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Abstract

We consider the communication complexity of implementing a given decision rule when
the protocol must also calculate payments to motivate the agents to be honest in an ex post
equilibrium (agents�payo¤s are assumed to be quasi-linear in such payments). We �nd that
the communication cost of sel�shness when measured with the average-case communication
complexity may be arbitrarily large. For the worst-case communication complexity measure,
we provide an exponential upper bound on the communication cost of sel�shness. Whether this
bound is ever achieved remains an open question. We examine several special cases in which
the communication cost of sel�shness proves to be very low. These include cases where we want
to implement e¢ ciency or where we have only two agents, and the precision of agents�utilities
is �xed.

1 Introduction

This paper straddles two literatures on allocation mechanisms. One literature, known as �mech-
anism design,� examines the agents� incentives, and uses the �Revelation Principle� to focus on
mechanisms in which agents fully reveal their preferences (e.g., [10, Chapter 23]). However, full
revelation of private information would be prohibitively costly in most practical settings. The other
literature examines how much communication, measured with the number of bits or real variables,
is required in order to achieve the social goals, assuming that agents communicate truthfully (e.g.,
[7],[11], and references therein). However, in most practical settings we should expect agents to
communicate strategically to maximize their private bene�t.

This paper considers how much communication is required in order to implement a given deci-
sion function when agents are sel�sh.1 Thus, we consider communication mechanisms that reveal
enough information to calculate not only the allocation but also payments to the agents that moti-
vate them to send honest reports in equilibrium (agents�payo¤s are assumed to be quasi-linear in
such payments). In this extended abstract we focus on the equilibrium concept of Ex Post (Nash)
Incentive-Compatibility (EPIC for short) (The full paper [4] also presents results on the weaker
concept of Bayesian-Nash Incentive-Compatibility.) Our results shed some light on the �communi-
cation cost of sel�shness,� i.e., the additional communication complexity needed to calculate such
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1For simplicity here we restrict attention to decision functions, but see [3] for the problem of implementing a

decision correspondence (relation), specifying a set of decisions any of which could be implemented in a given state.
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payments, which we measure as the number of bits exchanged in either the average case or the
worst case.

First we observe that a protocol computing a decision function that is EPIC-implementable
need not reveal enough information to construct the transfers making it an EPIC mechanism,
and so additional communication may be needed to ensure EPIC. In fact, the communication
cost of sel�shness may be quite large: we show that the average-case communication complexity of
allocating one object e¢ ciently between two agents whose valuations are independently drawn from
a uniform distributions is at most 4 bits, but the average-case communication complexity of any
EPIC mechanism implementing such allocation is in�nite. We proceed to examine the worst-case
communication complexity measure, and show that for this measure the cost of sel�shness is at most
exponential in the communication complexity. Whether this upper bound is ever achieved remains
an open question. We proceed to examine several special cases in which the communication cost
of sel�shness proves to be very low. These include the cases when we want to implement e¢ ciency
or when we have only two agents, and the precision of agents�utilities is �xed (or we are content
with approximate incentive compatibility).

A number of papers have examined incentive-compatible indirect communication mechanisms
in various special settings. The �rst paper we know of is Reichelstein [12], who considered incentive
compatibility in nondeterministic real-valued mechanisms, and showed that the communication cost
of sel�shness in achieving e¢ ciency is low (we obtain a parallel result for the communication cost in
bits ). Lahaie and Parkes [8] characterized the communication problem of �nding Vickrey-Groves-
Clarke (VCG) transfers as that of �nding a �universal price equilibrium,�but did not examine the
communication complexity of �nding such transfers, or the possibility of implementing e¢ ciency
using other transfers. Neither paper examined the communication complexity of allocation rules
other than surplus maximization. Also, see Roughgarden and Tardos [13] for results on the latency
cost of �sel�sh routing� in networks, and see Feigenbaum et al. [5] for some analysis of the com-
munication requirements of distributed incentive-compatible multicast cost sharing mechanisms.

2 Background: Communication Complexity

The concept of communication complexity, introduced by Yao [14] and surveyed in [7], describes
how much communication is needed for several agents (from a set I) to compute the value of a
function f : �i2I�i ! X when each agent i 2 I knows privately a part �i 2 �i of the �state�
(�1; : : : �I) (we will refer to �i as agent i�s �type�). Communication is modeled using the notion of
a protocol. In the language of game theory, a protocol is described with an extensive-form game
form and the agents�strategies in it. We restrict attention to games of perfect information (i.e.,
each decision is broadcast to all agents), which is without loss of generality for our purposes. Also,
we restrict attention to protocols in which each agent has two possible moves at a decision node
(interpreted as sending one bit), since any message from a �nite alphabet can be coded with a �xed
number of bits. Formally,

De�nition 1 A protocol P with agents I = f1; :::; Ig over state space � = �i2I�i and decision
space X is a binary tree, with a set of nodes N and a set of leaves L � N , where:

� The set N nL of non-leaf nodes is partitioned into I subsets N1; : : : ; NI , with Ni representing
the set of decision nodes of agent i 2 I.

� Each leaf l 2 L of the tree is labeled with a decision o(l) 2 X
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� Each agent i 2 N has a strategy plan �i : �i ! Si, where Si = f0; 1gNi is the set of the
agent�s possible strategies in the game (moves made at his decision nodes).2

For each strategy pro�le s = (s1; : : : sI) 2 �i2ISi, let � (s) 2 L denote the leaf reached when the
agents follow the respective strategies. The decision function f : � ! X computed by protocol P,
which denoted by Fun(P), is de�ned by f (�) = o (� (� (�))) for all � 2 �.

The communication complexity of a protocol is de�ned as the number of bits sent in it, which
could be measured in the worst case (as the maximum depth of the tree), or in the average case
given a probability distribution over the states:

De�nition 2 For � 2 �, let dP(�) be the depth of leaf � (�) in protocol P, i.e., the number of edges
between the root and � (�).

� The worst-case communication cost of a protocol P is de�ned as the maximum depth of the
protocol i.e., dP = max �2�dP(�). The (worst-case) communication complexity of decision
function f : �! X is de�ned as minP:Fun(P)=f dP .

� The average-case communication cost of a protocol P given a probability distribution p on �
is de�ned as ACCp(P) = Ep[dP(�)]. The average-case communication complexity of decision
function f : �! X given distribution p is de�ned as minP:Fun(P)=f ACCp(P).

3 Binary Dynamic Mechanisms

3.1 The Formalism

A protocol induces an extensive-form game with perfect information, and prescribes a strategy in
this game for each agent of any type. When agents are sel�sh, we need to consider their incentives
to deviate from the prescribed strategies. We will say that an agent i of type �i is honest if he
follows the prescribed strategy �i (�i). An agent�s incentive to be honest are a¤ected by monetary
payments assigned to the agents, which the protocol can compute along with the decision:

De�nition 3 A binary dynamic mechanism (BDM) is a pair hP; �i such that:

� P is a protocol with set of leaves L.

� � : L! RI describes a pro�le of payments given to the agents in all leaves..

The function t : �i ! RI de�ned by t (�) = � (� (� (�))) is called the transfer function computed
by the BDM.

We describe agents�preferences by a Utility Function Pro�le (UFP) U = (u1; :::; uI), where for
all i 2 I, the utility function ui : X � �i ! R gives the utility of agent i of each type for each
decision. We assume the utilities are quasi-linear in the payments, i.e., the total payo¤ of agent i
of type �i from decision x and transfer ti is ui(x; �i) + ti.

2 It more customary in game theory to call the �strategy� of agent i the whole function �i, contingent of the
agent�s type �i 2 �i, which is is interpreted as a �move of nature.� For our purposes, however, it is convenient to
reserve the term �strategy�to denote the agent�s behavior si 2 Si in the protocol.
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3.2 Ex Post Incentive Compatibility

De�nition 4 BDM hP; �i is Ex Post Incentive Compatible (EPIC) with respect to utility function
pro�le U = (u1; :::; uI) if in any state � 2 �, the strategy pro�le s = (�1 (�1) ; :::; �I (�I)) 2 �i2ISi
is an ex post Nash Equilibrium of the induced game, i.e.,

8i 2 I;8s0i 2 Si : ui(o (� (s)) ; �i) + � i(� (s)) � ui(o
�
�(s0i; s�i)); �i

�
+ � i(�

�
s0i; s�i

�
):

In words, for any state � 2 �, each agent�s prescribed strategy is optimal for him as long as
long he expects other agents to follow their prescribed strategies.3 In this case, we will say that
BDM hP; �i it implements f = Fun(P) in EPIC with respect to U .

Note that:

� By the Revelation Principle, if decision function f is implementable in an EPIC BDM
that computes a transfer function t : � ! RI , the following Dominant-strategy Incentive-
Compatibility (DIC) constraints must be satis�ed:

ui (f (�i; ��i) ; �i)+ti (�i; ��i) � ui
�
f
�
�0i; ��i

�
; �i
�
+ti

�
�0i; ��i

�
8�i; �0i 2 �i 8��i 2 ��i: (1)

In particular, for �i; �0i 2 �i such that f (�i; ��i) = f
�
�0i; ��i

�
, these inequalities imply that

ti (�i; ��i) = ti
�
�0i; ��i

�
, and therefore the transfer to each agent i can be written in the form

ti (�) = Ti (f(�); ��i) for some Ti : X ���i ! R: (2)

� Our restriction to mechanisms of perfect information is without loss of generality for EPIC
implementation, since ex post Nash equilibrium requires honesty to be optimal even for an
agent who knows the other agents�types and therefore all their moves.

� This setting can be extended to the case where types are revealed to agents in real time as
the mechanism is executed, as long as each agent has enough information at each node to
compute the prescribed move.

3.3 Incentivability of Protocols

In standard mechanism design, according to the Revelation Principle, a decision function is DIC-
implementable if and only if the direct revelation protocol for this rule can be incentivized with
some transfers. Now we de�ne incentivability for general protocols:

De�nition 5 A protocol P with set I of agents and set of leaves L is EPIC-incentivable (or just
incentivable) with respect to UFP U = (u1; :::; uI) if there is a transfer function � : L ! RI such
that (P; �) is an EPIC BDM with respect to U .

There exist simple examples of incentivable protocols other than direct revelation protocols. For
example, if decision function f is DIC implementable with transfer functions t that depend only on

3 In our setting of private values, in which agent i�s utility does not depend on others�types ��i, this is equivalent
to saying that agent i�s strategy be optimal for him assuming that each agent j 6= i follows a strategy prescribed for
some type �j . Note that we do not require the stronger requirement of Dominant-strategy Incentive-Compatibility
(DIC), which would allow agent i to expect agents j 6= i to use contingent strategies sj 2 Sj that are inconsistent
with any type �j , and which would be violated in even the simplest dynamic mechanisms.
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the decision (i.e., take the form ti (�) = Ti (f (�))), then any protocol computing f is incentivable.4

However, for other DIC implementable decision functions, and in particular for e¢ cient decision
functions, it is easy to �nd examples of protocols that are not incentivable:

Example 1 There are two agents and one indivisible object, which can be allocated to either agent.
The two agents� valuations (utilities from receiving the object) lie in type spaces �1 = f1; 2; 3; 4g
and �2 = [0; 5] respectively (their utilities for not receiving the object are normalized to zero).
An e¢ cient decision function (which allocates the object to the agent with the higher valuation)
can be computed with the following protocol P0: Agent 1 sends his type (using log2 4 = 2 bits),
and then agent 2 outputs an e¢ cient allocation x 2 f1; 2g (using 1 bit). The computed decision
function is DIC implementable. Now, suppose in negation that the protocol computes a transfer
function t that make it into an EPIC BDM. Using (2) and the fact that the protocol does not reveal
anything about agent 2�s type �2 beyond the decision f (�1; �2), the transfer to agent 1 must take
the form t1 (�1; �2) = T1 (f (�1; �2)). But then agent 1 would always want to take the object when
�1 > T1 (1)� T1 (2), and would always choose not to take it when �1 < T1 (1)� T1 (2), so it cannot
compute an e¢ cient decision function. Hence, Protocol P0 is not incentivable.

3.4 Incentive Communication Complexity

Since the cheapest protocol computing a decision function may not be incentivable, the agents�
sel�shness may raise the communication cost:

De�nition 6 ICCU (f), the incentive communication complexity of a decision function f with
respect to the UFP U , is the depth dP of the shallowest protocol P that computes f and that is
incentivable with respect to U .

AICCUp (f), the average incentive communication complexity of a decision function f with re-
spect to the UFP U and probability distribution p, is the minimal average communication cost
ACCp(P) over all protocols P that compute f and that are incentivable with respect to U .

We can now talk of the communication cost of sel�shness as the di¤erence between CC(f) and
ICCU (f) when we consider the worst-case costs, or the di¤erence between ACCp(f) and AICCUp (f)
when we consider the average-case costs. Note that the inequalities ACCp(f) � AICCUp (f) �
ICCU (f) and ACCp(f) � CC(f) � ICCU (f) must always hold.

4 In�nite Average-Case Cost of Sel�shness

We show that the average-case communication cost of sel�shness can be unbounded, even for the
problem of computing an e¢ cient allocation with two agents:

Proposition 1 For any � > 0 there exists a problem with two agents, a state space � = �1 ��2,
a UFP U = (u1; u2), and an e¢ cient decision function f such that, given the uniform probability
distribution p over �, ACCp(f) < 4 but AICCUp (f) > �.

4For example, this property is satis�ed by decision functions that depend only on a single agent�s type (this is
known as the �Taxation Principle�). To have another example satisfying this property, suppose there is one object
and two agents, and consider the decision function that gives the object goes to agent 1 if his valuation is more than
a, otherwise, it gives the object to agent 2 if his valuation is more than a, and does not give it to either agent if
neither condition is satis�ed.
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Proof Sketch: Consider the problem of allocating an indivisible object to one of the two agents,
as in Example 1 above, but with the agents� valuations drawn independently from the uniform
distribution over �1 = �2 = fk2�
 jk = 0; : : : ; 2
 � 1g. Let f be the e¢ cient decision function that
allocates the object to the agent with the higher valuation, and gives it to agent 1 in the case of
a tie. f can be computed with the following bisection protocol suggested in [6]: At each round
m = 1; : : : ; 
, each agent i reports the mth bit in the binary expansion of his valuation �i. The
protocol stops as soon as the two agents report di¤erent bits, and then gives the object to the agent
who just reported 1 (he is proven to have the higher valuation). If the agents have not disagreed in
the 
 steps, the object is given to agent 1 (in this case the two agents are shown to have the same
valuations). The probability that the protocol stops at any given round conditional on arriving
there is 1=2. Therefore, the expected number of rounds is at most 2, and so the average-case
communication complexity is at most 4, regardless of 
.

Now, consider an EPIC BDM implementing decision function f . (In fact, the argument below
applies to any e¢ cient decision function). By (2), the transfer to agent 2 can be written as
T2 (f (�1; �2) ; �1). Furthermore, the DIC inequalities (1) imply that to implement an e¢ cient
decision rule f , we must have

jT2 (2; �1)� T2 (1; �1)� �1j � 2�
 for any �1 2
�
0; 1� 2�


�
;

for otherwise agent 2 would prefer either to overstate his valuation when �1 = �2 � 2�
 or to
understate it when �1 = �2 + 2�
 .

Suppose that 
 � 4. Let us now run the EPIC BDM twice, drawing �2 independently for
the two runs but using the same �1 for the two runs. In the event where �2 � 3=4 in the �rst
run, �2 < 1=4 in the second run, and �1 2 ~�1 �

�
k � 22�
 : k = 1=4 � 2
�2; : : : ; 3=4 � 2
�2 � 1

	
, the

object goes to agent 2 in the �rst run and to agent 1 in the second run, and the di¤erence between
agent 1�s transfers computed in the two runs pins down the realization of �1 2 ~�1 (it must be
within 2�
 of the di¤erence). Thus, in this event, whose probability is 1=16, the two runs of the

protocol should generate
���~�1��� = 2
�3 distinct equiprobable leaves. This implies that at least half

of these leaves must have depth at least 
 � 3. Since the leaves are equiprobable, with probability
1=2 � 1=16 = 1=32 the two-run protocol sends at least 
 � 3 bits, hence the expected number of
bits transmitted in the two-run protocol is at least (
 � 3) =32. The average-case communication
complexity of a single run of the EPIC BDM is then at least half this number, i.e., (
 � 3) =64.

Although in�nite protocols are not formally de�ned here, we can use a bisection protocol [6]
to allocate an object e¢ ciently between two agents whose valuations are uniformly distributed on
[0; 1] using only 4 bits on average. However, no protocol with a �nite average-case communication
cost can be incentivized in this case.

5 Exponential Worst-Case Upper Bound

Now we turn to the communication cost of sel�shness for the worst-case complexity measure. We
show that this cost can be bounded above by an exponential function of the original communication
complexity of the decision function.

By the Revelation Principle, given a DIC-implementable decision function, a full revelation of
the agents�types, would allow us to compute a transfer function that makes the DIC inequalities
(1) hold. But is full revelation necessary to compute such �acceptable�transfers? For example, if
some of the agents�type spaces are in�nite but our decision function can be computed with a �nite
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protocol, is it be possible that we need in�nite communication to compute acceptable transfers?
We show that the answer is �no:�In fact, given a protocol P that computes a DIC-implementable
decision function, we can compute some acceptable transfers using only enough information about
the types to know what each agent would do at any node of P.

Formally, we de�ne the Normal-Form Expansion of protocol P, denoted by NFE(P), as a
protocol in which each agent i describes his strategy �i (�i) in P, i.e., the decisions �i (�i) (n)
prescribed by the strategy at each of the agents�decision nodes n 2 Ni. (The order in which the
agents describe their strategies in NFE(P) is irrelevant.) Note that the depth of NFE(P) equals to
the number of decision nodes in P, which is bounded above by 2dP �1. We show that if protocol P
computes a DIC implementable decision function, then NFE(P) is EPIC incentivable, which yields
the following upper bound on Incentive Communication Complexity:

Proposition 2 For any UFP U = (u1; :::; uI) and any DIC-implementable decision function f ,

ICCU (f) � 2CC(f) � 1

Proof Sketch: Suppose that protocol P computes a decision function f that is DIC imple-
mentable with some transfer rule t : � ! RI . For each agent i, consider a reduced state
space �0i � � such that any strategy si in P is used by at most one type in �0i. Note that if
�i
�
�0i
�
= �i (�i) for �0i; �i 2 ��i, then the decision function computed by the protocol must have

f
�
�0i; ��i

�
= f (�i; ��i) for all ��i 2 ��i. To each leaf s = (s1; : : : sI) of protocol NFE(P), assign

the transfers t
�
�0
�
2 RI corresponding to the state �0 2 �0 for which �

�
�0
�
= s. (Announcement

of a strategy si that is not used by any type in P should be banned or, equivalently, punished with
a large enough negative transfer so that no type would want to do it.) DIC inequalities (1) imply
that such transfers incentivize NFE(P).

This upper bound shows that the communication cost of sel�shness is not unbounded, and is
at most exponential. In particular, it shows that a decision function f can be implemented in an
EPIC BDM if and only if f is a DIC-implementable decision function that can be computed with
�nite communication.

The upper bound of Proposition 2 can be improved by eliminating from NFE(P) those strategies
in P that are not used by any type:

Example 2 Consider the setting in Ex. 1. Protocol P0 has depth 3, so by Prop. 2, there exists an
incentivable protocol of depth 23 � 1 = 7. But we can go further: agent 1 uses only 4 strategies in
P0 (one for each of his types) out of the 23 = 8 possible strategies, and agent 2 uses only 5 strategies
out of 24 = 16, each of the 5 strategies being described by a threshold of agent 1�s announcement
below which agent 2 takes the good. Since full description of such strategies in P0 by the two agents
takes dlog2 4e+ dlog2 5e = 5 bits, we have a protocol of depth 5 that is incentivable.

It is unknown, however, whether there exists a UFP U and a DIC-implementable decision
function f such that ICCU (f) is even close to the obtained upper bound of 2CC(f)�1. In particular,
it remains an open problem to determine the highest attainable upper bound, or to �nd any
�canonically hard�instances, in the spirit of [5].

Open Problem 1 Are there �canonically hard�DIC-implementable decision functions f combined
with utility function pro�les U , for which the incentive communication complexity, ICCU (f), is
much higher than the communication complexity of f , CC(f)? How high can be the (worst-case)
communication cost of sel�shness?
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6 Cases with Low Cost of Sel�shness

While we do not expect the communication cost of sel�shness to be low in general, in this section
we identify some cases where it proves to be reasonable. Some of these cases involve decision
functions that are f e¢ cient, i.e. choose decisions that maximize the sum of utilities. Since the
communication complexity of computing exact e¢ ciency may in itself be in�nite or prohibitive, we
also allow approximately e¢ cient functions:

De�nition 7 Decision function f : �! X is �-e¢ cient for UFP U = (u1; :::; uI) (for some � � 0)
if 8� 2 �, X

i2I
ui(f(�); �i) � max

x2X

X
i2I
ui(x; �i)� � 8� 2 �:

The applicability of our results goes beyond e¢ cient decision functions: Under some natural
conditions [9], any DIC-implementable decision function maximizes a non-negatively weighted a¢ ne
combination of the agents�utilities, which can be interpreted as e¢ ciency upon rescaling of the
utilities and adding a �ctitious agent with a known utility function. We consider e¢ cient and
approximately e¢ cient decision functions in general, and also for the special case of �single-
parameter�agents, who have the same nonnegative utility for a known subset of decisions and a
zero utility for the other decisions. In the general case, the communication cost of sel�shness is
bounded when agents�utilities are given with a �nite precision (equivalently, we are content with
approximate incentive compatibility), while for single-parameter agents we obtain a bound without
any constraints on the utility range. Finally, we show that the communication cost of sel�shness is
very low for any DIC decision function if there are only two agents whose utilities are given with
a �nite precision (or if we are content with approximate incentive compatibility).

6.1 E¢ ciency with Discrete Utility Range

It is well known that any e¢ cient decision function is DIC implementable. In particular, it can
be implemented in dominant strategies by giving each agent a transfer equal to the sum of other
agents�utilities from the computed decision (as in the VCG mechanism). Therefore, starting with
any protocol computing an e¢ cient decision function f , we can satisfy EPIC by having the agents
report their utility values from the decision computed by the protocol, and then transfer to each
agent the amount equal to the sum of the reported utilities of the other agents. (Note that an
agent would have no incentive to misreport his utility value since this would have no e¤ect on his
own transfer.) This idea dates back to Reichelstein [12] and was recently used in [1]. To obtain a
BDM, we need the agents to have �nite utility ranges. For example, the following condition would
su¢ ce:

De�nition 8 UFP U = (u1; :::; uI) has discrete range with precision 
 if ui (x; �i) 2 fk2�
 : k = 0; : : : ; 2
 � 1g
for all �i 2 �i; x 2 X:

In this case, each agent can report his utility value using 
 bits, and so we obtain

Proposition 3 For an UFP U with discrete precision-
 range, and an e¢ cient decision function
f ,

ICCU (f) � CC(f) + I
, and

AICCUp (f) � ACCp(f) + I
 for any probability distribution p

172



Thus, the communication cost of sel�shness is at most 
I bits, both for average-case and worst-case
communication.

Furthermore, even if utility range is continuous but bounded (without loss of generality lies in
[0; 1], up to a rescaling of utilities), we can use the same approach to achieve "-EPIC (i.e., an agent
will be honest unless he can get more than " by deviating):

De�nition 9 BDM hP; �i is "-EPIC for some " � 0 if in any state � 2 �, the prescribed strategy
pro�le in this state is an "-Nash equilibrium of the game, i.e., the inequalities in Def. 4 above are
violated by at most ".

If each agent outputs his utility rounded down to a multiple of "=(I � 1), we can construct
a transfer to each agent that is within 1=2 � "= (I � 1) of the sum of others�true utilities, and so
ensure "-EPIC. This will take at most dlog2 (I � 1)="e bits by each agent, which bounds above
the communication cost of sel�shness. The argument also extends to �-e¢ cient decision functions
with 0 � � < ": It is su¢ cient for each agent to output his utility rounded down to a multiple of
("� �)=(I � 1), which takes at most dlog2 (I � 1)=("� �)e bits. To summarize:

Proposition 4 For any UFP U with utility range contained in [0; 1], and decision function f is
�-e¢ cient, and the solution concept is "-EPIC with 0 � � < " then the communication cost of self-
ishness is at most Idlog2 (I�1)=("��)e, for either the worst-case or average-case communication
measure with any probability distribution.

Thus, for e¢ cient and approximately e¢ cient decision functions, the communication cost of
sel�shness is bounded above by a number that does not depend on the communication complexity
of the decision function, as long as the utility range is discrete or approximate EPIC is allowed.

6.2 E¢ ciency with Single-Parameters Agents

Here we restrict attention to agents who have the same nonnegative utility for a known subset of
decisions and a zero utility for the other decisions:

De�nition 10 Agent i is a Single-Parameter (SP) agent if his type space is �i � R+ and there
exists a set Xi � X of decisions such that ui (x; �i) = �i if x 2 Xi and ui (x; �i) = 0 otherwise.

For the problem of achieving e¢ ciency or approximate e¢ ciency with SP agents, we can bound
above the communication cost of sel�shness regardless of the utility range, by a factor of at most
the number of agents:

Proposition 5 Consider UFP U such that all I agents are single-parameter agents, and let f be
a �-e¢ cient decision functions for some � � 0. Then

ICCU (f 0) � I � (CC(f) + 1)

for some �-e¢ cient decision function f 0.5

5For exact e¢ ciency (i.e., � = 0), the proposition easily extends to agents whose utility functions take the form
ui(x; �i) = �iai(x) + bi(x), for some functions ai; bi : X ! R.
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Proof Sketch: Consider a protocol P computing f . It is well known that the set of states in
which a given leaf l 2 L of the protocol is reached is a product set

Y
i2I
�i (l) [7, Chapter 1]. For each

agent i, let �i (l) = inf �i (l) and �i (l) = sup�i (l). Given the utilities of SP agents, the decision
o (l) assigned to leaf l must be �-e¢ cient on

Y
i2I

�
�i (l) ; �i (l)

�
. The threshold points �i (l) ; �i (l) for

l 2 L partition agent i�s type space �i into at most 2 jLj intervals. Consider now a protocol P 0
in which each agent i reports the interval Gi in which his type lies. There is at least one decision
known to be �-e¢ cient on the event G =

Y
i2I
Gi (namely, the decision assigned by protocol P to

any leaf l 2 L for which Gi �
�
�i (l) ; �i (l)

�
for all i 2 I ). Now, let protocol P 0 assign a decision

to leaf G =
Y
i2I
Gi by trying, within all the decisions that are �-e¢ cient on G, lexicographically, to

achieve x1 2 X1, then x2 2 X2;..., then xI 2 XI . Let f 0 = fun(P 0):
Note that in protocol P 0, each agent sends at most log2 (2 jLj) � 1 + dP bits, and it computes

a �-e¢ cient decision function f 0. It remains to show that P 0 is incentivable. For this purpose, �rst
observe that f 0 is DIC implementable. Indeed, by construction, f 0 has the property that 8� 2 �
8�0i 2 �i such that �0i > �i, f 0 (�) 2 Xi ) f 0

�
�0i; ��i

�
2 Xi. Therefore, f 0 is DIC implementable

using transfers of the form (2) with Ti (x; ��i) = inf f�i 2 �i : f (�i; ��i) 2 Xig. Furthermore, each
agent�s strategy in protocol P 0 is not contingent on others�messages, and so by the argument of
Section 5, P 0 is incentivable.

In particular, this proposition applies to the problem of allocating one indivisible object among
I agents without externalities, in which case the agents are single-parameter agents.6 Note that
the result does not extent to the average-case communication cost, which, as shown in Prop. 1,
can be unbounded in this case.

6.3 Any DIC Decision Function with Two Agents

Recall from (2) that when decision function f is DIC implementable with transfers t, the transfer
to agent i can be written as ti (�) = Ti (f(�); ��i). Furthermore, if the utilities have discrete range
with precision 
, then we can restrict attention to discrete transfers with the same precision. With
two agents, agent �i can output the transfer Ti (f(�); ��i) at the end of any protocol computing
f(�), thus yielding an EPIC BDM implementing f . This argument yields

Proposition 6 Suppose that I = 2 and UFP U has discrete range with precision 
. Then for any
DIC decision function f ,

ICCU (f) � CC(f) + 2(
 + 1), and

AICCUp (f) � ACCp(f) + 2(
 + 1) for any probability distribution p

Proof Sketch: We can �x Ti (x0; ��i) = 0 8��i for an arbitrary �xed decision x0 2 X, and then
DIC inequalities (1) imply that jTi (x; ��i)j � 1� 2�
 . Furthermore, since utilities have a discrete
range with precision 
, we can round down all transfers to multiples of 2�
 while preserving DIC.
Reporting such a transfer takes 
 + 1 bits.

6A related theorem for this case is stated in [2]: It shows that any sequential communication in this setting can
be replaced with simultaneous communication achieving the same approximation of e¢ ciency while increasing the
communication complexity by at most a factor of I.
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We can obtain a parallel result for a continuous but bounded utility range if "-EPIC allowed,
since we can round down the transfers to multiples of "�1:

Proposition 7 Let I = 2 with UFP U with utility range contained in [0; 1], decision function f be
DIC implementable, and the solution concept be "-EPIC with " > 0, then the communication cost
of sel�shness is at most 2dlog2 "�1 + 1e, for either the worst-case or average-case communication
measure with any probability distribution.

7 Conclusion

This note has shown that the communication cost of sel�shness when de�ned by ex post incentive-
compatibility may be quite high� even in�nite when measured with the average-case complexity. In
the full paper, we also consider the weaker equilibrium concept of Bayesian Incentive-Compatibility
(BIC). For this concept, we show that for DIC-implementable decision function, the communication
cost of sel�shness is zero. In fact, we show that any protocol computing a DIC decision function is
BIC incentivable, i.e., it yields enough information to compute payments to agents that make it a
BIC mechanism (and the payments can even be made to add up to zero, thus ensuring a balanced
budget). The situation is di¤erent for decision functions that are not DIC-implementable but still
BIC-implementable. To implement such decision functions, it proves important not to broadcast all
the moves in the game to all the agents, i.e., to create some non-trivial information sets. Intuitively,
if an agent knows too much, this may destroy his incentive to be honest. However, hiding previous
moves may increase the communication complexity (e.g., single-round communication complexity is
known to be sometimes exponentially higher than multi-round complexity [7]). Thus, we conjecture
that BIC implementable decision functions may have a large communication cost of sel�shness. For
now, however, the only general formal result we have in this regard is an exponential upper bound
for the worst-case communication cost of sel�shness (proven along the same lines as Prop. 2).
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