenient to use
GAUL than it is to use DEL (Section 4), and we indicate
some directions for further study (Section 5).

2. GAUL SYNTAX AND SEMANTICS
The starting point of GAUL is multi-modal epistemic logic,
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which is interpreted over Kripke models. We fix a finite
nonempty set A of agents and a nonempty set P of proposi-
tional variables. A Kripke model M is a tuple (WM , RM , VM )
consisting of a nonempty set WM of worlds, an epistemic
possibility function RM : A × WM → ℘(WM ) (notation:

RMa (w)
def
= RM (a,w)), and a propositional valuation VM :

P → ℘(WM ). A Kripke model M and world w ∈WM form
a pointed Kripke model (M,w) with point w.

The central notion in the semantics of GAUL is the pointed
arrow update (U, o), which consists of an arrow update U
and the point o. Each pointed arrow update prescribes an
operation on Kripke models that may be identified with a
multi-agent belief change. When (U, o) occurs at a pointed
Kripke model (M,w), the arrow update U specifies a set
OU of possible outcomes. One of these is the actual out-
come o ∈ OU—the point of (U, o)—though there may be
other outcomes in OU as well. Each outcome o′ ∈ OU gen-
erates an o′-indexed copy (w, o′) of world w; this copy is to
be thought of as the way world w would come to be if o′

were the actual outcome. Outcomes o′ ∈ OU also generate
copies of the other worlds v ∈ WM in the same way. For
each agent a ∈ A and outcome o1 ∈ OU , the arrow update
U specifies a finite set aUa (o1) of triples (ϕ1, o2, ϕ2) indicat-
ing that an existing a-arrow in M from world v1 to world
v2 will bring about an a-arrow from copy (v1, o1) to copy
(v2, o2) if and only if v1 satisfies the source condition ϕ1

and v2 satisfies the target condition ϕ2. In this way, agent
uncertainty between worlds in M is carried over to outcome-
indexed copies of those worlds if and only if the original
worlds meet at least one source-and-target specification for
the corresponding outcomes. Hence we may specify a dif-
ferent arrow-deletion policy for each agent and each pair of
outcomes. This allows us to drop the assumption of common
arrow-deletion policy that was present in our previous work
on single-outcome arrow updates (where |OU | = 1) [8].1

Definition 2.1 (Arrow Update). Let L be a language.
An arrow update U for L is a pair (OU , aU ) consisting of
a finite nonempty set OU of outcomes and an arrow func-
tion aU : A × OU → L × OU × L having a finite graph

(notation: aUa (o)
def
= aU (a, o)). The tuple (ϕ, o′, ϕ′) ∈ aUa (o)

is an a-arrow with source o, source condition ϕ, target o′,
and target condition ϕ′. An arrow update U for L and an
outcome o ∈ OU form a pointed arrow update (U, o) for L
with point o. Let U (L) be the set of arrow updates for L
and U∗(L) be the set of pointed arrow updates for L.

To obtain the language of GAUL, we extend the language
of multi-modal logic by adding pointed arrow updates as
modal operators.

1Agent a’s arrow-deletion policy is common knowledge in a
single-outcome arrow update U with outcome set OU = {o}
because a has exactly one arrow-deletion policy aUa (o) for the
one and only possible outcome o ∈ OU , the only outcome the
agents commonly consider possible. A single-outcome arrow
update U with outcome set OU = {o} may be identified
with the finite set

⋃
a∈A {(ϕ, a, ϕ′) | (ϕ, o, ϕ′) ∈ aUa (o)}. A

triple (ϕ, a, ϕ′) in this set indicates that a-arrows in a Kripke
model M from ϕ-worlds to ϕ′-worlds are to be kept; arrows
in M that do not satisfy the conditions of any triple in the
set are to be deleted. We used finite sets of this form in our
previous work on single-outcome arrow updates [8].

Axiom Schemes

CL. Classical Propositional Logic

BK. 2a(ϕ→ ψ) → (2aϕ→ 2aψ)

U1. [U, o]p↔ p for p ∈ P

U2. [U, o]¬ϕ↔ ¬[U, o]ϕ

U3. [U, o](ϕ ∧ ψ) ↔ ([U, o]ϕ ∧ [U, o]ψ)

U4. [U, o]2aϕ↔
∧

(ψ,o′,ψ′)∈aU
a (o)(ψ → 2a(ψ′ → [U, o′]ϕ))

Rules

ϕ→ ψ ϕ
ψ

(MP)
ϕ

2aϕ
(BN)

ϕ
[U, o]ϕ

(UN)

Table 1: The theory GAUL

Definition 2.2 (Language of GAUL). Let L 0 be the
language of multi-modal logic built up from atoms in P us-
ing negation ¬, conjunction ∧, and an epistemic modal 2a
for each a ∈ A . Other Boolean and modal connectives are
defined as usual. By induction on i, define language L i+1

to be the set of formulas ϕ formed by the grammar

ϕ ::= ψ | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | [U, o]ϕ ,

where ψ ∈ L i, a ∈ A , and (U, o) ∈ U∗(L i). Finally,

define the set L
def
=
⋃
i∈N L i of formulas of GAUL, the set

U
def
= U (L ) of arrow updates, and the set U∗

def
= U∗(L )

of pointed arrow updates. To say that ϕ ∈ L is reduced
means that ϕ ∈ L 0.

Definition 2.3 (Semantics of GAUL). The binary truth
relation |= between pointed Kripke models and formulas is
defined by induction on formula construction. The classical
cases are defined as usual; the modal cases are defined as
follows.

• M,w |= 2aϕ means M,w′ |= ϕ for each w′ ∈ RMa (w).

• M,w |= [U, o]ϕ means M ∗U, (w, o) |= ϕ, where M ∗U
is defined as follows.

WM∗U def
= WM ×OU

RM∗Ua ((w, o))
def
= {(w′, o′) ∈ RMa (w)×OU |

∃(ϕ, o′, ϕ′) ∈ aUa (o) :

(M,w |= ϕ & M,w′ |= ϕ′)}
VM∗U (p)

def
= VM (p)×OU

Validity in a model M |= ϕ means M,w′ |= ϕ for each
w′ ∈WM . Validity |= ϕ means M ′, w′ |= ϕ for each pointed
Kripke model (M ′, w′).

The axiomatic theory GAUL is defined in Table 1.

Theorem 2.4. ` ϕ implies |= ϕ for each ϕ ∈ L .

Proof. We will only show soundness of Axiom U4. From
left to right. Take an arbitrary pointed Kripke model (M,w)
and suppose that M,w |= [U, o]2aϕ. Also take an arbitrary
a-arrow (ψ, o′, ψ′) ∈ aUa (o) and suppose that M,w |= ψ.
All that remains to be shown at this point is that M,w |=
2a(ψ′ → [U, o′]ϕ). In order to show this, take an arbi-
trary w′ ∈ RMa (w) and suppose that M,w′ |= ψ′. Now it
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follows that (w′, o′) ∈ RM∗Ua ((w, o)). From our initial as-
sumption, we can infer that M ∗U, (w, o) |= 2aϕ. Therefore
M ∗ U, (w′, o′) |= ϕ. Hence, M,w |= ∧

(ψ,o′,ψ′)∈aU
a (o)(ψ →

2a(ψ′ → [U, o′]ϕ)).
From right to left. Take an arbitrary pointed Kripke

model (M,w) and suppose that M,w |= ψ → 2a(ψ′ →
[U, o′]ϕ) for each (ψ, o′, ψ′) ∈ aUa (o). Consider the model
M ∗U and take an arbitrary (w′, o′) ∈ RM∗Ua ((w, o)). There
must be an a-arrow (ψ, o′, ψ′) ∈ aUa (o) such that M,w |= ψ
and M,w′ |= ψ′. So it must be that M,w |= 2a(ψ′ →
[U, o′]ϕ), and therefore M,w′ |= [U, o′]ϕ. Therefore M ∗
U, (w′, o′) |= ϕ. Hence, M,w |= [U, o]2aϕ.

The proof that GAUL is complete with respect to the se-
mantics of the previous section is typical for Dynamic Epis-
temic Logic [5, 7, 10, 13]. First, we prove the Reduction The-
orem: each formula ϕ ∈ L can be translated to a provably
equivalent, arrow-update–free “reduced” formula ϕ◦ ∈ L 0.
This is proved by induction on i with ϕ ∈ L i using modal
reasoning and the so-called reduction axioms U1–U4. We
then use this result, soundness, and completeness of the un-
derlying modal logic (in this case, multi-modal K) to prove
completeness for GAUL. Since these arguments are standard
in Dynamic Epistemic Logic [5, 7, 10, 13], we omit proofs
here.

Theorem 2.5 (GAUL Reduction). For each ϕ ∈ L ,
there is a reduced ϕ◦ ∈ L 0 such that ` ϕ↔ ϕ◦.

Theorem 2.6. |= ϕ implies ` ϕ for each ϕ ∈ L .

3. CONNECTIONS WITH DYNAMIC EPIS-
TEMIC LOGIC

Since GAUL is just as expressive as ordinary epistemic
logic (Theorems 2.4 and 2.5), and the same has been es-
tablished for DEL (see Theorem 3.5 below), it follows that
GAUL and DEL are also equally expressive. But while this
notion of expressivity concerns the formulas of these log-
ics, we shall focus in this section on the expressivity of the
updates of these logics. By establishing this connection be-
tween the updates in these logics, one can be confident that
both approaches will remain equally expressive even when
we extend these logics by adding other operators such as
common knowledge. We will first present DEL and then
prove that DEL and GAUL can express the same updates.
We shall then study the relative succinctness with which
these two frameworks express updates.

3.1 DEL Syntax and Semantics
This subsection contains a brief review of DEL. The cen-

tral notion in DEL is that of an action model. The idea,
originally put forward by Baltag, Moss, and Solecki [1, 2],
is that one can model epistemic actions by an action model
in the same way as one can model epistemic situations by a
Kripke model. An action model is like a finite Kripke model
except that the worlds are called events and the proposi-
tional valuation is replaced by a precondition function that
assigns a formula, called a precondition, to each event.

Definition 3.1 (Action Model). Let L be a language.
An action model A for L is a tuple (EA, RA, preA) consisting
of a finite nonempty set EA of events, an epistemic possi-

bility function RA : A × EA → ℘(EA) (notation: RAa (e)
def
=

RA(a, e)), and a precondition function preA : EA → L as-
signing a precondition preA(e) ∈ L to each event e ∈ EA.
An action model A for L and an event e ∈ EA form a
pointed action model (A, e) for L with point e. Let A(L)
be the set of action models for L and A∗(L) be the set of
pointed action models for L.

To obtain the language of DEL, we extend the language of
multi-modal logic by adding pointed action models as modal
operators.

Definition 3.2 (Language of DEL). Set L 0
DEL

def
= L 0.

By induction on i, we define the language L i+1
DEL to be the set

of formulas ϕ formed by the grammar

ϕ ::= ψ | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | [A, e]ϕ ,

where ψ ∈ L i
DEL, a ∈ A , and (A, e) ∈ A∗(L i

DEL). Finally,

define the set LDEL
def
=
⋃
i∈N L i

DEL of DEL-formulas, the set

A
def
= U (LDEL) of action models, and the set A∗

def
= U∗(LDEL)

of pointed action models. To say that ϕ ∈ LDEL is reduced
means that ϕ ∈ L 0

DEL = L 0.

Definition 3.3 (Semantics of DEL). We extend the
binary truth relation |= from Definition 2.3 by adding the
following inductive clause.

• M,w |= [A, e]ϕ means we have that M,w 6|= preA(e) or
M [U ], (w, e) |= ϕ, where M [U ] is defined as follows.

WM [U ] def
= {(v, f) ∈WM × EA |M, v |= preA(f)}

R
M [U ]
a ((v, f))

def
= {(v′, f ′) ∈WM [U ] |

v′ ∈ RMa (v) & f ′ ∈ RAa (f)}
VM [U ](p)

def
= {(v, f) ∈WM [U ] |M, v |= p}

Verifying that M [U ] is a Kripke model whenever M,w |=
preA(e) is straightforward.

The core semantic definition (due to Baltag, Moss, and
Solecki [1, 2]) is the so-called “product update” operation
M 7→ M [A] on Kripke models. We note that if M,w 6|=
preA(e), then a formula of the form [A, e]ϕ is vacuously true
at (M,w). Said informally, if (M,w) does not satisfy the
precondition of e, then we need not “execute” the product
update in order to determine the truth of the formula [A, e]ϕ.

Definition 3.4. Let (M,w) be a pointed Kripke model.
To say that (A, e) ∈ A∗ is executable at (M,w) means
M,w |= preA(e). Given E ⊆ EA, we define the set

(M,w)A,E
def
= {e ∈ E |M,w |= preA(e)}

of events in E executable at (M,w).

Since a pointed action model (A, e) is not necessary ex-
ecutable at every pointed Kripke model (M,w), we think
of the operation (M,w) 7→ (M [A], (w, e)) as a partial func-
tion operating on pointed Kripke models. A pointed Kripke
model (M,w) is in the domain of the partial function in-
duced by pointed action model (A, e) if and only if (A, e) is
executable at (M,w).

The following is proved by the standard reduction axiom
method of Dynamic Epistemic Logic [3, 5, 7, 10, 13].

Theorem 3.5 (DEL Reduction). For each ϕ ∈ LDEL,
there is a reduced ϕ• ∈ L 0 such that |= ϕ↔ ϕ•.
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3.2 Update Expressivity
In this subsection, we prove that the class of Kripke model-

changing updates expressible using action models is the same
as those expressible using arrow updates. To define the ex-
pressivity of updates, we present two adaptations of a no-
tion of action model equivalence due to van Eijck, Ruan,
and Sadzik [14].

Definition 3.6. Let A ∈ A and U ∈ U . To say that
A and U are partial-update equivalent means that there
exists a pair (e, o) ∈ EA × OU , called a partial-witness,
satisfying the property that for each pointed Kripke model
(M,w) at which (A, e) is executable, (M [A], (w, e)) and (M ∗
U, (w, o)) are bisimilar. To say that A and U are update
equivalent means that there is an (E, o) ∈ ℘(EA) × OU ,
called a witness, satisfying the property that for each pointed
Kripke model (M,w), we have that (M,w)A,E 6= ∅ and
that (M [A], (w, e)) and (M ∗U, (w, o)) are bisimilar for each
e ∈ (M,w)A,E.

Partial-update equivalence says that the arrow update
must agree up to bisimulation with the action model only
on those pointed Kripke models on which the event mak-
ing up the partial-witness is executable. Intuitively, we look
for partial-update equivalence when we start with an action
model and are asked whether a given arrow update induces
a model-change operation yielding bisimilar output. Since
the events in an action model induce a partial (and not nec-
essarily total) functional operation on pointed Kripke mod-
els, we only require agreement up to bisimulation in those
cases where execution is possible. Update equivalence, on
the other hand, requires agreement up to bisimulation on
all pointed Kripke models. Intuitively, we look for update
equivalence when we start with an arrow update and are
asked whether a given action model induces a model-change
operation yielding bisimilar output. Since an arrow update
is always “executable,” agreement up to bisimulation on all
pointed Kripke models is required for (full) update equiva-
lence to hold. We formalize these intuitive descriptions by
way of the validities of the following theorem.

Theorem 3.7. Let A ∈ A, U ∈ U , and ϕ ∈ L ∪LDEL.

1. If A and U are partial-update equivalent with partial-
witness (e, o), then |= [A, e]ϕ↔ (preA(e)→ [U, o]ϕ).

2. If A and U are update equivalent with witness (E, o),
then |= [U, o]ϕ↔ ∧

e∈E [A, e]ϕ.

Proof. For ϕ ∈ L 0, use Definition 3.6; for ϕ ∈ L −
L 0, use Theorems 2.4 and 2.5; for ϕ ∈ LDEL − L 0, use
Theorem 3.5.

We now prove that every model-change operation describ-
able by a DEL action model is also describable by a GAUL
arrow update.

Theorem 3.8 (DEL to GAUL). Given a pointed action
model (A, e), the pair (e, e) is a partial-witness to the partial-
update equivalence between A and the arrow update U(A)
defined by

OU(A) def
= EA

aU(A) def
=

{(
(a, f), (>, f ′, preA(f ′)•

) |
(a, f, f ′) ∈ A × EA ×RAa (f)

}
.

Proof. Let (M,w) be a pointed Kripke model at which

(A, e) is executable. We prove that the identity ι : WM [A] →
WM∗U(A) is a bisimulation between (M [A], (w, e)) and (M ∗
U(A), (w, e)). Note that ι is well-defined because (v, f) ∈
WM [A] implies

(v, f) ∈WM × EA = WM ×OU(A) = WM∗U(A) .

Further, we have v ∈ VM [U ](p) iff v ∈ VM (p) iff v ∈
VM∗U(A)(p), and ι((w, e)) = (w, e) by definition.

Assume (v, f) ∈ domain(ι) and (v′, f ′) ∈ R
M [A]
a ((v, f)).

By DEL Reduction (Theorem 3.5), it follows that M, v′ |=
preA(f ′)•, that v′ ∈ RMa (v), and that f ′ ∈ RAa (f). By the
definition of U(A), the conjunction of the previous sentence

implies (v′, f ′) ∈ RMa (v) × OU(A) and (>, f ′, preA(f ′)•) ∈
a
U(A)
a (f) with M, v |= > and M, v′ |= preA(f ′)•. But the

latter implies (v′, f ′) ∈ RM∗U(A)
a ((v, f)).

Assume (v, f) ∈ image(ι) and (v′, f ′) ∈ RM∗U(A)
a ((v, f)).

It follows that M, v |= preA(f), that (v′, f ′) ∈ RMa (v) ×
OU(A), and that (>, f ′, preA(f ′)•) ∈ a

U(A)
a (f) with M, v′ |=

preA(f ′)•. By the definition of U(A) and DEL Reduction
(Theorem 3.5), we have that M, v |= preA(f), that M, v′ |=
preA(f ′), that v′ ∈ RMa (v), and that f ′ ∈ RAa (f). But the

latter is what it means to have (v′, f ′) ∈ RM [A]
a ((v, f)).

Theorems 3.7(1) and 3.8 yield the following corollary.

Corollary 3.9. |= [A, e]ϕ ↔ (preA(e) → [U(A), e]ϕ)
for each (A, e) ∈ A∗ and ϕ ∈ L ∪LDEL.

We now prove that every model-change operation describ-
able by a GAUL arrow update is also describable by a DEL
action model. We begin with a preliminary definition.

Definition 3.10. Let U be an arrow update and Φ(U) be
the set of GAUL-formulas that are a source or target condi-

tion in U . Set Φ±(U)
def
= Φ(U) ∪ {¬ϕ | ϕ ∈ Φ(U)}. To say

that a set Γ of GAUL-formulas is U -maxcons means that
Γ ⊆ Φ±(U), Γ is GAUL-consistent (i.e., Γ 0 ⊥), and no
Γ′ ⊆ Φ±(U) strictly containing Γ is GAUL-consistent. Let
mc(U) denote the collection of U-maxcons sets of GAUL-
formulas. Define action model A[U ] as follows.

EA[U ] def
= mc(U)×OU

R
A[U ]
a ((Γ, o))

def
= {(Γ′, o′) ∈ EA[U ] | ∃(ϕ, o′, ϕ′) ∈ aUa (o) :

(ϕ ∈ Γ & ϕ′ ∈ Γ′)}
preA[U ]((Γ, o))

def
= (

∧
Γ)◦

Theorem 3.11 (GAUL to DEL). Let M be a Kripke
model and U be an arrow update.

1. For each w ∈ WM , there is a unique Γw ∈ mc(U)
satisfying M,w |= (

∧
Γw)◦.

2. The function fUM : WM∗U → WM [A[U ]] defined by

fUM ((w, o))
def
= (w, (Γw, o)) is a total isomorphism be-

tween the Kripke models M ∗ U and M [A[U ]].

3. For each o ∈ OU , we have that U and A[U ] are update
equivalent with witness (mc(U)× {o}, o).

Proof. (1) and (2) follow by adapting proofs of these re-
sults for the case of single-outcome arrow updates appearing
in a previous paper by the authors [8]. (3) follows by (1) and
(2).
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Corollary 3.12. Let (U, o) ∈ U∗ and ϕ ∈ L ∪ LDEL.
For each pointed Kripke model (M,w), we have M,w |=
[U, o]ϕ↔ [A[U ], (Γw, o)]ϕ. Further, we have

|= [U, o]ϕ↔ ∧
Γ∈mc(U)[A[U ], (Γ, o)]ϕ .

Proof. Given a pointed Kripke model (M,w), we have
M,w |= (

∧
Γw)◦ by Theorem 3.11(1). By Theorem 3.11(3),

it follows that (M ∗U, (w, o)) and (M [A[U ]], (w, (Γw, o))) are
bisimilar. By Reduction (Theorems 2.4, 2.5, and 3.5), it fol-
lows that M,w |= [U, o]ϕ ↔ [A[U ], (Γw, o)]ϕ. Finally, to
see that |= [U, o]ϕ ↔ ∧

Γ∈mc(U)[A[U ], (Γ, o)]ϕ, apply Theo-

rems 3.11(3) and 3.7(2).

3.3 Update Succinctness
We showed in the previous subsection that DEL and GAUL

describe the same class of model-changing operations. How-
ever, it is not necessarily the case that they express these op-
erations with comparable succinctness. In fact, as we prove
below, arrow updates are at worst poly-exponentially less
succinct than action models, though this improves to be-
ing at worst polynomially less succinct if the action models
have purely epistemic preconditions (i.e., preconditions in
L 0) or if we allow arrow updates to have target conditions
in LDEL. We also show that arrow updates are sometimes
exponentially more succinct than action models. To prove
these results, we begin by defining the following notions of
length and size.

Definition 3.13 (Length & Size). The length of ϕ ∈
L 0, written len(ϕ), is the number of symbols occurring in
ϕ. The size of arrow update U ∈ U (L 0), written s(U),

is defined by s(U)
def
=
∑

((a,o),(ϕ,o′,ϕ′))∈aU (len(ϕ) + len(ϕ′)).

Define n(U)
def
= |OU | and m(U)

def
= |aU |. The size of ac-

tion model A ∈ A(L 0), also written s(A), is defined by

s(A)
def
= |RA|+∑e∈A len(preA(e)). Define n(A)

def
= |EA| and

m(A)
def
= |RA|.

It is possible to carry out a recursion that defines sizes
for all arrow updates and action models and lengths for
all GAUL- and DEL-formulas. The general scheme: stage
i + 1 size is defined in terms of stage i length (as in Defi-
nition 3.13), and the stage i + 1 length of ϕ is equal to the
number of symbols occurring in ϕ, except that pointed ar-
row update modals [U, o] and pointed action model modals
[A, e] are counted a number of times equal to the stage i+ 1
size of U or A, respectively. It then suffices to show that
the length or size of something at one stage is equal to its
length or size at all later stages.

We observe that every formula is of length at least 1. It
follows that s(U) > n(U) and s(U) > m(U) for each arrow
update U ; that is, the size s(U) of U is strictly greater than
both the number n(U) of outcomes in U and the number
m(U) of arrows in U . Similarly, s(A) ≥ n(A) and s(A) >
m(A) for each action model A; that is, the size s(A) of A is
no less than the number n(A) of events in A and is strictly
greater than the number m(A) of arrows in A.

Our concern here is to address the question of update suc-
cinctness. In particular, we report that arrow updates are
at worst poly-exponentially less succinct than action mod-
els, though this improves to being at worst polynomially less
succinct if the action models have purely epistemic precon-
ditions (i.e., preconditions all in L 0) or if we allow arrow

updates to have target conditions in LDEL. These results,
presented below in Theorem 3.14, are new. We also report
that arrow updates are sometimes exponentially more suc-
cinct than action models. This result, presented below in
Theorem 3.15, is a straightforward adaptation of an update
succinctness result for single-outcome arrow updates [8].

Theorem 3.14 (Worst-Case Update Succinctness).

Given action model A, define K
def
= maxe∈EA len(preA(e)).

1. Arrow update U(A), which is partial-update equivalent
to A (Theorem 3.8), has size O

(|A | · n(A)2 · 2K).
2. If A ∈ U (L 0), then arrow update U(A) has size

O
(|A | · n(A)2 ·K) .

3. If we allow LDEL target conditions in arrow updates
and modify the definition of U(A) (in Theorem 3.8) by
omitting the • operation, then arrow update U(A) has
size O

(|A | · n(A)2 ·K).
Proof. Let K′ def

= maxe∈EA len(preA(e)•). By inspec-
tion of the definition of U(A) from Theorem 3.8, we have
s(U(A)) ≤ |A | ·n(A)2 ·(1+K′). If A ∈ L 0, then preA(e)• =
preA(e) for each e ∈ EA and hence K′ = K. In general,
we have by inspection of the standard DEL reduction ax-

ioms [13] that len(preA(e)•) = O(2len(preA(e))). It also follows
by a result of Lutz [9] that we might have len(preA(e)•) ≥
2len(preA(e)) for some e ∈ EA. We therefore have K′ = 2K in
the general case. Finally, we observe that the argument for
(3) is like the argument for (1).

Letting x
def
= max{|A |, n(A),K}, the first upper-bound

in Theorem 3.14 is bounded above by the poly-exponential
x3 ·2x and second upper-bound in Theorem 3.14 is bounded
above by the polynomial x4.

The following theorem uses results from a previous paper
by the authors [8].

Theorem 3.15 (Exponential Update Succinctness).
Fix an agent a ∈ A and assume P = {pi | i ∈ N}. For each
k ∈ N, define arrow update

Uk
def
=
({o},{((a, o), (¬pi, o, pi)) | i ≤ k})

and action model Ak
def
= A[Uk].

1. s(Uk) = 3k + 3 and n(Ak) = 2k+1.

2. If an action model A is update equivalent to Uk, then
s(A) ≥ 2k+1.

Proof. (1) was proved in a previous paper by the authors
[8]. Since this argument is short and sweet, we repeat it here.
Proceeding, for each i ≤ k, the pair ((a, o), (¬pi, a, pi)) ∈ aU

contributes len(¬pi) + len(pi) = 3 to the size. Since k + 1
pairwise distinct pairs of this form occur in aU , it follows that
s(Uk) = 3k + 3. As for the size of Ak, we have Φ±(Uk) =
{pi,¬pi,¬¬pi | i ≤ k}. Hence for each i ≤ k, a Uk-maxcons
set has exactly one of the two sets {pi,¬¬pi} and {¬pi} as a
subset. Since a Uk-maxcons set is a union of k + 1 pairwise
disjoint sets, each of which has one of these two distinct
forms, it follows that n(Ak) = 2k+1.

We now prove (2). Let Ck be the k-dimensional epistemic

hypercube; that is, the worlds of Ck are the subsets of k̄
def
=
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{pi | i ≤ k}, we have R
Ck
i (w)

def
= ℘(k̄) for each i ∈ A and

w ∈ ℘(k̄), and w ∈ V Ck (p) iff p ∈ w. In a previous paper by
the authors [8], it is shown that if A is an action model with
n(A) < n(Ak) and E ⊆ EA is a set of events in A, then
there is a reduced formula ϕ ∈ L 0 and a world w in Ck
such that exactly one of

∧
e∈E [A, e]ϕ and [Uk, o]ϕ is true at

(Ck, w). Applying Theorem 3.7(2), it follows that A and Uk
are not update equivalent. Therefore, since s(A) ≥ n(A) for
every action model A, no action model A with s(A) < 2k+1

is update equivalent to Uk.

4. EXAMPLES
We showed in the previous section that DEL action mod-

els and GAUL arrow updates express the same model-change
operations. Moreover, our succinctness results also indicate
that it is sometimes more convenient to use arrow updates
than it is to use action models. In this section, we provide
further evidence of the utility of arrow updates by consid-
ering concrete model-change scenarios that we believe are
more conveniently represented using arrow updates. To de-
scribe these scenarios, we begin with some terminology. A
semi-private announcement of ϕ is a message that informs a
group G ⊆ A of the truth value of a formula ϕ while telling
the other agents in A − G that group G learned the truth
about ϕ without saying what it is that was learned. A pri-
vate announcement of ϕ is a message that informs a group
G ⊆ A that ϕ is true without providing any new informa-
tion to agents in A −G, not even the information that the
private announcement took place.

In this section, we will investigate semi-private and pri-
vate announcements in which the membership of the re-
cipient group G is not necessarily known. Situations in
which group membership is not necessarily known are said
to have nonrigid group membership [4]. A well-known ex-
ample of nonrigid group membership is the Simultaneous
Byzantine Agreement Problem [4, §6.3]. In this problem, a
group G ⊆ A of loyal agents must reach common knowledge
among themselves despite the malicious efforts of the group
A −G of traitors whose identities are unknown.

4.1 Nonrigid Semi-private Announcements
Professor Fickle divides his colleagues into two disjoint

groups: friends and foes. The professor changes his mind
all the time about which colleague goes in which group, so
a colleague generally does not know the group to which she
belongs. The professor celebrates his birthday each year by
having a party in his favorite pub or at his house, but he finds
it very hard to decide where to throw the party. On the day
before his birthday, he sends his friends the message where
the party is going to be. If a colleague is a friend, then the
colleague either gets the message “the party is in the pub”
or the message “the party is at my house”. Naturally the
professor does not send messages to his foes. We suppose
that Professor Fickle has used this invitation procedure for
as long as anyone can remember, and that the procedure
is therefore assumed to be common knowledge among his
colleagues.

Let A be the set of colleagues. Fix a propositional letter
q whose meaning is “the party is in the pub”. For each agent
a ∈ A , let pa be a (different) propositional letter whose
meaning is “agent a is a foe”. We define the arrow update
UI using the following diagram.

op oh

{(q, a, q)}a∈A

{(pa, a, pa)}a∈A

{(¬q, a,¬q)}a∈A

In this diagram, nodes are labeled by outcomes and each
arrow from an outcome o to an outcome o′ is labeled by a
set of triples (ϕ, a, ϕ′) indicating that (ϕ, o′, ϕ′) ∈ aUI

a (o).
Arrow update UI can be used to reason about the epistemic
affects of Professor Fickle’s invitation: op is the outcome
in which the message “the party is in the pub” is sent, and
oh is the outcome in which the message “the party is at
my house” is sent. Let M be the Kripke model defined by

WM def
= ℘({pa | a ∈ A } ∪ {q}), RMa (w)

def
= WM for each

(w, a) ∈ WM × A , and VM (p)
def
= {w ∈ WM | p ∈ w}. At

each world in the updated model M [UI ], we see that friends
know the location of the party, foes do not, and no one knows
whether someone else is a friend.

We think that the arrow update UI is a much more con-
venient representation of this scenario than is an update
equivalent action model representation. As an indication of
this convenience, we note that the Theorem 3.11-equivalent
action model A[UI ] is large in size when compared to the
size of UI . This suggest to us that arrow updates are a more
convenient means of reasoning about Professor Fickle’s in-
vitation, and, by way of extension, about semi-private an-
nouncements to nonrigid groups.2

4.2 Nonrigid Private Announcements
Suppose there is a secret society that communicates by

way of an anonymous online message board. Membership of
this secret society is itself a secret, meaning that an agent
knows whether she herself is a member but does not know
the identities of the other members. Suppose now that the
message q is posted on the message board. For simplicity,
we assume that all members instantly read and understand
any message posted on the board. q is therefore known by
all members of the society. But since no member knows the
identity of another member, no member knows of any other
person that knows q.

Let q be a propositional letter. For each agent a ∈ A ,
we let the (different) propositional letter pa mean “agent
a is not a member of the society”. Using the arrow update
drawing conventions from the previous subsection, we define
the arrow update Uq according to the following diagram.

o1 o2

{(q, a, q)}a∈A

{(pa, a, pa)}a∈A

{(>, a,>)}a∈A

2A natural update equivalent action model A suggested by
a referee has

EA
def
= {(q,G), (¬q,G) | G ⊆ A }

RAa ((x,G))
def
= {(y,H) | a ∈ G ∩H & x = y} ∪
{(y,H) | a /∈ G ∪H}

preA((x,G))
def
= x ∧ (

∧
a∈G ¬pa) ∧ (

∧
a∈A−G pa) .

However, we note that s(A) is exponential in the number
of agents, whereas s(UI) is linear in the number of agents.
For this reason, we believe that arrow update UI is a more
convenient representation of the Professor Fickle scenario
than is action model A.
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Arrow update Uq can be used to reason about the epis-
temic changes brought about as a result of q being posted
on the anonymous message board: o1 is used as the ac-
tual outcome, while o2 acts as a hypothetical outcome that
the agents mistakenly entertain as possible. Let the Kripke
model M be defined as in the previous subsection except
that, for each agent a ∈ A , the set RMa (w) consists of the
worlds w′ ∈ WM such that pa ∈ w if and only if pa ∈ w′.
This ensures that an agent always knows whether she is a
member. At each world in the updated model M [Uq] having
the form (w, o1), we see that members know q (and members
know that someone else knows q if she is a member), non-
members do not know q (nor do they consider it possible
that anyone knows q), and no one knows whether someone
else is a member. For similar reasons as in the previous sub-
section, we believe that the arrow update representation of
this and other private announcements to nonrigid groups is
preferable to an update equivalent action model representa-
tion.

5. CONCLUSION
We presented GAUL, our theory of generalized (i.e., multi-

outcome) arrow updates. We showed that arrow updates
and action models can express the same model-changing op-
erations. But mutual expressivity does not come for free.
In particular, arrow updates are at worst poly-exponentially
less succinct than action models, though this improves to
being at worst polynomially less succinct if the action mod-
els have purely epistemic preconditions (i.e., preconditions
all in L 0) or if we allow arrow updates to have target con-
ditions in LDEL. Further, arrow updates are sometimes ex-
ponentially more succinct than action models. These results
suggest that using arrow updates is more convenient than
using action models in certain cases. We also presented two
concrete examples, semi-private and private announcements
to nonrigid groups, in which we believe arrow updates are
preferable to action models.

One direction for further study is to adapt the authors’
arrow update-based notion of common knowledge for single-
outcome arrow updates [8] to the present generalized set-
ting. This work raises a number of interesting relative ex-
pressivity questions (comparing DEL with various common
knowledge notions to GAUL with these common knowledge
notions) that have yet to be studied beyond our prelimi-
nary investigation in [8]. Moreover, while we showed in this
paper that permitting multiple outcomes allows arrow up-
dates to express all action model-based updates, it remains
an open question as to how this result is affected if we place
a fixed upper-bound on the maximum number of allowable
outcomes. While we suspect that this causes the result to
fail, it has yet to be proved. In particular, we do not yet un-
derstand the exact update-expressive relationship between
action models and single-outcome arrow updates.
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