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ABSTRACT
We model games where players strategically exchange mes-
sages in a language for reasoning and strategically update
their reasoning. The language for the stage game incorpo-
rates awareness and knowledge and extends [14]’s proposi-
tional quantification to quantification over all sentences in
the language. The updating of reasoning is modeled as a
strategic choice of the players and the dynamics of the logic
provide constraints for this strategic update choice. A com-
munication game is constructed using an underlying incom-
plete information game, the strategic choice of messages and
the strategic and logic dynamics. Multiple games are de-
scribed varying by how the game theoretic type-space relates
to the language for reasoning.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal Logic; F.4.1 [Mathe-
matical Logic]: Proof Theory; I.2.3 [Artificial Intelli-
gence]: Deduction and Theorem Proving

General Terms
Economics, Theory

Keywords
Game Theory, Unawareness, Communication

1. INTRODUCTION
Communication in the form of the exchange of messages

is among the most prevalent of human activities. From
the physician to the corporate executive, individuals spend
much of their day sending, receiving and processing mes-
sages, messages that ultimately affect more substantial be-
havior. The exercise of writing of this paper involves the
author phrasing and ordering messages that try to convince
you to keep reading and to judge kindly this piece of work as
well as the author. And whether in a committee meeting, a
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paper, or a casual conversation, communication takes place
within a broader context of individuals’ preferences and pro-
cesses of reasoning. My objective, in this paper, is to model
the strategic exchange of messages.

I begin with a language, which represents the information
and views the players have about the state of the world. It is
natural to assume that players can say what they think, and
vice versa, hence the set of messages that might be commu-
nicated will be sentences in the language. While the players
may communicate what they know, or believe, it seems that
in many practical cases the players may communicate as-
pects of the state of the world that other players did not
consider. Hence, we ask that the awareness of the players
be part of the events considered. In particular, players may
reason about the unawareness of others. Reasoning about
the unawareness of others may lead a player to reason about
their own unawareness, especially if we wish the player to
expect to receive messages she was unaware of. Hence, we
call for a language that also allows a player to reason about
the extent of her own awareness.

Once the language is set, we turn to strategic interaction.
This involves the choice of message – the player’s action,
how a message impacts the reasoning of other players and
the message choices they might make – the dynamics of rea-
soning. Finally, payoffs are associated with the sequence of
messages sent and, most importantly, the concluding state
of reasoning in which we find the players. For example, con-
sider two players, Alice and Bob. Alice knows that a holds
and can send the message “a is true.” Bob knows a −→ b
holds. Assume the payoffs depend on whether the players
know b, know ¬b, Alice knows one and Bob neither, or vice
versa. If Alice sends the message“a is true,”Bob will have to
evaluate whether he should believe Alice, he needs to take
into account what he thinks about a, as well as what he
thinks Alice thinks about a −→ b, since if she is unaware
of this, it might make her message more reliable. In other
words, Bob needs to take into account Alice’s incentives for
sending this message. Hence, how Bob revises his beliefs is
a strategic decision intertwined with logic dynamics. The
main purpose of this paper is to disentangle the logic and
strategic considerations.

A communication game has the following structure. The
language we use is an extension of [14] who present a lan-
guage with awareness, knowledge as well as the ability to
quantify over propositional formulae, i.e. propositional quan-
tifiers. Our language adds the ability to quantify over all
sentences by adding high level quantifiers (a construction
that might be of separate interest). The stage game begins
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with the set of sentences each player is aware of, and has one
player choose a sentence to send to all other players. This
choice of message is purely game theoretic. We consider a
variety of incomplete information games associated with the
stage game. These allow us to consider probabilistic belief
and common priors, but they also allow us to connect the
game theoretic type-space to a model corresponding to the
logic at hand. We present ten possible constructions of in-
complete information game type spaces. Once a message is
chosen and sent, the game has to proceed to the next stage.
Here we have the players move from one collection of sen-
tences representing their reasoning to a new collection. We
assume that this move is also game theoretic, i.e., that the
players choose their new set of sentences. Obviously, this
choice cannot be independent of the reasoning rules of the
language. In fact, we may want to impose further dynamic
logic restrictions on this choice. To do so, we define the logic
dynamic constraints function which restricts the choices the
players can make as a function of the history of reasoning
and messages (or a model associated with them). We then
define the game theoretic choice of reasoning as a function of
the history and the player’s type in the corresponding incom-
plete information game, such that each player is restricted
to choose within the rules of the logic dynamic constraints
function. At the following stage of the game we associate
a new game theoretic type-space that agrees with the new
state of reasoning the players have chosen. This change in
type space is our one departure from standard game theo-
retic constructions which is needed to address the inherent
unawareness in the game.

The dynamics of reasoning are separated into a logic con-
straint on choice and a game theoretic choice within this
constraint. This separation allows us to treat the reasoning
about incentives, the uncertainties about players’ revision
of reasoning, and the choice of reaction to messages (e.g.
whether to believe), all within game theory. By considering
solutions to a game, game theory does not explicitly model
the process of reasoning leading to a particular behavior. In-
stead, it allows us to consider properties of behavior directly.
In our case, this implies that we can consider when players’
choice of reasoning revision corresponds to a solution with-
out detailing what dynamic logic rules would lead to the so-
lution. Characterizing behavior without fully detailing how
people actually/should reason and make choices, is one of
the attractive features of using game theory for modeling
realistic strategic interactions.

The strategic communication terminates with a resulting
state of reasoning for the players. It is this final state that
the messages were chosen to influence. Hence, the payoffs
are determined by what the players are aware of and know at
the end of the communication. For example, in a coordina-
tion setting the payoff could be set as the inverse of a metric
measuring the distance between players’ aggregate/common
knowledge (and/or awareness), or it could be the extent of
agreement they achieve regarding a particular event.

The approach to payoffs is game theoretic, in the sense
that there is no explicit reasoning about payoffs in the lan-
guage. Similarly, there is no explicit reasoning about the
strategic choice of messages or a formal reasoning process
leading the player towards message selection. It is only the
dynamics of reasoning that require both a logic and game
theoretic treatment since it is where the two are most in-
tertwined. On the one hand a message sent from Alice to

Bob would make it common knowledge that both are aware
of the message assuming we do not consider forgetfulness.
However, how Bob reasons about why Alice might have sent
the message and what deductions should he make about her
knowledge, awareness and reasoning about him, will depend
on Alice’s incentives, i.e. on the game theoretic solution
concept we use. At the same time, the solution we use must
take into account that behavior should be a function of the
reasoning the player can do. When Alice chooses a message
that is supposed to anticipate the reaction of Bob and the
ensuing payoffs, Alice can only make a choice based on what
she is aware of (or the extent to which she reasons about her
unawareness). Our solution is to take the rules imposed by
logic dynamics as constraints on the game theoretic choice
sets available to the players for revising their reasoning.

There is a vast literature considering strategic dynamic
communication. The purely game theoretic literature usu-
ally does not treat the content of the messages (see the dis-
cussion in [9]). However, logicians have an extensive collec-
tion of related results. These can be separated to models
of logic dynamics, message driven dynamics and awareness
dynamics. In [13], [15], [16], [26], [28], [29] and [30] logic for
awareness and dynamic awareness – becoming aware – are
extensively studied in a variety of settings. In addition, the
field of argumentation (and defeasible logic, see [20]) has a
long tradition of discussing the dynamics of messages, as well
as enlisting games to model the dynamics of sending mes-
sages as in [3], [4], [12], [22] and [23]. Argumentation theory
has focused on the applicability of the reasoning (e.g. for
legal deliberations, or contracting), however the game the-
oretic aspect is focused on the choice of a message rather
than the revision of reasoning is a choice (leading mostly to
a perfect information game setting).

The paper continues as follows. Section 2 presents the
language for reasoning and messages which is an extension
of [14] to quantification over arbitrary sentences. In sec-
tion 3 we define the messages that can be sent in the game.
Sections 4 defines the static game forms, i.e. a selection
of incomplete information games that can be used with the
communication game. Section 5 defines the logic constraints
function and suggests some possible properties it might have.
This is the function that restricts the game theoretic rea-
soning revision choices the players can make. In Section
6 the components above are brought together into game
forms. We construct the explicit communication game form
for three representative static game forms which vary in the
degree of relation between the game theoretic representation
and models in the language. Section 7 discusses solutions
and in particular the notion of best response in the various
communication games.

2. STATIC LANGUAGE
The language is constructed from a countable set of atomic

formulae (primitive propositions) denoted P = {p, q, ...}, a
disjoint countable set of variables denoted X = {x, y, ...}
and operators {¬,∧, KE

i , Ai, ∀n} for each player i ∈ I and
for n = 0, 1, 2, .... The formulae in the language are defined
inductively by finite iterations:

ϕ ::= �|p|x|¬ϕ|ϕ ∧ ϕ|KE
i ϕ|Aiϕ|∀nxϕ

The free variables of a formula ϕ are defined inductively
as subsets of X by f(p) = ∅, f(x) = {x}, f(¬ϕ) = f(ϕ),
f(φ ∧ ϕ) = f(φ) ∪ f(ϕ), f(KE

i ϕ) = f(ϕ), f(Aiϕ) = f(ϕ)
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and f(∀nxϕ) = f(ϕ) \ {x}. A sentence is a formula with no
free variables. For every formula ϕ, variable x and formula
φ, the formula ϕ[x/φ] is defined as the formula obtained by
replacing all free occurrences of x in ϕ simultaneously by
φ. Note that if x was the only free variable in ϕ and φ is
a sentence then ϕ[x/φ] is a sentence as well. A sentence
(formula) ϕ is said to be a level n sentence (formula) for
n = 0, 1, 2, ... if ϕ does not contain any operator ∀m for
m ≥ n. In particular ϕ is a level 0 sentence if it does not
contain any quantifiers (or any variables for that matter as it
is a sentence). The operators ϕ∨φ, ϕ −→ φ, ϕ ←→ φ, ∃nxϕ
are defined as abbreviations to ¬(¬ϕ ∧ ¬φ),¬ϕ ∨ φ, (ϕ −→
φ)∧ (φ −→ ϕ),¬∀nx¬ϕ respectively. The set of formulae in
our language is denoted L and the set of sentences is denoted
S.

The interpretation of the statements is as follows. Aiϕ
stands for “player i is aware of ϕ”, or “i is considering ϕ”.
KE

i ϕ stands for “player i explicitly knows ϕ”. The quanti-
fiers ∀nxϕ stands for “for every n level sentence φ we have
that ϕ[x/φ] holds”. The interpretation of explicit knowledge
aims to capture the conjunction of the traditional knowl-
edge operator and awareness. We follow [6] interpretation
but note that adding the standard implicit knowledge oper-
ator Ki and defining KE

i ϕ ⇐⇒ Kiϕ ∧Aiϕ is an alternative
as is done in [14]. We point out that the interpretation of
knowledge becomes even more delicate when one considers
explicit dynamics of reasoning. In particular, [28], [29], [30]
discuss how a language which allows for an operator for be-
coming aware interacts with explicit and implicit knowledge.
We reiterate that in our setting becoming aware is treated
from a game theoretic perspective and not from within the
language.

Our collection of quantifiers ∀n are unique to our language
and require some further discussion. As noted above, the
language restricted only to the ∀0 quantifier is exactly the
language provided by [14]. The ∀0 quantifier corresponds
to a propositional. Quantifying over propositions is based
on the ideas developed in [2], [10], [17] and [18] with the
more recent treatment of the topic in [5]. As [14] pointed
out, quantifying only over level 0 sentences guarantees that
quantification is well defined since assigning for x in ∀xx the
formula ∀xx itself, cannot be evaluated inductively. How-
ever, it might be useful to allow our players to reason about
the existence of sentences that include quantifiers, in partic-
ular in a communication setting. The idea here is to allow
quantification over all sentences, but instead of using a sin-
gle operator that would cause a self-referential ”loop”, we
consider a collection of quantifiers which together cover all
sentences in the language (including sentences with these
quantifiers themselves). In particular, for every sentence ϕ
let m = Max{n|∀n appears in ϕ} with m = −1 if this set is
empty. By the finiteness of sentences construction we have
that m is finite hence ϕ is being considered in ∀n for all
n > m.

The following example demonstrates the usefulness of in-
cluding sentences that consider the existence of quantified
sentences. Consider two players and the sentence

ϕ = ∃0x(K2x∧¬A1x∧(x −→ a))∨∃0x(K2x∧¬A1x∧(x −→ ¬a))

which states that there is some sentence (that has no quan-
tification) that player 2 knows, player 1 cannot reason about
and such that it implies a holds, or that there is a sentence
of the same sort that implies ¬a holds. Assume that the two

players will gain most from communication if they resolve
whether a or ¬a holds. Assume that player 1 knows the
sentence above holds K1ϕ and that player 2 is not aware of
it ¬A2ϕ (or may even be unaware of a,¬a). Furthermore,
player 1 knows that K1¬A2ϕ. In particular, player 1 may
want to send the message ϕ to player 2, making him aware
of it and hopefully prompting player 2 to send back to player
1 that sentence that will determine the value of a – a sen-
tence that exists according to ϕ. Now, if ϕ is a potentially
useful message that player 1 can send, wouldn’t we want to
consider player 2 reasoning about the potential existence of
such a useful message, even when he is unaware of it specifi-
cally? If we do, we must have player 2 reason using ∃1x and
enumerating over sentences with quantifiers.

We note that additional quantifying operators can be added.
For example, one can consider an operator ∀ω which quanti-
fies over all sentences that include all quantifiers ∀n n < ω.
Obviously, we are still well defined in enumerating over sen-
tences with transfinite induction, but no longer quantify over
all sentences in the language. Hence we may want to con-
sider ∀ω+1 and so on with ordinal indexing. This might be
useful if communication asks for reasoning about the exis-
tence of some quantified sentence of a countable order.

The semantics follow first-order modal logic (cf. [11])
along the lines it was adapted to propositional quantifiers,
i.e. quantifying over level-0 sentences. We follow [14] but our
valuation domain includes all sentences in the language. We
define models M = {W, R = {Ri}i∈I ,A = {Ai}i∈I , V,V}
where W is a set of states , Ri’s are binary relations on W ,
Ai : W −→ 2S are the set of sentences in our language that
i is aware of at state w ∈ W . V : W −→ 2P indicates for
each state the set of primitive proposition which are true at
that state. Finally, V : W ×X −→ S assigns at each state to
each variable x ∈ X a sentence in our language V(w, x) ∈ S.

Truth for formulae is defined inductively as follows:

(M, w) � p if p ∈ V (w)

(M, w) � ¬ϕ if (M, w) � ¬ϕ

(M, w) � ϕ ∧ φ if (M, w) � ϕ and (M, w) � φ

(M, w) � Aiϕ if ϕ ∈ Ai(w)

(M, w) � KE
i ϕ if (M, w) � Aiϕ and (M, u) � ϕ for all wRiu

(M, w) � ϕ if (M, w) � ϕ[x1/V(w, x1), ..., xk/V(w, xk)]

where f(ϕ) = {x1, ..., xk}
(M, w) � ∀nxϕ if (M ′, w) � ϕ for all M ′ = {W, R,A, V,V ′}

such that V ′(w, x) is a level n sentence and

V ′(u, y) = V(u, y) for all u ∈ W, y �= x

Note that the truth value is well defined inductively given
(M, w) since we can run a triple induction on sentences, for-
mulae with free variables and n-level quantifiers. Notation-
wise we also opted for incorporating V in M rather than
using �V or (M, w,V). For the purpose of strategic com-
munication we consider the inference rules and axioms com-
prising of propositional calculus and:
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(KE
i ϕ ∧KE

i (ϕ =⇒ φ) ∧Aiφ) =⇒ KE
i φ

KE
i ϕ =⇒ Aiϕ

(¬∀nxAix ∧Ai¬∀nxAix) =⇒ KE
i (¬∀nxAix)

From ϕ infer Aiϕ =⇒ KE
i ϕ

From ϕ infer ∀nxϕ

From ϕ and ϕ =⇒ φ infer φ

∀nxϕ =⇒ ϕ[x/φ] for every level n formula φ

∀nx(ϕ =⇒ φ) =⇒ (∀nxϕ =⇒ ∀nxφ)

ϕ =⇒ ∀nxϕ if x /∈ f(ϕ)

(∀nxKE
i ϕ ∧Ai∀nxϕ) =⇒ KE

i ∀nxϕ

KE
i ϕ =⇒ ϕ

(KE
i ϕ ∧AiK

E
i ϕ) =⇒ KE

i KE
i ϕ

(¬KE
i ϕ ∧Aiϕ ∧Ai¬KE

i ϕ) =⇒ KE
i ¬KE

i ϕ

∀n+1xϕ =⇒ ∀nxϕ

where these correspond to the system in [14] if we were
to add Aiϕ =⇒ KE

i Aiϕ and consider only the operator
∀0. Since we consider all level n operators we also add
the axiom implied by inclusion of range of quantification:
∀n+1xϕ =⇒ ∀nϕ for every n = 0, 1, .... Finally, we do not
impose implicit knowledge of awareness which requires the
extra consideration of awareness for deductions of explicit
knowledge. See more on this interplay of knowledge and
awareness in [6] and [30]. The modifications above allow
us to keep the range of Ai to be arbitrary which lets us,
for example, consider awareness of only a finite collection
of sentences. With this language at hand we turn to our
construction of the dynamic communication game.

There are a number of ways we can define a communica-
tion game once we set the language. These varieties differ
in the extent of reasoning we want to capture in the game
form and in the restrictions imposed on the dynamics of
reasoning. We discuss the various alternatives below.

3. MESSAGES ACTION SET
The action set available at the message stage at period

t of the game is simply her current collection of sentences
she can reason about and the manner in which she can send
these messages. In particular:

St
i = {ϕ|Aiϕ}

As usual, a pure action is denoted st
i, and action profile

st ∈ ∏
i St

i with mixed action sets Σt
i = Δ(St

i ), Σ =
∏

i Σi.
A generic action set is denoted Si. If there is a model M
and a state w associated with the game at stage t, we have
St

i = Ai(w).
In addition, the player can choose to prefix each message

ϕ ∈ St
i as follows:

• Stating Awareness. Simply saying “ϕ”. Such a mes-
sage is denoted ϕ.

• Stating Truth/Knowledge. Stating “ϕ is true”.
This message is denoted �ϕ.

• Questioning Truth/Knowledge. Asking“Is ϕ true?”.
Denoted ?ϕ.

• Questioning Variable Value. For ϕ = ∃nxφ asking
“What is x such that φ ?”. Denoted x?ϕ.

Hence the set of pure actions for the stage game t is a pair
in Λ × St

i where Λ = {∅,�, ?, x?} is the type of message.
We note that stating awareness is always truthful. By def-
inition, a player can only state something she is aware of.
We say that stating knowledge of ϕ is truthful if KE

i ϕ. We
point out that a player may state something truthful, but
she would not view it as such. To see why, note that we
allow ϕ and KE

i ϕ to hold together with ¬AiK
E
i ϕ. In this

case, the player does not reason about her knowledge of ϕ,
hence stating “ϕ is true” is truthful, although she did not
intend it to be. More formally, the intension to be truth-
ful requires the additional condition AiK

E
i ϕ. We also point

out that a question requires a notation of whether a future
message is an answer. Since answers are in the form of stat-
ing knowledge we omit explicit differentiation to whether a
statement is an answer as the context should provide it, e.g.
sending “ϕ is true” after being asked “Is ϕ true?”.

4. STATIC GAME FORMS
The choices made in a strategic interaction are based on

the evaluation of the outcomes they generate. This intro-
duces two sources of uncertainties, those that are generated
by the behavior of other players and those that are intrinsic
to the outcomes, i.e., generated by uncertainties about pay-
offs. The two sources may also interact in the form of uncer-
tainties about others’ information or preferences. In strate-
gic communication the payoffs are eventually determined by
what the players end up knowing, what they are/become
aware of, and the cost of communication. There are vari-
ous types of payoff functions that might be relevant. Some
natural candidates include payoffs that are determined by
whether certain events hold and payoffs that are determined
by a distance between the players’ views of the world. While
we discuss the possible payoff function types later on, the
game form itself can provide ways to express such uncer-
tainties. We suggest a number of game forms and indicate
the uncertainties they allow to formulate. The multiplicity
of game forms emerges from the different restrictions we may
want to impose on how game theoretic types’ beliefs relate
to the what the players are aware of and know as expressed
in the epistemic model.

Consider, for example, payoffs that are determined by
whether a specific sentence is true or not. In this case, as-
signing probabilities to the truth value of sentences would
factor in. In particular, there might be sentences that a
player does not eventually know, but is aware of. Hence,
estimating the probability these statements hold would be
part of estimating the payoffs and essential for implement-
ing a solution. Alternatively, we might be interested in the
distance between the set of statements each player is aware
of. This would require a player to consider their action as
far as how it impacts the awareness of others. Hence, be-
liefs about this awareness may be called for. Consider the
following alternative game forms:

The “base” game form:

D Deterministic. This game form does not incorporate
any of the players’ beliefs. A player has no “types” or
private information issues. The reasoning about other
players, or deductions about them are all captured by
the strategies and solutions.
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The following game forms all deal with a game theoretic
representation of uncertainties about events. We begin with
three possibilities for defining first order beliefs:

MI1 Model Independent Beliefs – First Order. Each
player i ∈ I has a probability assigned to each member
ϕ ∈ Si. The probabilities are consistent with respect
to what the player is aware of and knows, e.g. KE

i ϕ
implies the probability assigned to ϕ should be 1, a, a∧
b ∈ Si implies the probability of a∧b is no higher than
the probability of a, a∧ b, a∧¬b ∈ Si implies the sum
of their probabilities is no more than 1 even if a /∈ Si,
and so on.

MC1 Model Consistent Beliefs – First Order. Fix
a model M and a state w. The consistency of belief
regarding events in Si does not imply the consistency
of beliefs with respect to the model. For example, we
might have a, b ∈ Si and a ←→ b /∈ Si. In the model
we may have that a ←→ b always holds, although nei-
ther a nor ¬a always hold. It would be perfectly con-
sistent with respect to what i is aware of and knows to
have a and b assigned different probabilities. However,
whichever probability measure we use as a prior for the
set of states W in the model, it will always induce equal
probabilities for a and b, no matter what events we con-
dition on. Hence, requiring that the beliefs over events
in Si be consistent with the model – be generated by
some prior over W is a strictly stronger requirement
than MI1. Formally, given a model M , a probability
distribution η ∈ Δ(W ) induces for every formula ϕ the
probability PrM

η (ϕ) = η({w ∈ W |(M, w) � ϕ}). Such
a probability distribution is called a prior. A posterior
for player i at w is defined as a probability distribu-
tion ν(w) over the set {u ∈ W |wRiu}. A posterior in-
duces probabilities over formulae in the same manner:
PrM

ν(w)(ϕ) = ν(w)({u ∈ W |(M, u) � ϕ}) = ν(w)({u ∈
W |wRiu and (M, u) � ϕ}). Condition MC1 requires
that the beliefs player i has over members of Si corre-
spond to a posterior at the given state of the world. In
particular we note that for the given state w we have
Si = Ai(w).

CP1 Common Prior Beliefs – First Order. The nat-
ural strengthening of consistent beliefs generated by a
prior is a belief generated by a common prior. This
simply states that there exists η ∈ Δ(W ) such that for
every w the beliefs of all players at w correspond to
posteriors of η.

Both MC1 and CP1 may raise the issue of whether the
additional restriction on a player’s belief should not provide
the player with additional information. In some sense, if
the player’s beliefs have to be consistent with some prior,
shouldn’t his reasoning take this into account? As we men-
tioned before, the advantage of a game theoretic setting is
that we need not explicitly deal with this issue at this point.
We can assume that a player inherited beliefs from some
prior, or even a common prior, and study the impact of this
assumption on the behavior of players. We do keep these
distinctions in mind, since if one wishes to provide epis-
temic characterizations of solutions these conditions require
explicit reasoning.

Where there is uncertainty and multiple players one can
make a case for high order uncertainties. Here the plot thick-
ens as the players need not be aware about the same events.
Our first form allows one player to incorporate beliefs about
the beliefs of another player about events the first player
may be unaware of.

MII Model Independent Implicit Beliefs – Type Space.
Each player has a consistent probability assigned to
members of Si, they have a coherent belief in the sense
of [19] and consistent probabilities (in the sense of
MI1) over the product space of members in Si with
the set of consistent probabilities (in the sense of MI1)
assigned to members of S̄j where S̄j may be any set
of sentences a player may be aware of in the language
(with no relation to a single model)1. Since there may
be an uncountable collection of sets S̄j we would also
require a topology on these sets which admits the [19]
universal type space construction, i.e. where the space
of measures over the collections of possible S̄j ’s is com-
pact in the weak∗ topology, as well as higher order
measure spaces.

Note that MII requires some explanation of high order be-
liefs since a player beliefs reside in different state spaces by
the variety of S̄j ’s considered. For example, player 1 may
assign equal probability to player 2 being aware of ϕ or not,
e.g. equal probability to whether ϕ ∈ S̄2 or not. Assume
further that when player 2 is aware of ϕ he always assigns
probability .3 to it. Now, does player 1 believe that player
2 assigns to ϕ the probability .3 or .15? The answer is that
player 1 assigns probability .5 to player 2 assigning proba-
bility .3 but that this does not imply that player 1 assigns
probability .5 to players 2 assigning a probability to ϕ which
is different from .3. In fact, player 1 assigns probability 0 to
player 2 assigning a probability other than .3 to ϕ. The in-
terpretation is that player 1 assigns probability .5 to player
2 assigning a probability to ϕ and conditional of assigning
a probability to ϕ, that probability is always .3.

MCI Model Consistent Implicit Beliefs – Type Space.
Here the type space for high order beliefs is generated
by a set of type profiles W and a collection of pri-
ors ηi ∈ Δ(W ). This game form has the standard
incomplete information game form (without common
priors). For example, the probability that player i as-
signs to the event (ϕ and Prj(φ) = .3) when her type
corresponds to w, is νi(w)({u ∈ W |wRiu and (M, u) �
ϕ and PrM

νj(u)(φ) = .3}), i.e. the probability i’s poste-

rior assigns at w to states u where ϕ holds and where
the posterior of j assigns probability .3 to φ.

CPI Common Prior Implicit Beliefs – Type Space.
This is the model consistent implicit beliefs with a
common prior η ∈ Δ(W ).

The final collection of game forms we consider introduces
high order beliefs that respect the awareness of each player.
In this case we have to decide between two ways to address
high order awareness. Consider the case where A1(A2ϕ∧φ)
but ¬A1A2ϕ. The question is whether to use a probabilistic

1The only restrictions on S̄j in this definition are derived
from the axioms. For example, we cannot have KE

j a ∈ S̄j

while KE
i ¬a ∈ Si.
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state space where player 1 assigns probabilities to player 2
assigning probabilities to ϕ or not. Both methods can be
used and the definitions follow.

Consider Si as defined above. Let Si,j = {ϕ|Ajϕ ∈ Si}.
For every two sentences ϕ, φ we write ϕ � φ if ϕ appears
in φ, i.e. ϕ is part of the inductive construction of φ in
the language. Let Ŝi = {ϕ|Aiφ and ϕ � φ for some φ}.
For the second order sentences we let Ŝi,j = {ϕ|Ajφ ∈
Ŝi and ϕ � φ for some φ}. Similarly, we define higher or-

der sets Si1,...,in , Ŝi1,...,in respectively. Note that the con-

struction Ŝi essentially allow probabilities to be assigned to
every sentence that is used in sentences i is aware of. This
corresponds to assigning probabilities to exactly the collec-
tion of events that are determined by a set of atomic state-
ments. The corresponding axiom imposed on the language
(where awareness of a formulae is derived from awareness of
its building blocks as in [6]) would have the two construc-
tions coincide. Note that these structure are similar to those
proposed in [7] and [8]. With these structures we can now
define beliefs hierarchies as follows.

MIE Model Independent Explicit Beliefs – Type Space.
As in the implicit case we need to consider the proba-
bilities that player i assigns to which set of sentences
player j is aware of. In the current case, this set of
sentences must be a subset of Si,j . Hence, player i has
a belief over the elements of Si, over the set of subsets
2Si,j and over the possible probabilities j might have
over S̃i,j for every subset S̃i,j ⊂ Si,j . More precisely,
player i’s first order beliefs are over Si, and second or-
der beliefs are over the product of the events from Si

the subsets Si,j for every j and the probabilities over
each subset for every player j. Higher order beliefs are
defined similarly with coherency required in the sense
of [19] as well as the consistency with the properties of
the logic system. Once again, the subsets in Si,j must
display a topology inducing compact sets of distribu-
tions for a universal type space construction.

MIEE Model Independent Explicit Expanded Be-
liefs – Type Space. Replacing S... with S̃... in the
definition of MIE yields the high order beliefs ex-
panded to all sentences that are part of sentences play-
ers are aware of.

MCE Model Consistent Explicit Beliefs – Type Space.
A prior ηi as in MCI generates probabilities over el-
ements of Si, but we may well have the sentence Ajϕ
hold at wRiu (or even w itself) while ϕ /∈ Si,j . Hence,
the beliefs that a posterior ν for a prior ηi generates
over which sentences j is aware of, are beyond the
support of the second order beliefs. A natural solu-
tion is to consider for every u such that wRiu the set
Aj(u) ∩ Si,j . Hence the posterior induces a distribu-
tion over subsets of Si,j as required. For each sentence
in the intersection the second order belief is well de-
fined since player j indeed reasons about the sentences
Aj(u) at u implying that he has a well defined set of
marginal probabilities for each Aj(u)∩Si,j . We have a
type spaces that is generated by types over the model,
but the high order beliefs on set of statements consid-
ered are restricted to subsets of Si,....

MCEE Model Consistent Explicit Expanded Beliefs
– Type Space. Replaces S... with Ŝ... throughout.

CPE Common Prior Explicit Beliefs – Type Space.
As defined in MCE but with a common prior.

CPEE Common Prior Explicit Expanded Beliefs –
Type Space. As defined in MCEE but with a com-
mon prior.

Yet another alternative to all the game forms above would
be to consider beliefs over elements not generated by the sets
Si, but rather by considering the set of sentences that player
i explicitly knows she is aware of, i.e., {ϕ|KE

i Aiϕ}. This es-
sentially fixes the set of sentences for every uRiw, although
one should not interpret this as knowing the probability
since the probability considers a set that may be strictly
smaller than the set considered by the model at every state.

As we mentioned earlier, some forms may coincide with
additional axioms imposed on the language. In particular,
awareness of a sentence implying awareness of its compo-
nents will combine the extended and standard explicit be-
liefs. Similarly, knowledge of awareness will avoid the vary-
ing domains of subsets of Si that a model type space needs
to consider for players’ posteriors.

To conclude the variety of game forms that might be
considered we point out the tension between the epistemic
model and the game theoretic constructs. For example, in
MCI the game form has the player assign probabilities to
events that the epistemic model assumes is beyond the rea-
soning ability of the player. But, this tension exists even in
the game form aiming to be most aligned with the epistemic
model, such as MCE, or even the game form that ignores
high order beliefs such as MC1. In all of these we associate
beliefs with a player, without a formal logical treatment of
reasoning about these beliefs. The beliefs are outside our
language. We point out that this is not necessarily a defi-
ciency of the game theoretic approach. In fact, borrowing
from choice theory, probabilities may serve as implicit math-
ematical formulation for behavior. We do not assume that
our subjects reason about their subjective probabilities yet
we can describe measurements of behavior that demonstrate
they act as if they maximize in a structure involving prob-
abilities. In our case as well, we might ask for a game theo-
retic solution where players behavior is as if they respond to
probabilistic beliefs. Nevertheless, we do recognize that so-
lution based on probabilities assigned to events beyond the
scope of reasoning require not only a stretch of imagination,
but may not allow an empirical test via revealed behavior.

5. LOGIC DYNAMICS
A message sent from one player to another can impact

both the epistemic description of their reasoning, the game
theoretic state as well as the beliefs or behavior associated
with a solution concept to the game. In this subsection we
consider the dynamics of the game after a message is sent,
i.e., the reactions to a message received. These reactions
may logic dynamics restriction, e.g. we may want to impose
that all players become aware of the message sent. They also
may be strategic reactions, e.g. a player can decide whether
the message about the truth of a sentence is indeed true.
This decision is interpreted as a choice of action, the action
being which set of sentences should the player be aware of
and know in the next stage of the game. We implement this
approach by introducing the logical dynamics conditions as
constraints over the strategies the players may hold. The ac-
tual dynamics of the model and state, or the set of sentences
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the players reason about, is the result of the players choos-
ing what they become aware of and know within the logical
dynamics constraints. Treating the dynamics of knowledge
and awareness as a strategic choice makes it easy to analyze
beliefs about these dynamics via solution concepts.

While the dynamics of players awareness and knowledge
is game theoretic in our setting, recent work in logics by
[13], [15], [16], [28], [29] and [30] provides a collection of
models for capturing the dynamics of awareness within the
language. There are multiple principles and properties that
can be imported into the game theoretic setting. These also
interact with the established and very rich literature on the
dynamics of knowledge and reasoning. See, notably, [1],
[21], [24], [27], [31] and the references there. In addition one
can find a vast literature dealing with the logics surrounding
questions we will focus on the dynamics of stating awareness
and knowledge with only cursory attention to the dynamics
induced by questions.

The dynamics of logical restrictions are defined as a map-
ping of the history of models, states and messages to the
eligible set of models and states, i.e., it capture the pos-
sible constraints over how the static model may appear at
each period t as a function of what was thought and said
up to period t. The dynamics are not aimed at describing
the strategic dynamics in the game, instead they confine the
game forms we consider by stating which models and states
are allowed at every period. A dynamics D is a collection
of functions D1, D2, ... such that

Dt((M1, w1), (λ1, s1
i1), ..., (M

t, wt), (λt, st
it

)) ⊂M
whereM = {(M, w)|M is a model in the language and w ∈
W for M}. We note that for every t we assume st

it
is in the

action set for it given (M t, wt). We also assume that the ar-
gument (M t, wt) in Dt has a domain restricted to the range
of Dt−1 and that all conditions are with respect to this do-
main.

Next we turn to a variety of potential restrictions on the
dynamics of reasoning. We say that the two pairs (M, w) and
(M̄, w̄) are equivalent and denote (M, w) ∼ (M̄, w̄) when
(M, w) � ϕ if and only if (M̄, w̄) � ϕ for all ϕ. We say that
they are reasoning equivalent for i and denote (M, w) ∼R

i

(M̄, w̄) when (M, w) � ϕ if and only if (M̄, w̄) � ϕ for all
ϕ of the form Aiφ or KE

i φ. We say they are reasoning
equivalent denoted ∼R if they satisfy ∼R

i for all i ∈ I. If we
only require that (M, w) � ϕ if and only if (M̄, w̄) � ϕ for
all ϕ of the form Aiφ for all players, we say that they are
awareness equivalent and denote (M, w) ∼A (M̄, w̄)

DMI Model Invariance. D is model independent if for
every t and for every (M, w) ∼ (M̄, w̄) we have that
Dt is invariant to replacing (M, w) with (M̄, w̄).

DRI Reasoning Invariance. D is invariant to reasoning
equivalent model-state pair.

DAI Awareness Invariance. D is invariant to awareness
equivalence.

We note that DAI implies that D is determined by the set of
messages available to the players at each stage of the game
and would allow for a definition of dynamics based on action
sets and not the underlying models and states. However,
DRI and DAI are distinct since the knowledge of a player
may not be fully reflected in their action set as discussed

above. Had we added the axiom KE
i ϕ =⇒ AiK

E
i ϕ the two

properties would have coincided.

DM Markovian. D is Markovian if Dt depends only on
its last two arguments (M t, wt), (λt, st

it
).

The Markovian dynamics assumes that the current stage
model and state together with the current message encapsule
all the restrictions on how the next stage static model and
state may look like. It does not imply that the strategies
in the game need to be Markovian, it all considers how the
restrictions on the logic evolve.

The next property corresponds to the case where the only
change allowed over time is to the reasoning of the players.
Hence, the truth value of the atomic statements does not
change over time. We say that (M, w) and (M̄, w̄) are propo-
sitionally equivalent and denote (M, w) ∼P (M̄, w̄) when
(M, w) � p if and only if (M̄, w̄) � p for all atomic formulae
p.

DPNS Dynamic Preservation of Non-Epistemic State.
For all t, for every (M, w) ∈ Dt(..., (M t, wt), (λt, st

it
))

we have (M, w) ∼P (M t, wt).

The following two properties concern a process that is
more deterministic. These conditions correspond to cases
where one is able to precisely define how the players react
to statements. It would still allow for strategic choice, but
once statements are made, the evolution of reasoning is de-
termined.

DDM Deterministic Model. For all t, every
Dt(..., (M t, wt), (λt, st

it
)) is an equivalence class of the

relation ∼ on M.

DDR Deterministic Reasoning. As above with the range
being an equivalence class of the relation ∼R on M.

DDA Deterministic Awareness. As above for ∼A.

note that it would seem reasonable to confine a deterministic
dynamics to a dynamics of the relevant equivalence class,
i.e. assume that D satisfies DMI, DRI, or DAI whenever
it satisfies DDM, DDR, or DDA respectively.

For the next collection of properties, it is convenient to in-
troduce the notation Dt(..., (M t, wt), (λt, st

it
)) � ϕ indicat-

ing (M, w) � ϕ for all (M, w) ∈ Dt(..., (M t, wt), (λt, st
it

)).

DMR Monotonic Reasoning. For all t, i, and ϕ such
that (M t, wt) � Aiϕ (resp. (M t, wt) � KE

i ϕ ) we have
Dt(..., (M t, wt), (λt, st

it
)) � Aiϕ (resp. � KE

i ϕ).

DMA Messages Awareness. For all t, it = i, j we have
Dt(..., (M t, wt), (λt, st

it
)) � Ajs

t
it

.

DKMA Knowledge of Message Awareness. As above
but with Dt(..., (M t, wt), (λt, st

it
)) � KE

j1 ...KE
jk

Ajs
t
it

for all k and j1, ..., jk ∈ I.

6. COMMUNICATION GAMES
The game dynamics depends on the specific static game

form chosen for the game. We provide the description of the
game for each of the three cases: D, MII, and MCI. The
definition for other static forms can be derived accordingly.
We also point out that the conditions on the logic dynamics
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imposed by D create a restriction on the choices a player
has in updating her awareness and knowledge.

Let Ri ⊂ {ϕ ∈ S|ϕ = Aiφ or ϕ = KE
i ϕ} denote the sen-

tences describing player i’s reasoning. We assume through-
out that Ri is logically consistent, and denote by RM

i (w) =
Ai(w)∪{KE

i ϕ|(M, w) � KE
i ϕ} the set Ri generated at w in

a given model M . Let R denote the set of all possible Ri’s
in the language.

GD Deterministic Communication Game. The game
begins with a collection R = {Ri}i∈I . There is no
a priori assumption that all the Ri’s are consistent,
i.e. that there is a common model and state (M, w)
generating them. The pure behavior strategies of each
player in the dynamic game are defined as follows. If
it is i’s turn to send a message at period t (it = i)
we have a function mt

i(R
1, (λ1, s1

i1), ..., R
t) ∈ Λ × St

i .
After a message has been sent, all players revise their
reasoning using strategies of the form
rt

i(R
1, (λ1, s1

i1), ..., R
t, (λt, st

it
)) ∈ R

We impose the following conditions on rt
i :

ARI Action Reasoning Invariance. For all t, i the choices
rt

i and mt
i depend only on (R1

i , (λ
1, s1

i1), ..., R
t
i, (λ

t, st
it

))
(with the latter term removed for mt

i), i.e. each player
revises their reasoning and sends messages based only
on their own past reasoning and the messages they
observed.

AC Action Consistency. For every i, t and realization
(R1, (λ1, s1

i1), ..., R
t, (λt, st

it
)) there exist a pair (M, w)

and a sequence (M1, w1), ..., (M t, wt) such that (M, w) ∈
Dt((M1, w1), (λ1, s1

i1), ..., (M
t, wt), (λt, st

it
)),

Rk
i = R

Mk
i (wk) and rt

i(R
1, (λ1, s1

i1), ..., R
t, (λt, st

it
)) =

RM
i (w). In words, the players choice of reasoning re-

vision respects the restrictions provided by the logic
dynamics D.

We note that while AC guarantees that the set of sentences
each player chooses is logically consistent, it does not im-
ply that there exists a pair (M, w) that can be associated
with the simultaneous choice of all players. For example, a
player may choose to know something that another player
may know is false. Alternatively, a player may believe a lie
the sender knows to be a lie. In this case, the game form
defined by GD, as well as the following game form GMII
which is independent of models, both suit the bill, however
the game is allowed to evolve into a setting where players
can only be associated with disjoint sets of models.

There are a number of potential conditions that can guar-
antee the players always have a shared model and a state
that corresponds to all the sentences they choose. The sim-
plest of those would be to assume that the players have
all begun at a single model and that no one updates their
explicit knowledge at all. A more realistic setting would
have the players only update their knowledge to logical de-
ductions. Yet another addition would allow for DKMA
under the assumption of DMR (making sure that know-
ing the awareness of others implies that they are aware). A
more specialized case would allow players to add the mes-
sages �ϕ in addition to logical deductions, but restrict all
players to tell the truth – maybe not the most practical
setting. Finally, one can use a variant of the language by

adding implicit knowledge operators. These act as standard
Ki knowledge operators for each player and interact with
explicit knowledge and awareness by KE

i ϕ = Kiϕ ∧ Aiϕ.
See [6] for a discussion of implicit knowledge and [14] for
its integration with quantifiers. With Ki we can restrict
the player from explicitly knowing any statement other than
statements she implicitly knows. Obviously, this would still
imply a player could not know a lie which in turn introduces
some unclarity as to how a player perceives �ϕ when she is
not allowed to consider it as true.

Our next game corresponds to the static form MII. Con-
sider an initial R as above and a type space corresponding
to MII, i.e. a type space T =

∏
i∈I Ti such that τi ∈ Ti

induces a probability over members of Si, beliefs over player
j’s beliefs over possible subsets of sentences, as well as corre-
lations between these probabilities, such that all beliefs are
logically consistent and the high order beliefs are coherent.

GMII Model Independent Implicit Beliefs Game. The
game begins with a collection R1 = {R1

i }i∈I and type
space T 1. If it is i’s turn to send a message at period t
we have a function mt

τt
i
(R1, (λ1, s1

i1), ..., R
t) ∈ Λ× St

i .

After a message players revise their reasoning with
rt

τt
i
(R1, (λ1, s1

i1), ..., R
t, (λt, st

it
)) ∈ R. Note that we

retain only the type at period t. An alternative would
retain all history of types and consider the revision of
reasoning conditional on the history of types as well.
Throughout we assume that τi is consistent with Ri.
We assume both ARI and AC hold.

We point out that the game GMII allows players to re-
vise into contradictory knowledge, or believe lies, but it does
not allow players to assign probabilities to these possibili-
ties. For example, two players may revise into KE

1 ϕ ∈ Rt
1

KE
2 ¬ϕ ∈ Rt

2. Their types at period t, however, will as-
sign probability zero to ¬ϕ and ϕ respectively, as well as
to KE

2 ¬ϕ and KE
1 ϕ respectively. A type space T 2 could

still accommodate this update since the consistency and co-
herency of each player’s beliefs can hold by a player assigning
zero probability to the actual type of the other player.

The last game we consider is generated by a model in
M and posterior beliefs which generate the high order type
space in the static setting. The difference from the model
independent case is that models used for high order reason-
ing can now be related to the dynamic logic restrictions D.
In this game we also allow the game theoretic type-spaces
to diverge from the first period (e.g. we allow players’ type
spaces to diverge from the fist period).

GMCI Model Consistent Implicit Beliefs Game. The
game begins with a collection R1 = {R1

i }i∈I and a
triplet {(M1, w1, ν1)i}i∈I for each player. Such that

R1
i = R

(M1)i
i ((w1)i). As in GMII strategies are de-

fined over last period type: mt
(wt)i

(R1, (λ1, s1
i1), ..., R

t) ∈
Λ × St

i and rt
(wt)i

(R1, (λ1, s1
i1), ..., R

t, (λt, st
it

)) ∈ R
where (wt)i stands for player i’s type at w in the model
(M t, wt)i under the priors (νj)i associated with each

player j. We require that Rt
i = R

(Mt,wt)i
i for all i, t.

We assume both ARI and AC hold and note that
one can assume AC holds with the specific models
(M t, wt)i, i.e. that the model used in each period as
the type space for a player satisfies the condition im-
posed by D.
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It is important to point out that while the objects
(M t, wt, νt)i may be constrained by the game form above
and D, they are not uniquely determined. We assume that
for every specific game of the form GMCI the selection of
the distinct (M t, wt, νt)i for every player for every period is
unique and completely determined, much like an incomplete
information game with a given state of the world.

A similar extension of the static forms which are defined
by a model CPI, MIEE, MCE, MCEE, CPE, CPEE
follows the definition of GMCI. For all these game forms
we may want to require that the players game theoretic type
is always generated by a single model at a single state. This,
naturally, guarantees that the reasoning of players Rt

i is
always consistent. We call such a restriction an objective
game. The variant for GMCI will be:

GOMCI Objective Model Consistent Implicit Be-
liefs Game. The game begins with a collection R1 =
{R1

i }i∈I and a single {(M1, w1, ν1). Such that R1
i =

RM1

i (w1). Messages: mt
wt(R

1, (λ1, s1
i1), ..., R

t) ∈ Λ ×
St

i . Reasoning: Rt+1
i = rt

wt(R
1, (λ1, s1

i1), ..., R
t, (λt, st

it
))

where wt stands for player i’s type at w in the model
(M t, wt) with priors νj associated with each player j.
Here, there is a single model-state pair at every period
shared by all players and consistency is guaranteed by

Rt
i = RMt

i (wt) for all t, i.

In addition to the pure behavior strategies defined for the
game form above we should consider mixed strategies. These
are assumed to be standard, in the sense that a message may
drawn at random, or that a player randomly picks one set
Ri or the other. The realizations are determined by the ap-
propriately randomized mixed profiles. We note, that the
randomization over the reasoning choice is sure to generate
multiple distinct models even if an objective model consis-
tent setting is considered, each model corresponding to the
different realizations of the reasoning dynamics. Neverthe-
less, the extensions of our conditions hold, where one may
ask for each realization path to conform to the definition in
GOMCI, i.e., to a joint model generating players’ types.
Similarly, we expect each realization to satisfy both ARI
and AC in all game forms.

We conclude the game forms definitions with a description
of the payoffs functions for communication games. For sim-
plicity we will consider finite T -period undiscounted game.
The payoffs are determined by two aspects of the game, the
messages sent and the final state of reasoning of all players.
The cost of sending messages is assumed to be separable in
time and defined by c : Λ× S −→ R+. We assume that the
cost of sending a message is born by all players. Further-
more, if the sets St

i are infinite, it makes sense to define a cost
that guarantees the existence of best responses, as in the case
when players reason about all logical deductions. We may
want to have c(λ, ϕ) increase with the length of ϕ, e.g. by
setting c(λ, ϕ) = the number of symbols that appear in ϕ.
The final state of reasoning is defined as the realization of
rT

i which we can denote by RT+1
i . Hence, the payoff from

reasoning for each player is a function pi :
∏

j∈I R −→ R.
We point out that an alternative payoff function definition
would incorporate the state of some terminal model in the
game. In particular, we might be interested in payoffs that
condition on whether a sentence holds true or not. This is
relevant for the games that interact with models and would

augment the payoff function to depend on M, w as well, or
on whether M, w � ϕ for some M, w associated with the
termination of the game. We note that such an extension
corresponds to an incomplete information game regarding
the truth value of proposition even before we consider the
dynamic reasoning game. We point out that restricting the
payoff as we did guarantees that the payoff is a function only
of the sentences the players actually end up reasoning about.

7. SOLUTIONS
The basis for most solution concepts is the notion of best

response. This simple notion already introduces multiple
interpretations since the players can be considered to be
playing best responses to the actual strategies other play-
ers are playing, or to their perception of the strategies other
are playing. Moreover, a given player may have a behavioral
best response at each period which does not match a best
response strategy for the whole game when the player may
not be able to reason correctly about the impact of choices
due to unawareness. However, our definitions of the various
communication games are all close to standard games. In
the game GD we have a standard game where the players
get to choose dynamically the set of messages they can send,
under exogenous restrictions over the chosen sets. Hence, it
is a dynamic game with players who stochastically choose
the element of the sets Ri under a set of exogenous condi-
tions and such that Si becomes the messages choice set. In
the other game forms (both model dependent and model in-
dependent), we have a sequence of incomplete information
games, where the selection of sets Ri determines the type
space in the next stage of the game. Once again, this oc-
curs under a variety of potential conditions that exogenously
restrict the choices, type spaces, or relates the type spaces
generated by different players. It is here that the solution is
required to address a diverging incomplete information game
structure. We define the best response correspondences for
the communication game GMCI these are easily extended
to dynamic types, or models, for the other games.

Consider a strategy for each player, i.e. functions ρt
(wt)i

for t = 1, ..., T with a type (wt)i corresponding to (M t, wt, νt)i

and a function μt
(wt)it

(R1, (λ1, s1
i1), ..., R

t) for the appropri-

ate message sender at t, which correspond to a mixture of
pure strategies rt

(wt)i
and mt

(wt)it
, respectively. Let ρi, μi de-

note player i’s strategy, and ρ, μ all players strategy profile.
Player j is said to be playing an implicit best response in ρ, μ
if player j’s expected payoff generated by the players playing
ρ, μ is at least as high as the expected payoff generated by
ρ|ρ̄j , μ|μ̄j , i.e. player j has no alternative strategy that will
increase his payoff keeping the strategies of the other play-
ers fixed. Note that the payoffs are well defined for a given
ρ, μ as the description of the game specifies the appropriate
(M t, wt, νt)i for every contingency. Naturally, an implicit
best response has the players play what must seem to them
sub-optimal in many cases. While they play a best response
to the strategies others use, those strategies respond to a
different state space whenever (M t, wt)i �= (M t, wt)j . We
could alternatively ask that players play an explicit best re-
sponse, this would be defined as each player playing a best
response to strategies equivalent to ρj , μj played in a game
where each player j is assigned the type spaces (M t, νt)i and
the state wt is picked according to (νt

i )i. Such a definition
would require each (M t)i to be rich enough initially so that
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the mappings ρj , μj could be extended, and this simultane-
ously for all players. Furthermore, it should allow this for
the (M t)i that are assigned for every alternative strategy
ρ̄j , μ̄j of player i since we need to consider a best response.
Even so, there may not exist an explicit equilibrium since
the players are essentially playing best responses while con-
sidering different incomplete information games. Finally, we
point out that the game GOMCI does not suffer from these
issues and has a well defined explicit best response. While
an equilibrium can be defined in this case, we point out that
this equilibrium still may be suffering from the usual prob-
lems of a lack of common priors. Moreover, we still must
adopt an “as if” interpretation of behavior since the strate-
gies are driven by models that include events the players
cannot reason about.

8. CONCLUSIONS
We provided a construction of communication games that

is based on incomplete information games or a standard nor-
mal form game in the case of GD. In these games, player
choose messages and revise their knowledge and awareness.
The revision is assumed to be a strategic choice. Condi-
tions on the dynamic logic are introduced as restrictions of
the strategic revision. A new incomplete information game
(standard game for GD) begins in each period of the com-
munication game. The players choose messages based on
their reasoning, choose their revision, and so on. This con-
struction transferred the reasoning about the interpretation
of messages, as well as high order reasoning about how oth-
ers revise their reasoning, to the game theoretic game form.
This allows for the strategic choice of message to incorporate
the strategic reasoning revision in a game setting. Moreover,
probabilities are easily tacked on to the game side as players
require them for evaluating expected payoffs.

We point out that our approach is based on providing a
clear boundary between game theoretic modeling and logics
in a setting where the two are intermingled. It should be
noted that logic dynamics has made great strides to incor-
porate game theoretic features, cf. [1], [21], [24], [27] and
[31] for some major advances. Nevertheless, we hope that
leveraging the advantages both disciplines (as was success-
fully done in logic games, cf. [25] and the references there),
will complement the explicit logical modeling of strategic
interaction on the one hand and the use of game theoretic
formal machinery in logics on the other.
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