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Abstract

Two natural strategy elimination procedures have been studied for strategic games. The
first one involves the notion of (strict, weak, etc) dominance and the second the notion of
rationalizability. In the case of dominance the criterion of order independence allowed us to
clarify which notions and under what circumstances are robust. In the case of rationalizability
this criterion has not been considered.

In this paper we investigate the problem of order independence for rationalizability by fo-
cusing on three naturally entailed reduction relations on games. These reduction relations are
distinguished by the adopted reference point for the notion of a better response. Additionally,
they are parametrized by the adopted system of beliefs.

We show that for one reduction relation the outcome of its (possibly transfinite) iterations
does not depend on the order of elimination of the strategies. This result does not hold for the
other two reduction relations. However, under a natural assumption the iterations of all three
reduction relations yield the same outcome.

The obtained order independence results apply to the frameworks considered in Bernheim
[1984] and Pearce [1984]. For finite games the iterations of all three reduction relations coincide
and the order independence holds for three natural systems of beliefs considered in the literature.

1 Introduction

Rationalizability was introduced in Bernheim [1984] and Pearce [1984] to formalize the intuition
that players in non-cooperatives games act by having common knowledge of each others’ rational
behaviour. Rationalizable strategies in a strategic game are defined as a limit of an iterative process
in which one repeatedly removes the strategies that are never best responses (NBR) to the beliefs
held about the other players. In contrast to the iterated elimination of strictly and of weakly
dominated strategies at each stage all ‘undesirable’ strategies are removed.

Much attention was devoted in the literature to the issue of order independence for the iterated
elimination of strictly and of weakly dominated strategies. It is well-known that strict dominance is
order independent for finite games (see Gilboa, Kalai and Zemel [1990] and Stegeman [1990]), while
weak dominance is order dependent. This has been often used as an argument in support of the
first procedure and against the second one, see, e.g., Osborne and Rubinstein [1994]. On the other
hand, Dufwenberg and Stegeman [2002] indicated that order independence for strict dominance
fails for arbitrary games though does hold for a large class of infinite games.

The criterion of order independence did not seem to be applied to assess the merits of the
iterated elimination of NBR. In this paper we study this problem by analyzing what happens when
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at each stage of the iterative process only some strategies that are NBR are eliminated. This
brings us to a study of three naturally entailed reduction relations. They are distinguished by the
adopted reference point for the notion of a better response, which can be the initial game, the game
currently being reduced or the reduced game. Additionally, they are parametrized by the adopted
system of beliefs. In general these relations differ and transfinite iterations are possible.

We show for one reduction relation that for all ‘well-behaving’ systems of beliefs the outcome
of the iterated elimination of strategies does not depend on the order of elimination. The result
does not hold for the other two reduction relations, even for two-person games and beliefs being
the strategies of the opponent.

Further, using a game modeling a version of Bertrand competition between two firms we show
that the variants of these reduction relations in which all strategies that are NBR are eliminated
differ, as well. The same example also shows that the relation considered in Bernheim [1984],
according to which at each stage all strategies that are NBR are eliminated, yields a weaker
reduction than the one according to which at each stage only some strategies that are NBR are
eliminated. In other words, natural games exist in which it is beneficial to eliminate at certain
stages only some strategies that are NBR.

The situation changes if we assume that for each belief µi in a restriction G of the original game
a best response to µi in G exists. We show that then the iterations of all three reduction relations
yield the same outcome. This implies order independence for all three reduction relations for the
class of games for which Dufwenberg and Stegeman [2002] established order independence of the
iterated elimination of strictly dominated strategies.

A complicating factor in these considerations is that iterations of each of the reduction relation
can reduce the initial game to an empty game. We discuss natural examples of games for which
the unique outcome of the iterated elimination process is a non-empty game. In particular, order
independence and non-emptiness of the final outcome holds for a relaxation of two elimination
procedures studied in the literature:

• the one considered in Bernheim [1984], concerning a compact game with continuous payoff
functions, in which at each stage we now eliminate only some strategies that are NBR (to
the joint strategies of the opponents), and

• the one considered in Pearce [1984], concerning mixed extension of a finite game, in which at
each stage we now eliminate only some mixed strategies that are NBR (to the elements of
the products of convex hulls of the opponents’ strategies).

The definition of rationalizable strategies is parameterized by a system of belief. In the case of
finite games three natural alternatives were considered:

• joint pure strategies of the opponents, see, e.g., Bernheim [1984],

• joint mixed strategies of the opponents, see, e.g., Bernheim [1984] and Pearce [1984],

• probability distributions over the joint pure strategies of the opponents, see, e.g., Bernheim
[1984] and Osborne and Rubinstein [1994].

A direct consequence of our results is that for finite games order independence holds for all three
reduction relations and all three alternatives of the systems of belief.

In summary, all three versions of the iterated elimination of NBR are order independent for the
same classes of games for which iterated elimination of strictly dominated strategies was established.
Additionally, for one version order independence holds for all ‘well-behaving’ systems of beliefs.
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2 Preliminaries

Given n players we represent a strategic game (in short, a game) by a sequence

(S1, . . ., Sn, p1, . . ., pn),

where for each i ∈ [1..n]

• Si is the non-empty set of strategies available to player i,

• pi is the payoff function for the player i, so pi : S1 × . . .× Sn →R, where R is the set of real
numbers.

Given a sequence of non-empty sets of strategies S1, . . ., Sn and s ∈ S1× . . .×Sn we denote the
ith element of s by si and use the following standard notation:

• s−i := (s1, . . ., si−1, si+1, . . ., sn),

• (s′i, s−i) := (s1, . . ., si−1, s
′
i, si+1, . . ., sn), where we assume that s′i ∈ Si,

• S−i := S1 × . . .× Si−1 × Si+1 × . . .× Sn.

We denote the strategies of player i by si, possibly with some superscripts.
By a restriction of a game H := (T1, . . ., Tn, p1, . . ., pn) we mean a game G := (S1, . . ., Sn, p1,

. . ., pn) such that each Si is a (possibly empty) subset of Ti and each pi is identified with its
restriction to the smaller domain. We write then G⊆H.

If some Si is empty, we call G a degenerate restriction of H. In this case the references to
pj(s) (for any j ∈ [1..n]) are incorrect and we shall need to be careful about this. If all Si are empty,
we call G an empty game and denote it by ∅n. If no Si is empty, we call G a non-degenerate

restriction of H.
Similarly, we introduce the notions of a union and intersection of a transfinite sequence

(Gα)α<γ of restrictions of H (α and γ are ordinals) denoted respectively by
⋃

α<γ Gα and
⋂

α<γ Gα.

3 Belief structures

We assume that each player i in the game H = (T1, . . ., Tn, p1, . . ., pn) has some further unspecified
non-empty set of beliefs Bi about his opponents. We call then B := (B1, . . .,Bn), a belief system

in the game H. We further assume that each payoff function pi can be modified to an expected

payoff function pi : Si × Bi →R.
Then we say that a strategy si of player i is a best response to a belief µi ∈ Bi in H if for all

strategies s′i ∈ Ti

pi(si, µi) ≥ pi(s
′
i, µi).

In what follows we also assume that each set of beliefs Bi of player i in H can be narrowed to
any restriction G of H. We denote the outcome of this narrowing of Bi to G by Bi

.
∩ G. The

beliefs in Bi

.
∩ G can be also considered as beliefs in the game G. We call then the pair (B,

.
∩),

where B := (B1, . . .,Bn), a belief structure in the game H.
Finally, given a belief structure (B,

.
∩) in a game H we say that a restriction G of H is B-closed

if each strategy si of player i in G is a best response in H (note this reference to H and not G) to
a belief in Bi

.
∩ G.

Fix now a game H := (T1, . . ., Tn, p1, . . ., pn) and a belief structure (B,
.
∩) in H. The following

natural property of
.
∩ will be relevant.
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A If G1 ⊆G2 ⊆H, then for all i ∈ [1..n], Bi

.
∩ G1 ⊆ Bi

.
∩ G2.

The following belief structure will be often used. Assume that for each player his set of beliefs
Bi in the game H := (T1, . . ., Tn, p1, . . ., pn) consists of the joint strategies of the opponents, i.e.,
Bi = T−i. For a restriction G := (S1, . . ., Sn, p1, . . ., pn) of H we define T−i

.
∩ G := S−i. Note that

property A is then satisfied. We call (B,
.
∩) the pure 1 belief structure in H.

4 Reductions of games

Assume now a game H and a belief structure (B,
.
∩) in H. We introduce a notion of reduction ;

between a restriction G := (S1, . . ., Sn, p1, . . ., pn) of H and a restriction G′ := (S′1, . . ., S
′
n, p1, . . ., pn)

of G defined by:

• G ; G′ when G 6= G′ and for all i ∈ [1..n]

no si ∈ Si \ S′i is a best response in H to some µi ∈ Bi

.
∩ G.

Of course, the ; relation depends on the underlying belief structure (B,
.
∩) in H but we do not

indicate this dependence as no confusion will arise. Note that in the definition of ; we do not
require that all strategies that are NBR are removed. So in general G ; G′ can hold for several
restrictions G′. Also, what is important, we refer to the best responses in H and not in G or G′.
The reduction relations that take these two alternative points of reference will be studied in the
next section.

Let us define now appropriate iterations of the ; relation. We shall use this concept for various
reduction relations so define it for an arbitrary relation 7−→ between a restriction G of H and a
restriction G′ of G.

Definition 4.1 Consider a transfinite sequence of restrictions (Gα)α≤γ of H such that

• H = G0,

• for all α < γ, Gα 7−→ Gα+1,

• for all limit ordinals β ≤ γ, Gβ =
⋂

α<β Gα,

• for no G′, Gγ 7−→ G′ holds.

We say then that (Gα)α≤γ is a maximal sequence of the 7−→ reductions and call Gγ its outcome.
Also, we write H 7−→α Gα for each α ≤ γ. 2

We now establish the following general order independence result.

Theorem 4.2 (Order Independence) Consider a game H and a belief structure (B,
.
∩) in H.

Assume property A. Then any maximal sequence of the ; reductions yields the same outcome
which is the largest restriction of H that is B-closed.

Proof. First we establish the following claim.

1to indicate that it involves only pure strategies of the opponents
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Claim 1 There exists a largest restriction of H that is B-closed.

Proof. First note that each empty game is B-closed. Consider now a transfinite sequence of
restrictions (Gα)α<γ of H such that each Gα is B-closed. We claim that then

⋃

α<γ Gα is B-closed,
as well.

To see this choose a strategy si of player i in
⋃

α<γ Gα. Then si is a strategy of player i in Gα0

for some α0 < γ. The restriction Gα0
is B-closed, so for some µi ∈ Bi

.
∩ Gα0

the strategy si is a
best response to µi in H. By property A µi ∈ Bi

.
∩

⋃

α<γ Gα. 2

Consider now a maximal sequence (Gα)α≤γ of the ; reductions. Take a restriction H ′ of H

such that for some α < γ

• H ′ is B-closed,

• H ′ ⊆Gα.

Consider a strategy si of player i in H ′. Then si is also a strategy of player i in Gα. H ′ is B-closed,
so si is a best response in H to a belief µi ∈ Bi

.
∩ H ′. By property A µi ∈ Bi

.
∩ Gα. So by the

definition of the ; reduction the strategy si is not deleted in the transition Gα ; Gα+1, i.e., si is
a strategy of player i in Gα+1. Hence H ′ ⊆Gα+1.

We conclude by transfinite induction that H ′ ⊆Gγ . In particular we conclude that GB ⊆Gγ ,
where GB is the largest restriction of H that is B-closed and the existence of which is guaranteed
by Claim 1.

But also Gγ ⊆GB since Gγ is B-closed and GB is the largest restriction of H that is B-closed.
2

Since at each stage of the above elimination process some strategy is removed, this iterated
elimination process eventually stops, i.e., the considered maximal sequences always exist. The
result can be interpreted as a statement that each, possibly transfinite, iterated elimination of
NBR yields the same outcome.

The ; reduction allows us to remove only some strategies that are NBR in the initial game
H. If we remove all strategies that are NBR, we get the reduction relation that corresponds to
the ones considered in the literature for specific belief structures. It is defined as follows. Consider
a restriction G := (S1, . . ., Sn, p1, . . ., pn) of H and a restriction G′ := (S′1, . . ., S

′
n, p1, . . ., pn) of G.

We define then the ‘fast’ reduction f
; by:

• G f
; G′ when G 6= G′ and for all i ∈ [1..n]

S′i = {si ∈ Si | ∃µi ∈ Bi

.
∩ G ∀s′i ∈ Ti pi(s

′
i, µi) ≤ pi(si, µi)}.

Since the f
; reduction removes all strategies that are never best responses, G f

; G′ and
G ; G′′ implies G′ ⊆G′′.

We now show that the iterated application of the f
; reduction yields a stronger reduction than

; and that f
; is indeed ‘fast’ in the sense that it generates reductions of the original game H

faster than the ; reduction. While this is of course as expected, we shall see in the next section
that these properties do not hold for a simple variant of the ; reduction studied in the literature.

Theorem 4.3 Consider a game H and a belief structure (B,
.
∩) in H. Assume property A.

(i) Suppose G f
;

γ G′ and G ;
γ G′′. Then G′ ⊆G′′.
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(ii) Suppose H f
;

β G and H ;
γ G. Then β ≤ γ.

Proof. First we establish a simple claim concerning the restrictions of H.

Claim 1 Suppose G1 ⊆G2, G1
f
; G′ and G2

f
; G′′. Then G′ ⊆G′′.

Proof. Let G′ := (S′1, . . ., S
′
n, p1, . . ., pn) and G′′ := (S′′1 , . . ., S′′n, p1, . . ., pn).

Suppose s′i ∈ S′i. Then for some µi ∈ Bi

.
∩ G1 we have ∀s∗i ∈ Ti pi(s

∗
i , µi) ≤ pi(s

′
i, µi). By

property A µi ∈ Bi

.
∩ G2, so s′i ∈ S′′i . 2

(i) By definition appropriate transfinite sequences (G′
α)α≤γ and (G′′

α)α≤γ such that G = G′
0 = G′′

0,
G′ = G′

γ and G′′ = G′′
γ exist. We proceed by transfinite induction.

Suppose the claim holds for all β < γ.

Case 1. γ is a successor ordinal, say γ = β + 1.
By the induction hypothesis G′

β ⊆G′′
β . By Claim 1 G′

γ ⊆G2, where G′′
β

f
; G2. But by the

definition of the f
; reduction also G2 ⊆G′′

γ . So G′
γ ⊆G′′

γ.

Case 2. γ is a limit ordinal.
By the induction hypothesis for all β < γ we have G′

β ⊆G′′
β. By definition G′

γ =
⋂

β<γ G′
β and

G′′
γ =

⋂

β<γ G′′
β, so G′

γ ⊆G′′
γ .

(ii) Let (Gα)α≤β and (G′
α)α≤γ be the sequences of the reduction of H that respectively ensure

H f
;

β G and H ;
γ G.

Suppose now that on the contrary γ < β. Then Gβ ⊂ Gγ by the definition of the f
; reduction.

By (i) we also have Gγ ⊆G′
γ . Further, G′

γ = Gβ since by assumption both of them equal G, so
Gβ = Gγ, which is a contradiction. 2

It is important to note that the outcome of the considered iterated elimination process can be
an empty game.

Example 4.4 Consider a two-players game H in which the set of strategies for each player is the
set of natural numbers. The payoff to each player is the number (strategy) he selected. Suppose
that beliefs are the strategies of the opponent. Clearly no strategy is a best response to a strategy
of the opponent. So H ; ∅2. 2

In general, infinite sequences of the ; reductions are possible. Even more, in some games ω

steps of the f
; reduction are insufficient to reach a B-closed game.

Example 4.5 Consider the following game H with three players. The set of strategies for each
player is the set of natural numbers N . The payoff functions are defined as follows:

p1(k, `,m) :=

{

k if k = ` + 1
0 otherwise

p2(k, `,m) :=

{

k if k = `

0 otherwise

p3(k, `,m) := 0.

Further we assume the pure belief structure. Each restriction of H can be identified with the
triple of the strategy sets of the players. Note that
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• the best response to s−1 = (`,m) is ` + 1,

• the best response to s−2 = (k,m) is k,

• each m ∈ N is a best response to s−3 = (k, `).

So the following sequence of reductions holds:

(N ,N ,N ) f
; (N \ {0},N ,N ) f

; (N \ {0},N \ {0},N ) f
;

(N \ {0, 1},N \ {0},N ) f
; (N \ {0, 1},N \ {0, 1},N ) f

; . . .

So (N ,N ,N ) f
;

ω (∅, ∅,N ). Also (∅, ∅,N ) f
; (∅, ∅, ∅), so (N ,N ,N ) f

;
ω+1 (∅, ∅, ∅).

Further, it is easy to see that it is the only maximal sequence of the ; reductions. 2

Let us mention here that Lipman [1994] constructed a two-player game for which ω steps of
the f

; reduction are not sufficient to reach a B-closed game, where each Bi consists of the mixed
strategies of the opponent.

These examples bring us to the question: are we studying the right reduction relation?

5 Variations of the reduction relation

Indeed, a careful reader may have noticed that we use a slightly different notion of reduction than
the one considered in Bernheim [1984] and Pearce [1984]. In general, two natural alternatives to
the ; relation exist. In this section we introduce these variations and clarify when they coincide.

Given a restriction G := (S1, . . ., Sn, p1, . . ., pn) of a game H := (T1, . . ., Tn, p1, . . ., pn), a belief
structure (B,

.
∩) in H, where B := (B1, . . .,Bn) and a restriction G′ := (S′1, . . ., S

′
n, p1, . . ., pn) of G,

the ; reduction can be alternatively defined by:

• G ; G′ when G 6= G′ and for all i ∈ [1..n]

∀si ∈ Si \ S′i ∀µi ∈ Bi

.
∩ G ∃s′i ∈ Ti pi(s

′
i, µi) > pi(si, µi).

Two natural alternatives are:

• G→G′ when G 6= G′ and for all i ∈ [1..n]

∀si ∈ Si \ S′i ∀µi ∈ Bi

.
∩ G ∃s′i ∈ Si pi(s

′
i, µi) > pi(si, µi),

• G⇒G′ when G 6= G′ and for all i ∈ [1..n]

∀si ∈ Si \ S′i ∀µi ∈ Bi

.
∩ G ∃s′i ∈ S′i pi(s

′
i, µi) > pi(si, µi).

So in these two alternatives we refer to better responses in, respectively, G and in G′ instead of
in H.

Clearly G⇒G′ implies G→G′ which implies G ; G′. However, the reverse implications do
not need to hold. The following example additionally shows that neither → nor ⇒ is order
independent. Moreover, countable applications of each of these two relations can reduce the initial
game to an empty game.
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Example 5.1 Reconsider the two-players game H from Example 4.4. Recall that the set of strate-
gies for each player in H is the set of natural numbers N and the payoff to each player is the number
(strategy) he selected. Also, we assume the pure belief structure.

Given two subsets A1, A2 of the set of natural numbers denote by (A1, A2) the restriction of H

in which Ai is the set of strategies of player i. Clearly for all k ≥ 0 we have H ; ({k}, {k}) ; ∅2

and H → ({k}, {k}) and for no k ≥ 0 and G we have ({k}, {k})→G.
So the relations ; and → differ in the iterations starting at H. Moreover, → is not order

independent.
Further, for no k ≥ 0 we have H ⇒ ({k}, {k}), so the relations → and ⇒ differ, as well. Let

now for k ≥ 0
(k,∞) := {` ∈ N | ` > k},

Ak := {0} ∪ (k,∞),

Bk := {1} ∪ (k,∞).

Then both
H ⇒ (A1, A1)⇒ (A2, A2)⇒ . . .

and
H ⇒ (B1, B1)⇒ (B2, B2)⇒ . . .,

so both H ⇒ω({0}, {0}) and H ⇒ω({1}, {1}). But for no G and k ≥ 0 we have ({k}, {k})⇒G.
This shows that ⇒ is not order independent either.

Finally, note that
H ⇒ ((0,∞), (0,∞))⇒ ((1,∞), (1,∞))⇒ . . .

so H ⇒ω∅2 and hence H →ω∅2, as well. In fact, we also have H →∅2. 2

Let us define now the counterpart f→ of the f
; reduction by putting for a restriction

G := (S1, . . ., Sn, p1, . . ., pn) of H and a restriction G′ := (S′1, . . ., S
′
n, p1, . . ., pn) of G

• G f→G′ when G 6= G′ and for all i ∈ [1..n]

S′i = {si ∈ Si | ∃µi ∈ Bi

.
∩ G ∀s′i ∈ Si pi(s

′
i, µi) ≤ pi(si, µi)}.

So, unlike in the definition of the f
; relation, we now refer to the best responses in the game

G. Note that G f→G′ and G→G′′ implies G′ ⊆G′′. In Bernheim [1984] and Pearce [1984] the
f→ reduction was studied, in each paper for a specific belief structure.

Observe that the corresponding ‘fast’ reduction f⇒ does not exist. Indeed, in the above example
we have H ⇒ ((k,∞), (k,∞)) for all k ≥ 0. But

⋂∞
k=0

(k,∞) = ∅ and H ⇒∅2 does not hold. So no
G′ exists such that H ⇒G′ and for all G′′, G⇒G′′ implies G′ ⊆G′′.

In the game used above we have both H f
; ∅2 and H f→∅2, so both fast reductions coincide

when started at H. The next example shows that this is not the case in general. Moreover, it
demonstrates that for the → relation a stronger reduction can be achieved if non-fast reductions
are allowed. So the counterpart of Theorem 4.3 does not hold for the → relation.

Example 5.2 Consider a version of Bertrand competition between two firms in which the marginal
costs are 0 and in which the range of possible prices is the left-open real interval (0, 100]. So in
this game H there are two players, each with the set (0, 100] of strategies. We assume that the
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demand equals 100− p, where p is the lower price and that the profits are split in case of a tie. So
the payoff functions are defined by:

p1(s1, s2) :=



















s1(100− s1) if s1 < s2

s1(100− s1)

2
if s1 = s2

0 if s1 > s2

p2(s1, s2) :=



















s2(100− s2) if s2 < s1

s2(100− s2)

2
if s1 = s2

0 if s2 > s1

Also, we assume the pure belief structure. Below we identify the restrictions of H with the
pairs of the strategy sets of the players.

Since s1 = 50 maximizes the value of s1(100 − s1) in the interval (0, 100], the strategy 50 is
the unique best response to any strategy s2 > 50 of the second player. Further, no strategy is a
best response to a strategy s2 ≤ 50. By symmetry the same holds for the strategies of the second
player. So H f

; ({50}, {50}). Next, s1 = 49 is a better response in H to s2 = 50 than s1 = 50
and symmetrically for the second player. So ({50}, {50}) f

; ∅2.
We also have H f→ ({50}, {50}). But s1 = 50 is a best response in ({50}, {50}) to s2 = 50

and symmetrically for the second player. So for no restriction G of H we have ({50}, {50})→G or
({50}, {50}) f→G. However, we also have H → ((0, 50], (0, 50])→∅2. So H can be reduced to the
empty game using the → reduction but only if non-fast reductions are allowed.

Finally, note that also H ⇒ ((0, 50], (0, 50]) holds. Let (ri)i<ω be a strictly descending sequence
of real numbers starting with r0 = 50 and converging to 0. It is easy to see that for i ≥ 0 we then
have ((0, ri], (0, ri])⇒ ((0, ri+1], (0, ri+1]), so H ⇒ω ∅2. 2

To analyze the situation when the three considered reduction relations coincide we introduce
the following property:

B For all restrictions G of H and all beliefs µi ∈ Bi

.
∩ G a best response to µi in G exists.

For the finite games property B obviously holds. However, it can fail for infinite games. For
instance, it does not hold in the game considered in Examples 4.4 and 5.1 since in this game no
strategy is a best response to a strategy of the opponent.

In the presence of property B the reductions → and ⇒ are equivalent.

Lemma 5.3 (Equivalence) Consider a game H and a belief structure (B,
.
∩) in H. Assume

property B. The relations → and ⇒ coincide on the set of restrictions of H.

Proof. Clearly if G⇒G′, then G→G′. To prove the converse let G := (S1, . . ., Sn, p1, . . ., pn),
G′ := (S′1, . . ., S

′
n, p1, . . ., pn) and B := (B1, . . .,Bn).

Suppose G→G′. Take an arbitrary si ∈ Si \ S′i and an arbitrary µi ∈ Bi

.
∩ G. By property

B some s′i ∈ Si is a best response to µi in G. By definition this s′i is not eliminated in the step
G→G′, i.e., s′i ∈ S′i. So si is not a best response to µi in G′. This proves G⇒G′. 2

However, the situation changes when we consider the ; relation. We noted already that G→G′

implies G ; G′. But the converse does not need to hold, even if property B holds.
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Example 5.4 Suppose that H equals

L R

T 2, 0 2, 0
M 0, 0 1, 0
B 1, 0 0, 0

G is

L R

M 0, 0 1, 0
B 1, 0 0, 0

and G′ is

L R

M 1, 0 1, 0

Further, assume the pure belief structure. Property B holds since the game H is finite.
Since the strategy B is never a best response to a strategy of the opponent in the game H, we

have G ; G′ but G→G′ does not hold since B is a best response to L in the game G. 2

On the other hand, in the presence of properties A and B, iterated applications of the ;

reduction started in H do yield the same outcome as the iterated applications of → or of ⇒ .
Indeed, the following holds.

Lemma 5.5 (Equivalence) Consider a game H and a belief structure (B,
.
∩) in H. Assume

properties A and B. For all restrictions G of H, H ;
γ G iff H →γ G.

Proof. Since G′→G′′ implies G′
; G′′, for all γ H →γ G implies H ;

γ G.
To prove the converse we proceed by transfinite induction. Assume that H ;

γ G. By definition
an appropriate transfinite sequence of restrictions (Gα)α≤γ of H with H = G0 and Gγ = G exists
ensuring that H ;

γ G.
Suppose the claim of the lemma holds for all β < γ.

Case 1. γ is a successor ordinal, say γ = β + 1.
Then H ;

β Gβ and Gβ ; G. Suppose that B := (B1, . . .,Bn), H := (T1, . . ., Tn, p1, . . ., pn),
Gβ := (S1, . . ., Sn, p1, . . ., pn) and G := (S′1, . . ., S

′
n, p1, . . ., pn).

Consider an arbitrary si ∈ Si \ S′i and an arbitrary µi ∈ Bi

.
∩ Gβ such that si is not a best

response in H to µi. By property A

µi ∈ Bi

.
∩ Gα for all α ≤ β. (1)

By property B a best response s′i to µi in H exists. Then pi(s
′
i, µi) > pi(si, µi) and pi(s

′
i, µi) ≥

pi(s
′′
i , µi) for all s′′i ∈ Ti. By the latter inequality and (1) s′i is not removed in any ; step leading

from H to Gβ. So s′i ∈ Si and by the former (strict) inequality si is not a best response to µi in
Gβ. This proves Gβ →G. But by the induction hypothesis H → βGβ, so H → γG.

Case 2. γ is a limit ordinal.
By the induction hypothesis for all β < γ we have H ;

β Gβ iff H →βGβ, so by definition
H ;

γ G iff H →γG. 2

This allows us to establish an order independence result for the → and ⇒ relations.
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Theorem 5.6 (Order Independence) Consider a game H and a belief structure (B,
.
∩) in H.

Assume properties A and B.

(i) All maximal sequences of the → , ⇒ and ; reductions yield the same outcome G.

(ii) This restriction G satisfies the following property:

each strategy si of player i in G is a best response in G (note this reference to G and not H)
to a belief in Bi

.
∩ G.

Proof.
(i) By the Order Independence Theorem 4.2 and

(ii) By (i) for no G′ we have G→G′, which proves the claim. 2

6 Beliefs as joint pure strategies of the opponents

So far we established results for arbitrary belief structures that satisfy properties A and B. In
this section we analyze what additional properties hold for the case of pure belief structures. So
given a game H := (T1, . . ., Tn, p1, . . ., pn) we assume Bi := T−i for i ∈ [1..n] and for a restriction
G := (S1, . . ., Sn, p1, . . ., pn) of H we assume T−i

.
∩ G := S−i.

Clearly, property A then holds. By the Order Independence Theorem 4.2, the outcome of each
maximal sequence of the ; reductions is unique. We noted already that this outcome can be an
empty game. On the other hand, if the initial game has a Nash equilibrium, then this unique
outcome cannot be a degenerate restriction. Indeed, the following result holds.

Theorem 6.1 Consider a game H := (T1, . . ., Tn, p1, . . ., pn). Suppose that H ;
γ G for some γ.

(i) If s is a Nash equilibrium of H, then it is a Nash equilibrium of G. Consequently, if G is
empty, then H has no Nash equilibrium.

(ii) Suppose that for each s−i ∈ T−i a best response to s−i in H exists. If s is a Nash equilibrium
of G, then it is a Nash equilibrium of H.

Proof.
(i) Let G′ be the unique outcome of a maximal sequence of the ; reductions that starts with
H ;

γ G. By definition (s1, . . ., sn) is a Nash equilibrium of H iff each si is a best response to s−i

iff (by the choice of B) ({s1}, . . ., {sn}) is B-closed. Hence, by the Order Independence Theorem
4.2, each Nash equilibrium s of H is present in G′ and hence in G. But G is a restriction of H, so
s is also a Nash equilibrium of G.

(ii) Suppose s is not a Nash equilibrium of H. Then some si is not a best response to s−i in H.
By assumption a best response s′i to s−i in H exists. Then

pi(s
′
i, s−i) > pi(s).

The strategy s′i is not eliminated in any ; step leading from H to G, since s−i is a joint strategy
of the opponents of player i in all games in the considered maximal sequence. So s′i is a strategy
of player i in G, which contradicts the fact that s is a Nash equilibrium of G. 2
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The above result applies to all three reduction relations since H →γG implies H ;
γ G and

H ⇒γG implies H ;
γ G.

The assumption used in (ii) is implied by property B. A natural situation when property B
holds is the following. We call a game H := (T1, . . ., Tn, p1, . . ., pn) compact if the strategy sets are
non-empty compact subsets of a complete metric space and own-uppersemicontinuous if each
payoff function pi is uppersemicontinuous in the ith argument.2

As explained in Dufwenberg and Stegeman [2002] (see the proof of Lemma on page 2012) for
such games property B holds by virtue of a standard result from topology. Consequently, by
the Order Independence Theorem 5.6, the order independence for the → , ⇒ and ; reduction
relations holds. Let us also mention that for this class of games Dufwenberg and Stegeman [2002]
established order independence of the iterated elimination of strictly dominated strategies.

If we impose a stronger condition on the payoff functions, namely that each of them is continu-
ous, then we are within the framework considered in Bernheim [1984]. As shown in this paper if at
each stage the f→ reduction is applied, the final (unique) outcome is a non-degenerate restriction
and is reached after at most ω steps. This allows us to draw the following corollary to the Order
Independence Theorems 4.2 and 5.6.

Corollary 6.2 Consider a compact game H with continuous payoff functions. All maximal se-
quences of the ; (or → or ⇒ ) reductions starting in H yield the same outcome which is a
non-degenerate restriction of H. 2

If at each stage only some strategies that are NBR are removed, transfinite reduction sequences
of length > ω are possible. In Section 4 we already noted that in some games such transfinite
sequences are unavoidable.

Let us mention here that under the same assumptions about the game H Ambroszkiewicz [1994]
showed the analogue of the Equivalence Lemma 5.5 for the ‘fast’ counterparts f

; and f→ of the
reduction relations ; and → , for the limited case of two-person games and beliefs equal to the
strategies of the opponent. 3 By the abovementioned result of Bernheim [1984] the corresponding
iterations of these two reduction relations reach the final outcome after at most ω steps.

Recall now that a simple strengthening of the assumptions of Bernheim [1984] leads to a frame-
work in which existence of a (pure) Nash equilibrium is ensured. Namely, assume that strategy
sets are non-empty compact convex subsets of a complete metric space and each payoff function pi

is continuous and quasi-concave in the ith argument.4 By a theorem of Debreu [1952], Fan [1952]
and Glicksberg [1952] under these assumptions a Nash equilibrium exists.

Natural examples of games satisfying these assumptions are mixed extensions of finite games,
i.e., games in which the players’ strategies are their mixed strategies in a finite game H and the
payoff functions are the canonic extensions of the payoffs in H to the joint mixed strategies.

Let us modify now the definition of the narrowing operation
.
∩ by putting for a mixed extension

H := (T1, . . ., Tn, p1, . . ., pn) and its restriction G := (S1, . . ., Sn, p1, . . ., pn)

T−i

.
∩ G := Πj 6=iSj , (2)

2Recall that pi is uppersemicontinuous in the ith argument if the set {s′i ∈ Ti | pi(s
′

i, s−i) ≥ r} is closed for
all r ∈ R and all s−i ∈ T−i.

3To be precise, in his definition the ‘fast’ reductions are defined by considering the reduction for each player in
succession and not in parallel.

4Recall that pi is quasi-concave in the ith argument if the set {s′i ∈ Ti | pi(s
′

i, s−i) ≥ pi(s)} is convex for all
s ∈ T .
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where for a set Mj of mixed strategies of player j Mj denotes its convex hull. Then, as before,
properties A and B hold.

This situation corresponds to the setup of Pearce [1984] in which at each stage all mixed
strategies that are NBR are deleted and

.
∩ is defined by (2). Pearce [1984] proved that this iterative

process based on the f→ reduction terminates after finitely many steps and yields a non-degenerate
restriction. So we get another corollary to the Order Independence Theorem 4.2 and the Equivalence
Lemmata 5.3 and 5.5.

Corollary 6.3 Let H := (T1, . . ., Tn, p1, . . ., pn) be a mixed extension of a finite game. Suppose
that

.
∩ is defined by (2). Then all maximal sequence of the ; (or → or ⇒ ) reductions yield the

same outcome which is a non-degenerate restriction of H. 2

The same outcome is obtained when at each stage only some mixed strategies that are NBR
are deleted. In this case the iteration process can be infinite, possibly continuing beyond ω.

7 Finite games

Finally, we consider the case of finite games, i.e., ones in which all strategy sets are finite. Given
a finite non-empty set A we denote by ∆A the set of probability distributions over A.

Consider a finite game H := (T1, . . ., Tn, p1, . . ., pn). In what follows by a belief of player i in
the game H we mean a probability distribution over the set of joint strategies of his opponents. So
∆T−i is the set of beliefs. The payoff functions pi are modified to the expected payoff functions in
the standard way by putting for µi ∈ ∆T−i:

pi(si, µi) :=
∑

s−i∈T−i

µi(s−i) · pi(si, s−i).

We noted already that for the finite games property B obviously holds. For further considera-
tions we need the following property:

C For all non-degenerate restrictions G of H, Bi

.
∩ G 6= ∅.

Note 7.1 Consider a finite game H := (T1, . . ., Tn, p1, . . ., pn) and a belief structure (B,
.
∩) in H.

Assume properties A-C. Then a non-degenerate B-closed restriction of H exists.

Proof. Keep applying the ; reduction starting with the original game H. Since now only finite
sequences of ; reductions exist, this iteration process stops after finitely many steps. By the
Equivalence Lemma 5.5 its outcome coincides with the repeated application of the → reduction.

But by definition, in the presence of properties A-C, if G is a non-degenerate restriction of H

and G→G′, then G′ is non-degenerate, as well. So in this iteration process only non-degenerate
restrictions are produced. 2

Three successively larger sets of beliefs are of interest:

• Bi = T−i for i ∈ [1..n].

Then beliefs are joint pure strategies of the opponents.

• Bi = Πj 6=i∆Tj for i ∈ [1..n].

Then beliefs are joint mixed strategies of the opponents.
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• Bi = ∆T−i for i ∈ [1..n].

Then beliefs are probability distributions over the set of joint pure strategies of the opponents.

These sets of beliefs are increasingly larger in the sense that we can identify T−i with the subset
of Πj 6=i∆Tj consisting of the joint pure strategies and in turn Πj 6=i∆Tj with the subset of ∆T−i

consisting of the so-called uncorrelated beliefs.
For Bi ⊆∆T−i and G := (S1, . . ., Sn, p1, . . ., pn) we define then

Bi

.
∩ G := {µi ∈ Bi | µi(s−i) = 0 for s−i ∈ T−i \ S−i}. (3)

In particular, in view of the above identifications,

T−i

.
∩ G = S−i,

Πj 6=i∆Tj

.
∩ G = Πj 6=i∆Sj ,

and
∆T−i

.
∩ G = ∆S−i.

Consider now properties A and C. Property A obviously holds. In turn, property C holds if
T−i ⊆ Bi for all i ∈ [1..n].

Summarizing, in view of Note 7.1 we get the following corollary to the Order Independence
Theorem 4.2 and the Equivalence Lemmata 5.3 and 5.5.

Corollary 7.2 Consider a finite game H := (T1, . . ., Tn, p1, . . ., pn) and suppose that T−i ⊆ Bi for
all i ∈ [1..n] and that

.
∩ is defined by (3). Then all maximal sequences of the ; (or → or ⇒ )

reductions yield the same outcome which is a non-degenerate restriction of H. 2

In particular, each set Bi can be instantiated to any of the three sets of beliefs listed above.
However, the assumption that T−i ⊆ Bi for all i ∈ [1..n] excludes systems of beliefs B := (B1, . . .,Bn)
that consist of the joint totally mixed strategy of the opponents. Recall that a mixed strategy is
called totally mixed if it assigns a positive probability to each pure strategy. Indeed, any element
s−i ∈ T−i is a sequence of pure strategies of the opponents of player i and each such pure strategy
sj is identified with a mixed strategy that puts all weight on sj (and hence weight zero on other
pure strategies). So no element of s−i from T−i can be identified with a totally mixed strategy.

Observe also that if each Bi is the set of joint totally mixed strategy of the opponents, then for
each proper restriction G of H the sets Bi

.
∩ G are all empty. So Bi

.
∩ G does not model the set of

joint totally mixed strategies of the opponents of player i in the game G.
The systems of beliefs involving totally mixed strategies were studied in several papers, starting

with Pearce [1984], where a best response to a belief formed by a joint totally mixed strategy of the
opponents is called a cautious response. A number of modifications of the notion of rationaliz-
ability rely on a specific use of totally mixed strategies, see, e.g., Herings and Vannetelbosch [2000]
where the notion of weak perfect rationalizability is studied.

Corollary 7.2 does not apply to the iterated elimination procedures based on such systems of
beliefs. This is not surprising, since as shown in Pearce [1984] a strategy is weakly dominated iff
it is never a cautious response, and weak dominance is order dependent. In turn, the elimination
procedure discussed in Herings and Vannetelbosch [2000] is shown to be equivalent to the Dekel
and Fudenberg [1990] elimination procedure which consists of one round of elimination of all weakly
dominated strategies followed by the iterated elimination all strictly dominated strategies.
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8 Concluding remarks

We studied in this paper the problem of order independence for rationalizability in strategic games.
To this end we relaxed the requirement that at each stage all strategies that are never best responses
are eliminated. This brought us to a study of three natural reduction relations.

The iterated elimination of NBR is supposed to model reasoning of a rational player, so we
should reflect on the consequences of the obtained results. First, we noted that in some games the
transfinite iterations can be unavoidable. This difficulty was already discussed in Lipman [1994]
who concluded that finite order mutual knowledge may be insufficient as a characterization of
common knowledge.

Next, we noted that in the natural situation when beliefs are the joint pure strategies of the
opponents empty games can be generated using each of the reduction relations ;, → and ⇒ . We
could interpret such a situation as a statement that in the initial game no player has a meaningful
strategy to play. Note that Theorem 6.1 allows us to conclude that the initial game has then no
Nash equilibrium.

Another issue is which of the three reduction relations is the ‘right’ one. The first one considered,
;, is the strongest in the sense that its iterated applications achieve the strongest reduction. It
is order independent under a very weak assumption A that captures the idea of a ‘well-behaving’
belief structure.

However, its definition refers to the strategies of the initial game H which at the moment
of reference may already have been discarded. This point can be illustrated using the Bertrand
competition game of Example 5.2. We concluded there that ({50}, {50}) ; ∅2 because s1 = 49 is
a better response of the first player in H to s2 = 50 than s1 = 50 and symmetrically for the second
player. However, the strategy s1 = 49 is already discarded at the moment the game ({50}, {50})
is considered, so —one might argue— it should not be used to discard another strategy. If one
accepts this viewpoint, then one endorses → as the right reduction. This reduction relation is
not order independent under assumption A but is order independent once we add assumption B
stating that for each belief µi in a restriction G of the original game a best response to µi in G

exists.
Finally, we can view the ⇒ reduction as a ‘conservative’ variant of → in which one insists

that the ‘witnesses’ used to discard the strategies should not themselves be discarded (in the same
round). In the case of the iterated elimination of strictly dominated strategies the corresponding
reduction relation was studied in Gilboa, Kalai and Zemel [1990] and Dufwenberg and Stegeman
[2002].

Note that the difficulty of chosing the right reduction relation does not arise in Bernheim [1984]
and Pearce [1984] since for the class of the games there studied properties A and B hold and
consequently the Equivalence Lemmata 5.3 and 5.5 can be applied.

In the previous two sections we established order independence for all three reduction relations
;, → and ⇒ for the same classes of games for which order independence of the iterated elimina-
tion of strictly dominated strategies (SDS) holds. It was already indicated in Pearce [1984] that the
iterated elimination of NBR yields a stronger reduction than the iterated elimination of SDS. The
Bertrand competition game of Example 5.2 provides an illuminating example of this phenomenon.
In this game all three reduction relations ;, → and ⇒ allow us to reduce the initial game to
an empty one. However, in this game no strategy strictly dominates another one. Indeed, for any
s1 and s′1 such that 0 < s1 < s′1 ≤ 100 we have p1(s1, s2) = p1(s

′
1, s2) = 0 for all s2 such that

0 < s2 < s1 and analogously for the second player. So no strategy can be eliminated on the account
of strict dominance.
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This advantage of each variant of the iterated elimination of NBR over the iterated elimination
of SDS disappears if we provide each player with the strategy 0. Then each strategy is a best
response to the strategy 0 of the opponent, since all of them yield the same payoff, 0. So no
strategy can be eliminated and all four elimination methods yield no reduction, while the resulting
game has a unique Nash equilibrium, namely (0, 0).

Let us conclude with an example when two variants of the iterated elimination of NBR allow one
to identify the unique Nash equilibrium, while the iterated elimination of SDS yields no reduction.

Example 8.1 Consider Hotelling location game in which two sellers choose a location in the open
real interval (0, 100). So in this game H there are two players, each with the set (0, 100) of strategies.
The payoff functions pi (i = 1, 2) are defined by:

pi(si, s3−i) :=



















si +
s3−i − si

2
if si < s3−i

100− si +
si − s3−i

2
if si > s3−i

50 if si = s3−i

First note that no strategy strictly dominates another one. Indeed, for any s1 and s′1 such
that 0 < s1 < s′1 < 100 we have p1(s1, s2) < p1(s

′
1, s2) for all s2 such that s′1 < s2 < 100 and

p1(s1, s2) > p1(s
′
1, s2) = 0 for all s2 such that 0 < s2 < s1. A symmetric reasoning holds for the

second player.
Next, we consider the reduction relations ;, → and ⇒ defined as in Section 6. Note that

no strategy s1 ∈ (0, 100) \ {50} is a best response in H to a strategy s2 ∈ (0, 100). Indeed, if
s1 6= s2, then we have p1(s1, s2) < p1(s

′
1, s2) for all s′1 such that s′1 ∈ (min(s1, s2),max(s1, s2). And

if s1 = s2, then by assumption s1 6= 50 and we have then p1(s1, s2) = 50 < p1(50, s2). A symmetric
reasoning holds for the second player.

So both H ; ({50}, {50}) and H →({50}, {50}) and ({50}, {50}) is Nash equilibrium of H.
Also note that ⇒ yields no reduction here. 2
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