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ABSTRACT
In this paper, we present an epistemic logic approach to
the compositionality of several privacy-related information-
hiding/disclosure properties. The properties considered here
are anonymity, privacy, onymity, and identity. Our initial
observation reveals that anonymity and privacy are not nec-
essarily sequentially compositional; this means that even
though a system comprising several sequential phases satis-
fies a certain unlinkability property in each phase, the entire
system does not always enjoy a desired unlinkability prop-
erty. We show that the compositionality can be guaranteed
provided that the phases of the system satisfy what we call
the independence assumptions. More specifically, we de-
velop a series of theoretical case studies of what assumptions
are sufficient to guarantee the sequential compositionality of
various degrees of anonymity, privacy, onymity, and/or iden-
tity properties. Similar results for parallel composition are
also discussed.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Modal logic; D.2.4 [Software Engi-
neering]: Software/Program Verification—Formal methods

General Terms
Security, Theory, Verification

Keywords
Epistemic logic, anonymity, privacy, compositionality, mod-
ular reasoning

1. INTRODUCTION
An information system generally consists of a number of

subsystems. If some subsystems are shown to have certain
formal properties and some others shown to have different
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properties, the question arises as to how we can deduce that
the total system has certain formal properties. Or, more
complicatedly, the system may possibly consist of a variety
of subsystems that have various degrees of multiple proper-
ties. Thus, the concept of compositionality plays a key role
in a modular approach to formal reasoning about complex
information systems.

This paper deals with a logical approach to the
compositionality of several privacy-related information-
hiding/disclosure properties. Since privacy and related
properties such as those discussed in [21, 2] have become
crucial requirements for today’s information systems, the
compositionality of those properties has also become a con-
cern. The properties considered here are anonymity, pri-
vacy, onymity, and identity (Fig. 1). Intuitively, we can
understand anonymity to be the property of hiding who
performed a certain specific action, privacy that of hiding
what was performed by a certain specific agent, onymity
that of disclosing who performed a certain specific action,
and identity that of disclosing what was performed by a cer-
tain specific agent. A series of previous studies by Halpern
and O’Neill [12], Mano et al. [19], and Tsukada et al. [26]
showed that these properties can be formulated concisely in
terms of epistemic logic (or the modal logic of knowledge) for
multiagent systems.

For example, sender anonymity can be formulated in terms
of our epistemic logic as

θ(i, send(m)) ⇒ V
i′∈IA

Pj [θ(i
′, send(m))].

Here, IA, called an anonymity set, denotes a set of possible
senders. We read this formula as “if an agent i sends a
message m, then the observer j thinks that it is possible
that every agent i′ in IA performs the sending action.” In
other words, this formula means that the observer j does
not know who sends the message m. On the other hand,
message privacy can be formulated as

θ(i, send(m)) ⇒ V
a′∈AI

Pj [θ(i, a
′)].

Here, AI , called a privacy set, denotes a set of possible send-
ing actions, that is, {send(m′) | m′ is a possible message}.
This formula should be read as “if an agent i sends a mes-
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(to hide who performed) (to hide what was performed)
anonymity←“dual”→ privacy

↑ ↑
“contrary” “contrary”

↓ ↓
onymity←“dual”→ identity

(to disclose who performed) (to disclose what was performed)

Figure 1: Privacy-related information-hiding/disclosure properties.

sage m, then the observer j thinks that it is possible that
the agent i performs every sending action a′ in AI .” In
other words, this formula means that the observer j does not
know what message is sent from the agent i. We may say
that these two properties—sender anonymity and message
privacy—are “dual” because each of the above two formulas
can be obtained from the other by interchanging “who”with
“what,” or more specifically, IA with AI . We can also de-
fine onymity and identity as the“contrary”of anonymity and
privacy, respectively, in terms of epistemic logic. Thus, epis-
temic logic enables us to succinctly describe formal specifica-
tions of various privacy-related information-hiding/disclosure
properties of information systems.

In this paper, the epistemic logic approach developed in
[12, 19, 26] is further exploited to discuss the composition-
ality of multiple properties comprising anonymity, privacy,
onymity, and identity. More specifically, the contributions
of this paper can be summarized as follows. First, we in-
dicate that anonymity and privacy are not necessarily se-
quentially compositional. (This may be contrary to our in-
tuition, because we might think that anonymity/privacy can
be reinforced by sequentially connecting anonymous/private
communication channels.) To show this indication, we in-
troduce, as a motivating example, an abstract model of
an anonymous members-only bulletin board system, which
comprises two sequential phases, namely, the registration
and posting phases. We show that the composition of ano-
nymity in the registration phase and privacy in the posting
phase does not necessarily induce anonymity or privacy in
the entire system. If we regard anonymity and privacy as
special cases of unlinkability, this indication can be para-
phrased by saying that even though a system comprising sev-
eral sequential phases satisfies a certain unlinkability prop-
erty in each phase, the system as a whole does not always
enjoy a desired unlinkability property. For example, our
epistemic logic approach shows that a chain M1 ∗M2 of two
mix-servers [5] does not necessarily guarantee unlinkability
between incoming and outgoing messages even though both
M1 and M2 do. This non-compositionality of unlinkabil-
ity can be viewed as being analogous to the non-transitivity
of inequality: a �= b and b �= c do not necessarily imply
a �= c. Second, we show that the sequential composition-
ality of anonymity and privacy can be guaranteed provided
that the phases of the system satisfy what we call the in-
dependence assumptions. We develop a series of case stud-
ies of what assumptions are sufficient to guarantee the se-
quential compositionality of various degrees of anonymity,
privacy, onymity, and/or identity properties. These com-
positionality results are summarized in Table 1. Third, we
show that similar compositionality results can be obtained
for parallel composition. We demonstrate that some varia-
tions of independence assumptions also play important roles
in guaranteeing the parallel compositionality of anonymity
and privacy.

Related Work
A considerable amount of substantial research on the mea-
surement, characterization, and taxonomy of privacy and re-
lated information-hiding/disclosure properties has been un-
dertaken from various standpoints [7, 23, 8, 25, 14, 17, 21,
30]. The present paper focuses on formal approaches to
privacy-related properties, since our primary motivation is
to contribute to the development of a new methodology for
the formal verification of these properties.

Formal approaches to privacy-related information-hiding
properties go back to the seminal work of Schneider and
Sidiropoulos [22], who formulated the concept of strong ano-
nymity in terms of a process calculus called CSP. Since then,
this concept has been further developed and elaborated in
various computational or logical frameworks such as ACP
[20], applied π calculus [6], I/O-automata [16], category the-
ory [13], and epistemic logic [24, 27, 10, 15, 29, 1, 28, 18, 4,
3].

Although the approach presented in this paper shares a
common style of anonymity definitions with these epistemic
logic approaches, it directly builds on the approach described
by Halpern and O’Neill [12]. Within Halpern and O’Neill’s
framework, Mano et al. [19] formulated privacy as the dual
of anonymity and showed that these two properties can
be related by a newly proposed information-hiding prop-
erty called role interchangeability. They proved the role-
interchangeability property of a practical electronic voting
protocol, thereby demonstrating the voter anonymity and
vote privacy properties of the protocol. Further, Tsukada et
al. [26] considered the logical contraries of anonymity and
privacy, thereby giving formal definitions of onymity and
identity. In particular, they showed that some weak forms
of anonymity and privacy are compatible with some weak
forms of onymity and identity, respectively. They also dis-
cussed the relationships between their proposed definitions
and existing standard terminology, in particular Pfitzmann
and Hansen’s consolidated proposal [21]. The epistemic logic
approach developed in [12, 19, 26] has recently been ex-
tended by Goriac [11], where a wider spectrum of privacy-
related properties including undetectability, unobservability,
and pseudonymity are formulated and discussed.

2. EPISTEMIC DEFINITIONS OF ANONYM-
ITY AND PRIVACY

We briefly review epistemic logic for multiagent systems.
Notions and terminologies are borrowed from [9, 12].

A multiagent system consists of n agents with their local
states and develops over time. We assume that an agent’s lo-
cal state encapsulates all the information to which the agent
has access. Let I = {i1, . . . , in} be the set of n agents. A
global state is defined as the tuple (si1 , . . . , sin) with all local
states from i1 to in. A run is a function from time, ranging
over the natural numbers, to global states. A point is a pair
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(r,m) comprising a run r and a time m, and the global state
at a point (r,m) is denoted by r(m). The function rx of m is
the projection of r(m) to x’s component, so that rx(m) = sx

if r(m) = (si1 , . . . , sin) for x = i1, . . . , in. A system is a set
of runs. The set of all points in a system R is denoted by
P(R).

In a multiagent system, we can define the knowledge of an
agent on the basis of the indistinguishability of the state for
the agent. Given a system R and an agent i, let Ki(r,m) be
the set of points in P(R) that i thinks are possible at (r,m);
that is, Ki(r,m) = {(r′,m′) ∈ P(R) | (r′,m′) ∼i (r,m)},
where (r′,m′) ∼i (r,m) means that r′i(m

′) = ri(m). We can
say that an agent i “knows” φ at a point (r,m) if φ is true
at all points in Ki(r,m).

The formulas of epistemic logic are inductively con-
structed from a set Φ of primitive propositions (such as
“the key is k” or “an agent i sent a message m to an agent
j”), the usual logical connectives, and an epistemic operator
Ki that represents the knowledge of agent i. The mean-
ing of each formula can be determined when each primi-
tive proposition is given an interpretation. An interpreted
system I consists of a pair (R, π) comprising a system R
and an interpretation π that maps each point to the truth-
value assignment function for Φ for the point. In other
words, (π(r,m))(p) ∈ {true, false} for each p ∈ Φ and
(r,m) ∈ P(R). Given an interpreted system I = (R, π)
and a point (r,m) in R, we define what it means for a for-
mula φ to be true at (r,m) in I by induction on the struc-
ture of formulas. Typical cases are as follows: (I, r,m) |=
p if (π(r,m))(p) = true; (I, r,m) |= ¬φ if (I, r,m) �|= φ;
(I, r,m) |= φ ∧ ψ if (I, r,m) |= φ and (I, r,m) |= ψ;
(I, r,m) |= Kiφ if (I, r′,m′) |= φ for all (r′,m′) ∈ Ki(r,m).
In addition to Kiφ, which means that i knows φ, we also use
Piφ as an abbreviation of ¬Ki¬φ, which means that i thinks
that φ is possible. We also write I |= φ if (I, r,m) |= φ holds
for every point (r,m) in I.

In the rest of the paper, we consider that the set A of
actions is also associated with each system. We assume that
i, i′, j, j′, . . . range over agents while a, a′, b, b′, . . . range over
actions. Following [12], we use a primitive proposition of the
form θ(i, a), which denotes that “an agent i has performed
an action a, or will perform a in the future.” Note that the
truth value of θ(i, a) depends on the run, but not on the
time; that is, if (I, r,m) |= θ(i, a) holds for some m, then
(I, r,m′) |= θ(i, a) also holds for every m′.

Below we review the formal definitions of anonymity, pri-
vacy, onymity, and identity in terms of epistemic logic for
multiagent systems. For full details, see [12, 19, 26].

Anonymity
We say that an action a performed by an agent i is anony-
mous up to an anonymity set IA ⊆ I with respect to an
agent j in the interpreted system I if I |= θ(i, a) ⇒V

i′∈IA
Pj [θ(i

′, a)] holds. Intuitively, anonymity up to IA

means that, from j’s viewpoint, a could have been performed
by anybody in IA. A typical example of anonymity of this
form is sender anonymity, which is explained in Sect. 1.

We also say that an action a performed by an agent i
is minimally anonymous with respect to an agent j in the
interpreted system I if I |= θ(i, a) ⇒ Pj [¬θ(i, a)] holds.
Intuitively, minimal anonymity means that, from j’s view-
point, a could not have been performed by i. Consider that
our built-in proposition θ(i, a) expresses a specific form of

“link” between an agent i and an action a. Then, we can ob-
serve that minimal anonymity is very close to a specific form
of the “unlinkability” property that was stipulated by Pfitz-
mann and Hansen [21]. This observation was elaborated in
[26].

Privacy
Privacy properties can be obtained from anonymity prop-
erties by applying the operation of taking the agent/action
reversal dual, that is, the operation that replaces a set of
agents with a set of actions. For example, we say that an
agent i performing an action a is private up to a privacy set
AI ⊆ A with respect to an agent j in the interpreted system
I if I |= θ(i, a) ⇒ V

a′∈AI
Pj [θ(i, a

′)] holds. Intuitively, pri-
vacy up to AI means that, from j’s viewpoint, i could have
performed any action in AI . A typical example is message
privacy, which is explained in Sect. 1.

We also say that an agent i performing an action a is min-
imally private with respect to an agent j in the interpreted
system I if I |= θ(i, a) ⇒ Pj [¬θ(i, a)] holds. Note that
minimal privacy is equivalent to its dual, that is, minimal
anonymity.

Role Interchangeability
Role interchangeability means that, as far as an agent j is
concerned, two agents i and i′ could interchange their roles,
that is, the actions they performed. Specifically, a pair (i, a)
comprising an agent i and an action a is role interchangeable
with respect to an agent j in the interpreted system I if I |=
θ(i, a) ⇒ V

i′∈I/{j}
V

a′∈A(θ(i′, a′) ⇒ Pj [θ(i
′, a) ∧ θ(i, a′)])

holds. Despite the similarity between role interchangeability
and anonymity/privacy, they are not equiexpressive. We can
prove that role interchangeability implies both anonymity
and privacy under some appropriate conditions [19].

Onymity
By the “contrary” of a formula of the form θ(i, a) ⇒ Γ, we
mean the formula θ(i, a) ⇒ ¬Γ. By taking the contrary of
the formulas defining anonymity, we can obtain definitions
of onymity. We only show below the contrary of minimal
anonymity. We say that an action a performed by an agent
i is maximally onymous with respect to an agent j in the
interpreted system I if I |= θ(i, a) ⇒ Kj [θ(i, a)] holds. In-
tuitively, maximal onymity means that j knows that i has
performed a. This definition corresponds to our observation
that onymity generally means that the agent who performs
the action is disclosed. We can see that onymity is closely
related to personal authentication.

Identity
Identity properties, which are closely related to attribute
authentication, can be obtained as the contrary of privacy
properties or as the dual of onymity properties. Below we
only show the contrary of minimal privacy. We say that
an agent i performing an action a is maximally identified
with respect to an agent j in the interpreted system I if
I |= θ(i, a) ⇒ Kj [θ(i, a)] holds. Note that maximal identity
is equivalent to its dual, that is, maximal onymity.

The definitions of the properties presented above and their
known relationships are summarized in Fig. 2. For example,
role interchangeability implies anonymity up to IA, which
also implies minimal anonymity. Note that every implication
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role interchangeability
θ(i, a)⇒ V

i′∈I/{j}
V

a′∈A

(θ(i′, a′)⇒ Pj [θ(i
′, a) ∧ θ(i, a′)])

↙ ↘
anonymity up to IA

θ(i, a)⇒ V
i′∈IA

Pj [θ(i
′, a)]←−−−−−−−−−−“dual”−−−−−−−−−−→ privacy up to AI

θ(i, a)⇒ V
a′∈AI

Pj [θ(i, a
′)]

↘ ↙
θ(i, a)⇒ Pj [¬θ(i, a)]

minimal anonymity / minimal privacy
↑ ↑

“contrary” “contrary”
↓ ↓

maximal onymity / maximal identity
θ(i, a)⇒ Kj [θ(i, a)]

Figure 2: Formal definitions of some privacy-related information-hiding/disclosure properties.

described here is conditional. A more detailed version of this
figure can be found in [26].

3. SEQUENTIAL COMPOSITIONALITY OF
ANONYMITY AND PRIVACY

As a motivating example for discussion of sequential com-
positionality, consider an abstract model of an anonymous
members-only bulletin board system (Fig. 3). Suppose that
the set of agents includes two disjoint subsets IR and IP

of real names and pseudonyms, respectively. Each real-
name agent can register several pseudonyms to use; the
correspondence between real names and pseudonyms is ex-
pressed by using θ(i, use(k)), which means that a real i
can use a pseudonym k. Besides IR and IP , we also in-
troduce the domain C of possible articles. Each real-name
agent uses some of its pseudonyms and posts some arti-
cles to a bulletin board. We express this as θ(k, post(c)),
which means that a pseudonym k posts an article c. When
a real-name agent i uses a pseudonym k and k posts an
article c, we say that i submits c. This is formulated as
I |= θ(i, submit(c)) ⇔ W

k∈IP
(θ(i, use(k)) ∧ θ(k, post(c))).

Two sets {post(c) | c ∈ C} and {submit(c) | c ∈ C} of
actions are denoted by AP and AS , respectively.

Although this is initially given as a model of an anony-
mous bulletin board system, it is quite abstract and can
serve as a model for a more general class of systems, provided
that it is appropriately modified. For example, if θ(i, use(k))
is interpreted as meaning that a voter i is authorized to use
a pseudonym k for voting and θ(k, post(c)) is interpreted as
meaning that k casts a ballot c for some candidate, then
this will be regarded as a model of a voting system. (Of
course, some appropriate assumptions will be required. For
example, to guarantee eligibility, we must assume that each
voter uses at most one pseudonym and each pseudonym also

real names pseudonyms articles

i1 k1 c1
.
.
.

.

.

.
.
.
.

i
use−→ k

post−→ c
.
.
.

.

.

.
.
.
.

il km cn

Figure 3: An anonymous members-only bulletin
board system.

casts at most one ballot.) Furthermore, if θ(i, use(k)) is in-
terpreted as meaning that the first mix-server takes an in-
coming message i and produces an outgoing message k and
if θ(k, post(c)) is interpreted as meaning that the second
mix-server takes an incoming message k and produces an
outgoing message c, then this will be regarded as a model of
a chain of two mix-servers.

We shall consider several typical cases where different
combinations of privacy-related properties are owned by each
registration and posting phase (Table 1). Below we concen-
trate on some main specific cases (Cases 1 to 5). The other
cases are discussed in Appendix A. Intuitively, when reg-
istration is anonymous and posting is private (Case 1), the
entire system appears to have good anonymity/privacy prop-
erties. However, this conjecture is refuted. Indeed, assume
that an observer has some presupposed background knowl-
edge that a real-name agent i will never submit an improper
article c. Then, even though the observer thinks that any
real-name agents including i could have used a pseudonym
k and that k could have posted any articles including c, the
observer never thinks that i could have submitted c. More
formally, the following holds.

Claim 3.1. There is an interpreted system that satisfies
the following: (1) every action use(k) performed by i is
anonymous up to IR with respect to an observer j; (2) every
agent k performing post(c) is private up to AP with respect
to j; (3) some action submit(c) performed by i is not anony-
mous up to IR; (4) some agent i performing submit(c) is not
private up to AS.

Proof. Suppose that IR = {i1, i2}, IP = {k1, k2}, AP =
{post(c1), post(c2)}, and AS = {submit(c1), submit(c2)}.
Consider an interpreted system consisting of two runs r1
and r2. In r1, the following are true: θ(i1, use(k1)),
θ(k1, post(c1)), θ(i2, use(k2)), and θ(k2, post(c2)). In
r2, the following are true: θ(i1, use(k2)), θ(k2, post(c1)),
θ(i2, use(k1)), and θ(k1, post(c2)). We also assume that
the two runs are indistinguishable from the observer j’s
viewpoint, that is, more precisely, (r1,m) ∼j (r2,m) holds
for each m. Then, it is immediately seen that (1) and
(2) hold. Furthermore, (3) and (4) also hold because
θ(i1, submit(c2)) is neither true in r1 nor true in r2 and be-
cause θ(i2, submit(c1)) is neither true in r1 nor true in r2.
In other words, the observer can have “presupposed back-
ground knowledge” that i1 never submits c2, and i2 never
submits c1.

Remark 1. The observations above, in particular, the con-
struction of {r1, r2} shown in the proof of Claim 3.1, can
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Table 1: Sequential Compositionality: Twelve Cases
Assumption Registration Posting Total

Case 1 (Claim 3.1) — Anonymous up to IR Private up to AP —

Case 2 (Claim 3.2) Independent — Private up to AP Private up to AS

Case 3 (Claim 3.3) Independent Anonymous up to IR — Anonymous up to IR

Case 4 (Claim 3.4) — Maximally onymous Private up to AP Private up to AS

Case 5 (Claim 3.5) — Anonymous up to IR Maximally identified Anonymous up to IR

Case 6 (Claim A.1) Pairwise independent — Role interchangeable Role interchangeable
Case 7 (Claim A.2) Pairwise independent Role interchangeable — Role interchangeable

Case 8 (Claim A.3) Independent — Minimally private Minimally private
& Exhaustive posting
& Exclusive i and post(c)

Case 9 (Claim A.4) Independent Minimally anonymous — Minimally anonymous
& Exhaustive registration
& Exclusive i and post(c)

Case 10 (Claim A.5) Exhaustive posting Maximally onymous Minimally private Minimally private
& Exclusive i and post(c)

Case 11 (Claim A.6) Exhaustive registration Minimally anonymous Maximally identified Minimally anonymous
& Exclusive i and post(c)

Case 12 (Claim A.7) — Maximally onymous Maximally identified Maximally onymous/identified

be extended to consider other examples where anonym-
ity/privacy properties are not sequentially compositional.
For example, we can say that a chain M1 ∗M2 of two mix-
servers does not necessarily guarantee unlinkability between
incoming and outgoing messages even though M1 and M2

do individually. Indeed, if M2 is the “inverse”M1
−1 of M1,

then M1 ∗M1
−1 becomes an identity and thus provides ob-

vious linkability, even though both M1 and M1
−1 guarantee

unlinkability.

On the basis of the above discussion, we introduce “in-
dependence” assumptions so that anonymity/privacy in the
entire system can be obtained quite directly from anonym-
ity/privacy in the registration/posting phases. The regis-
tration and posting phases in an anonymous bulletin board
system I are independent with respect to an observer j if

I |= Pj [θ(i, use(k))] ∧ Pj [θ(k
′, post(c))]

⇒ Pj [θ(i, use(k)) ∧ θ(k′, post(c))]
holds for every i, k, k′, and c. This is analogous to the in-
dependence of two events in probability theory: two events
A and B are independent if Pr(A)Pr(B) = Pr(A ∩B). The
independence assumption can be regarded as meaning that
the observer has no specific“presupposed background knowl-
edge.”

Example 1. In the system {r1, r2} shown in the proof
of Claim 3.1, the registration and posting phases are
not independent. To guarantee independence, we can
extend the system so that it has four indistinguishable
runs {r1, r2, r3, r4} (Fig. 4). In r3, the following are
true: θ(i1, use(k1)), θ(k1, post(c2)), θ(i2, use(k2)), and
θ(k2, post(c1)). In r4, the following are true: θ(i1, use(k2)),
θ(k2, post(c2)), θ(i2, use(k1)), and θ(k1, post(c1)). Alterna-
tively, we can also obtain a system {r1, r2, r5, r6, r7, r8} of
indistinguishable runs that has the independence property.
Similarly, a system {r1, r2, r9, r10, r11, r12} of indistinguish-
able runs also has the independence property.

We also discuss, in Appendix C, that independence could be
viewed by itself as a “meta-level” abstraction of anonymity
or privacy.

The following two lemmas are “dual” and show some ob-
vious sufficient conditions for independence. Hereafter, the
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Figure 4: Systems {r1, r2, r3, r4}, {r1, r2, r5, r6, r7, r8},
and {r1, r2, r9, r10, r11, r12} of runs satisfy the indepen-
dence property.

proofs of the “dual” of proved lemmas or claims are omit-
ted, since they can be straightforwardly obtained from the
original proofs via duality.

Lemma 3.1. If every action use(k) performed by i is max-
imally onymous with respect to an observer j, the registra-
tion and posting phases are independent with respect to j.

Proof. Suppose that (I, r,m) |= Pj [θ(i, use(k))] ∧
Pj [θ(k

′, post(c))]. Then, θ(i, use(k)) holds at some point
(r′,m′) such that (r′,m′) ∼j (r,m), and θ(k′, post(c))
also holds at some point (r′′,m′′) such that (r′′,m′′) ∼j

(r,m). Since use(k) performed by i is maximally onymous
and θ(i, use(k)) holds at (r′,m′), θ(i, use(k)) also holds
at (r′′,m′′). In other words, (I, r′′,m′′) |= θ(i, use(k)) ∧
θ(k′, post(c)) holds. Thus, we have proved that (I, r,m) |=
Pj [θ(i, use(k)) ∧ θ(k′, post(c))].

Lemma 3.2. If every agent k performing post(c) is maxi-
mally identified with respect to an observer j, the registration
and posting phases are independent with respect to j.

Case 2 in Table 1 indicates that if the posting phase guar-
antees privacy, then so does the entire system, provided that
the posting and registration phases are independent.

Claim 3.2. Assume that the registration and posting
phases are independent with respect to an observer j. Also
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suppose that every agent k performing post(c) is private up
to AP with respect to j. Then, every agent i performing
submit(c) is private up to AS.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)). Then,
there exists some k in IP such that (I, r,m) |= θ(i, use(k))∧
θ(k, post(c)). From (I, r,m) |= θ(i, use(k)), it is imme-
diate to see that (I, r,m) |= Pj [θ(i, use(k))]. Because
every k performing post(c) is private up to AP and be-
cause (I, r,m) |= θ(k, post(c)), we can say that for ev-
ery possible article c′, (I, r,m) |= Pj [θ(k, post(c

′))] holds.
So, by virtue of the independence assumption, (I, r,m) |=
Pj [θ(i, use(k)) ∧ θ(k, post(c′))] holds. That is, (I, r,m) |=
Pj [θ(i, submit(c′))] holds. Since c′ is arbitrary, we have
proved that (I, r,m) |= V

a′∈AS
Pj [θ(i, a

′)].

Case 3 in Table 1 is a “dual” of Case 2. It means that if
the registration phase guarantees anonymity, then so does
the entire system, provided that the posting and registration
phases are independent.

Claim 3.3. Assume that the registration and posting
phases are independent with respect to an observer j. Also
suppose that every action use(k) performed by i is anony-
mous up to IR with respect to j. Then, every action
submit(c) performed by i is anonymous up to IR.

In the view of Lemma 3.1, Case 4 can be regarded as a
special case of Case 2. More specifically, the following claim
directly follows from Lemma 3.1 and Claim 3.2. It indicates
that if the posting phase guarantees privacy, then so does
the entire system, even though each registered pseudonym
is linked to the corresponding real name.

Claim 3.4. Suppose that every action use(k) performed
by i is maximally onymous with respect to an observer j.
Also suppose that every agent k performing post(c) is private
up to AP with respect to j. Then, every agent i performing
submit(c) is private up to AS.

Case 5 is a “dual” of Case 4. It can also be regarded, in
the view of Lemma 3.2, as a special case of Case 3. It means
that if the registration phase guarantees anonymity, then so
does the entire system, even though each article is linked to
the pseudonym who posted it.

Claim 3.5. Suppose that every action use(k) performed
by i is anonymous up to IR with respect to an observer
j. Also suppose that every agent k performing post(c) is
maximally identified with respect to j. Then, every action
submit(c) performed by i is anonymous up to IR.

4. PARALLEL COMPOSITIONALITY OF
ANONYMITY AND PRIVACY

By the parallel composition of acta(c) performed by i
and actb(c) performed by i, we generally mean the action
actp(c) performed by i that is introduced by θ(i, actp(c)) ⇔
θ(i, acta(c)) ∧ θ(i, actb(c)). We denote three sets {acta(c) |
c}, {actb(c) | c}, and {actp(c) | c} of actions by Aa, Ab, and
Ap, respectively.

Example 2. Consider the following situation. A special
prosecution team has pursued their probe into the hideout of
a radical and has found out a time bomb c that seems to have

been provided by a sympathizer i. The urgent mission of the
team is to determine i performing an action give(c). The es-
sential parts of the bomb c are a timer and gunpowder. The
sympathizer seems to have bought the timer and have syn-
thesized the gunpowder, thereby producing the time bomb.
Thus, the following definition is obtained: θ(i, give(c)) ⇔
θ(i, buy timer(c))∧θ(i, synthesize gunpowder(c)). A concern
here is how some (an)onymity property of give(c) can be de-
duced from the (an)onymity properties of buy timer(c) and
synthesize gunpowder(c).

Table 2 shows some cases where different combinations of
privacy-related properties are owned by acta and actb. As
for the case of sequential composition, the parallel compo-
sitionality of anonymity or privacy does not generally hold
without some appropriate forms of independence assump-
tions. We say that acta and actb are independent with re-
spect to an observer j in a system I if I |= Pj [θ(i, acta(c))]∧
Pj [θ(i, actb(c))] ⇒ Pj [θ(i, acta(c)) ∧ θ(i, actb(c))] holds for
every i and c. Roughly speaking, the independence means
that acta and actb are not exclusive. Below we show that
the independence assumption plays an essential role in Case
I and its dual, Case II. The other cases are discussed in
Appendix B.

Claim 4.1. Assume that acta and actb are independent
with respect to an observer j. Also suppose that i performing
acta(c) is private up to Aa with respect to j and i perform-
ing actb(c) is private up to Ab with respect to j. Then, i
performing actp(c) is private up to Ap with respect to j.

Proof. Suppose that (I, r,m) |= θ(i, actp(c)). Then,
(I, r,m) |= θ(i, acta(c)) ∧ θ(i, actb(c)) holds. By the as-
sumption of privacy, we have (I, r,m) |= Pj [θ(i, acta(c′))] ∧
Pj [θ(i, actb(c

′))] for every c′. By the independence assump-
tion, (I, r,m) |= Pj [θ(i, acta(c′)) ∧ θ(i, actb(c

′))], that is,
(I, r,m) |= Pj [θ(i, actp(c′))] holds. Since c′ is arbitrary, we
have proved the claim.

Claim 4.2. Assume that acta and actb are independent
with respect to an observer j. Also suppose that acta(c) per-
formed by i and actb(c) performed by i are anonymous up
to Ia and Ib, respectively. Then, actp(c) performed by i is
anonymous up to Ia ∩ Ib with respect to j.

Example 3. Consider the situation described in Exam-
ple 2. Claim 4.2 indicates that give(c) can be onymous even
though both buy timer(c) and synthesize gunpowder(c)
are anonymous. This can happen when buy timer and
synthesize gunpowder are not independent, that is, when
some suspect is considered to be unable to perform both
actions for some reason.

5. CONCLUSION
Building on an epistemic-logic formalism, we have

discussed the compositionality of several privacy-related
information-hiding/disclosure properties. We have pointed
out that anonymity and privacy are not necessarily sequen-
tially compositional and have indicated that the indepen-
dence assumptions can guarantee the compositionality. We
have also developed a series of theoretical case studies on
the conditions that are sufficient to guarantee the sequential
compositionality of various degrees of anonymity, privacy,
onymity, and/or identity. Similar compositionality results
have also been shown for parallel composition.
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Table 2: Parallel Compositionality: Five Cases
Assumption acta actb actp (Total)

Case I (Claim 4.1) Independent Private up to Aa Private up to Ab Private up to Ap

Case II (Claim 4.2) Independent Anonymous up to Ia Anonymous up to Ib Anonymous up to Ia ∩ Ib

Case III (Claim B.1) — — Minimally anonymous/private Minimally anonymous/private
Case IV (Claim B.1) — Minimally anonymous/private — Minimally anonymous/private

Case V (Claim B.2) — Maximally onymous/identified Maximally onymous/identified Maximally onymous/identified

Future work will include a discussion of compositional-
ity in terms of the probabilistic extension [12] of epistemic
logic. To substantiate the practical value of our approach,
a detailed analysis of real world examples should be carried
out.
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APPENDIX

A. SEQUENTIAL COMPOSITIONALITY:
MORE CASES

In this appendix, we discuss Cases 6 to 12 shown in Ta-
ble 1.

We first introduce some additional conditions regarding
our motivating example of an anonymous members-only bul-
letin board system. We say that an action post(c) is exclusive
if post(c) is performed by at most one pseudonym in each
run, that is, I |= V

k �=k′ ¬[θ(k, post(c))∧θ(k′, post(c))] holds.
For example, if we consider that each article c is labeled and
identified with an article ID number, we will accordingly as-
sume that each post(c) is exclusive. We also say that an
action use(k) is exclusive if use(k) is performed by at most
one real-name agent in each run. For example, if we want
to avoid the use of bogus pseudonyms, we will assume that
each use(k) is exclusive. Similarly, we say that a real-name
agent i is exclusive if i performs at most one use(k) action
in each run, that is, I |= V

k �=k′ ¬[θ(i, use(k))∧ θ(i, use(k′))]
holds. We also say that a pseudonym k is exclusive if k
performs at most one post(c) action in each run.

We also say that the posting phase is exhaustive
provided that every article c ∈ C has been posted
by some pseudonyms. This is formulated as I |=V

c∈C

W
k∈IP

θ(k, post(c)). Similarly, we say that the regis-
tration phase is exhaustive provided that every real-name
agent i ∈ IR uses some pseudonyms. This is formulated as
I |= V

i∈IR

W
k∈IP

θ(i, use(k)).
We also extend the independence assumption so as to deal

with Cases 6 to 11. First, the independence assumption can
immediately be extended to a disjunctive form.

Lemma A.1. If the registration and posting phases in I
are independent with respect to an observer j, then the fol-
lowing holds for arbitrary ip, kp, k

′
q, and cq:

I |= Pj [
W

p θ(ip, use(kp))] ∧ Pj [
W

q θ(k
′
q, post(cq))]

⇒ Pj [(
W

p θ(ip, use(kp))) ∧ (
W

q θ(k
′
q, post(cq)))].

Proof. Suppose that (I, r,m) |= Pj [∨pθ(ip, use(kp))]
and (I, r,m) |= Pj [∨qθ(k

′
q, post(cq))]. This means that there

exist some point (r′,m′) and p such that θ(ip, use(kp)) holds
at (r′,m′) and (r′,m′) ∼j (r,m). Further, there exist
some point (r′′,m′′) and q such that θ(k′q, post(cq)) holds
at (r′′,m′′) and (r′′,m′′) ∼j (r,m). Then, by the indepen-
dence assumption, there exists some point (r′′′,m′′′) such
that θ(ip, use(kp)) ∧ θ(k′q, post(cq)) holds at (r′′′,m′′′) and
(r′′′,m′′′) ∼j (r,m). This concludes the proof.

Further, the independence assumption can be extended to
“positive-negative” and “negative-positive” forms.

Lemma A.2. Assume that the registration and posting
phases in I are independent with respect to an observer
j. Also assume that the posting phase is exhaustive and
that every posting action post(c) is exclusive. Then, I |=
Pj [θ(i, use(k))] ∧ Pj [¬θ(k′, post(c))] ⇒ Pj [θ(i, use(k)) ∧
¬θ(k′, post(c))] holds for every i, k, k′, and c.

Proof. Since the posting phase is exhaustive, every c
must have been posted by some pseudonyms in each run.
Further, since post(c) is exclusive, a uniquely determined
pseudonym must have posted it in each run. In other words,
¬θ(k′, post(c)) can be equivalently expressed as a formula of

the form ∨k′
q �=k′θ(k′q, post(c)). Hence, the lemma immedi-

ately follows from Lemma A.1.

Lemma A.3. Assume that the registration and posting
phases in I are independent with respect to an observer
j. Also assume that the registration phase is exhaustive
and that every real-name agent i is exclusive. Then, I |=
Pj [¬θ(i, use(k))] ∧ Pj [θ(k

′, post(c))] ⇒ Pj [¬θ(i, use(k)) ∧
θ(k′, post(c))] holds for every i, k, k′, and c.

In some cases, we require a stronger form of the indepen-
dence assumption to prove compositionality results. Indeed,
we need the binarily conjunctive form of the assumption.
More specifically, the registration and posting phases in an
anonymous bulletin board system I are pairwise indepen-
dent with respect to an observer j if

I |= Pj [
^

m∈{0,1}
θ(im, use(km))] ∧ Pj [

^

n∈{0,1}
θ(k′n, post(cn))]

⇒ Pj [(
^

m∈{0,1}
θ(im, use(km))) ∧ (

^

n∈{0,1}
θ(k′n, post(cn)))]

holds for every pair (i0, i1), (k0, k1), (k′0, k
′
1), and (c0, c1).

Example 4. In the system {r1, r2, r3, r4} (Fig. 4), the
registration and posting phases are pairwise independent.
On the other hand, in the system {r1, r2, r5, r6, r7, r8} or
{r1, r2, r9, r10, r11, r12}, the registration and posting phases
are not pairwise independent.

Cases 2 and 3 can be extended to show the sequential
compositionality of role interchangeability. To obtain these
results, we require the pairwise independence assumption.

Claim A.1. Assume that the registration and posting
phases are pairwise independent with respect to an observer
j. Also suppose that every pair comprising an agent k
and an action post(c) is role interchangeable with respect
to j. Then, every pair comprising an agent i and an action
submit(c) is role interchangeable as well.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)) and
(I, r,m) |= θ(i′, submit(c′)). Then, there exist k and k′ such
that (I, r,m) |= θ(i, use(k)) ∧ θ(k, post(c)) and (I, r,m) |=
θ(i′, use(k′)) ∧ θ(k′, post(c′)). Because every pair compris-
ing an agent k and an action post(c) is role interchangeable
and because (I, r,m) |= θ(k, post(c))∧θ(k′, post(c′)), we can
say that (I, r,m) |= Pj [θ(k

′, post(c)) ∧ θ(k, post(c′))] holds.
On the other hand, we have (I, r,m) |= θ(i′, use(k′)) ∧
θ(i, use(k)). That is, (I, r,m) |= Pj [θ(i

′, use(k′)) ∧
θ(i, use(k))] holds. So, by virtue of the pairwise in-
dependence assumption, (I, r,m) |= Pj [θ(i

′, use(k′)) ∧
θ(k′, post(c)) ∧ θ(i, use(k)) ∧ θ(k, post(c′))] holds. That is,
(I, r,m) |= Pj [θ(i

′, submit(c)) ∧ θ(i, submit(c′))]. This con-
cludes the proof.

Claim A.2. Assume that the registration and posting
phases are pairwise independent with respect to an observer
j. Also suppose that every pair comprising an agent i and an
action use(k) is role interchangeable with respect to j. Then,
every pair comprising an agent i and an action submit(c) is
role interchangeable as well.

Example 5. In the system {r1, r2, r5, r6, r7, r8} or
{r1, r2, r9, r10, r11, r12} (Fig. 4), every pair comprising an
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agent k and an action post(c) is role interchangeable as
well as every pair comprising an agent i and an action
use(k). However, the registration and posting phases are
not pairwise independent. Consequently, in these systems,
there exist some pairs comprising an agent i and an action
submit(c) such that they are not role interchangeable.

Cases 8, 9, 10, and 11 in Table 1 are respectively de-
rived from Cases 2, 3, 4, and 5 by replacing “up-to” ano-
nymity/privacy properties with minimal anonymity/privacy
properties. There are two problems in obtaining these deriva-
tions. First, consider Case 8 and its dual, Case 9, which are
derived from Cases 2 and 3, respectively. Since the defi-
nition of minimal privacy/anonymity involves negative for-
mulas, independence assumptions in positive-negative and
negative-positive forms are helpful in these cases. Thus, we
will use Lemmas A.2 and A.3 in Cases 8 and 9, respectively.

Second, consider Case 10 (which is derived from Case 4)
and an intended example system consisting of the two indis-
tinguishable runs r5 and r6 (Fig. 4). In r5, i1 uses k1 and k2

to post c1 and c2, respectively. In r6, i1 uses k1 and k2 to
post c2 and c1, respectively. Thus, in the system {r5, r6}, ev-
ery use(k) performed by i is maximally onymous and every
k performing post(c) is minimally private, but i performing
submit(c) is never minimally private. This is because al-
though the posting actions performed by the pseudonyms k1

and k2 of i1 are totally different, the submission actions per-
formed by i1 are defined using existential quantification over
k and thus both θ(i1, submit(c1)) and θ(i1, submit(c2)) hold
in both r5 and r6. To avoid this, we assume that every real-
name agent can be allowed to use at most one pseudonym in
each run, that is, each i is exclusive. This assumption will
also be used in a generalization of Case 10, that is, Case 8.
Note that to deal with Cases 9 and 11, we need a similar
assumption that every possible article c can be posted by at
most one pseudonym k in each run, that is, every post(c) is
exclusive, which is the “dual” of the assumption above.

Claim A.3. Assume that the registration and posting
phases are independent with respect to j. Suppose that the
posting phase is exhaustive and that each post(c) is exclusive
as well as each i. Also suppose that every agent k performing
post(c) is minimally private with respect to j. Then, every
agent i performing submit(c) is minimally private.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)). Then,
there exists some k in IP such that (I, r,m) |= θ(i, use(k))∧
θ(k, post(c)). From (I, r,m) |= θ(i, use(k)), it is imme-
diately seen that (I, r,m) |= Pj [θ(i, use(k))]. Because
every k performing post(c) is minimally private and be-
cause (I, r,m) |= θ(k, post(c)), we can say that (I, r,m) |=
Pj [¬θ(k, post(c))] holds. So, by virtue of Lemma A.2,
(I, r,m) |= Pj [θ(i, use(k)) ∧ ¬θ(k, post(c))] holds. Since
every real-name agent can be allowed to use at most
one pseudonym in each run, this means that (I, r,m) |=
Pj [¬θ(i, submit(c))] holds.

Claim A.4. Assume that the registration and posting
phases are independent with respect to j. Suppose that the
registration phase is exhaustive and that each i is exclusive as
well as each post(c). Also suppose that every action use(k)
performed by i is minimally anonymous with respect to j.
Then, every action submit(c) performed by i is minimally
anonymous.

Claim A.5. Suppose that the posting phase is exhaustive
and that each i is exclusive as well as each post(c). Also
suppose that every action use(k) performed by i is max-
imally onymous with respect to j. Moreover assume that
every agent k performing post(c) is minimally private with
respect to j. Then, every agent i performing submit(c) is
minimally private.

Proof. This directly follows from Lemma 3.1 and
Claim A.3.

Claim A.6. Suppose that the registration phase is exhaus-
tive and that each post(c) is exclusive as well as each i. Also
suppose that every action use(k) performed by i is minimally
anonymous with respect to j. In addition assume that every
agent k performing post(c) is maximally identified with re-
spect to j. Then, every action submit(c) performed by i is
minimally anonymous.

The final case shown in Table 1 indicates that if both the
registration and posting phases guarantee linkability, then
so does the entire system.

Claim A.7. Suppose that every action use(k) performed
by i is maximally onymous with respect to j and that every
agent k performing post(c) is maximally identified with re-
spect to j. Then, every action submit(c) performed by i is
maximally onymous.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)). Then,
there exists some k in IP such that (I, r,m) |= θ(i, use(k))∧
θ(k, post(c)). Because every action use(k) performed
by i is maximally onymous and because every agent k
performing post(c) is maximally identified, (I, r′,m′) |=
θ(i, use(k)) ∧ θ(k, post(c)) holds for every point (r′,m′)
such that (r′,m′) ∼j (r,m). This means that (I, r,m) |=
Kj [θ(i, submit(c))].

B. PARALLEL COMPOSITIONALITY:
MORE CASES

In this appendix, we discuss Cases III to V shown in Ta-
ble 1.

Cases III and IV are perfectly symmetric and deal with
the parallel compositionality of minimal anonymity/privacy.
Note that the independence assumption is unnecessary here.

Claim B.1. Suppose that either i performing acta(c) or
i performing actb(c) is minimally private with respect to j.
Then, i performing actp(c) is also minimally private.

Proof. Suppose that (I, r,m) |= θ(i, actp(c)). Then,
(I, r,m) |= θ(i, acta(c)) ∧ θ(i, actb(c)) holds. Also assume
that, say, i performing acta(c) is minimally private. Then,
based on the assumption of minimal privacy, (I, r,m) |=
Pj [¬θ(i, acta(c))] holds. This immediately implies that
(I, r,m) |= Pj [¬θ(i, acta(c)) ∨ ¬θ(i, actb(c))] holds. That
is, (I, r,m) |= Pj [¬θ(i, actp(c))] holds.

Case V in Table 2 indicates a trivial result on the parallel
compositionality of linkability.

Claim B.2. Suppose that both i performing acta(c) and i
performing actb(c) are maximally identified with respect to
j. Then, i performing actp(c) is also maximally identified.
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C. INDEPENDENCE-AS-ANONYMITY/PRI-
VACY INTERPRETATION

In this appendix, we discuss that the independence as-
sumption shown in Sect. 3 could be viewed by itself as a
“meta-level” abstraction of the anonymity or privacy prop-
erty.

We first introduce two additional conditions regarding our
anonymous members-only bulletin board system. We say
that the bulletin board system satisfies backward causality
provided that if k posts c, then there exists some i such
that i uses k. This is formulated as I |= θ(k, post(c)) ⇒W

i∈IR
θ(i, use(k)). Backward causality can be regarded as

a natural assumption in that every posted article should
be related by some real-name agent; however, it is not a
mandatory assumption because in some cases, certain auxil-
iary pseudonyms may post some dummy articles to enhance
the privacy of real-name agents. We may also assume for-
ward causality, which means that if i uses k, then there exists
some c such that k posts c.

It is immediately seen that the definition of indepen-
dence is equivalent to stating that I |= θ(k′, post(c)) ⇒V

i,k(Pj [θ(i, use(k))] ⇒ Pj [θ(i, use(k))∧θ(k′, post(c))]) holds

for every k′ and c. If we assume backward causality, then

this is also equivalent to that for every i′, k′, and c,

I |= θ(i′, use(k′))∧θ(k′, post(c)) ⇒
V

i,k(Pj [θ(i, use(k))]⇒Pj [θ(i, use(k))∧θ(k′, post(c))])
holds. If we abuse the notation and write
Θ(θ(i, use(k)), coexist(θ(k′, post(c)))) for θ(i, use(k)) ∧
θ(k′, post(c)), which means a “meta-level” link between
“first-class” links θ(i, use(k)) and θ(k′, post(c)), then the
above equivalent transformation indicates that the indepen-
dence assumption can be viewed as a certain, abstract form
of “anonymity.” More specifically, the obtained, equivalent
formula means that an “action” coexist(θ(k′, post(c)))
performed by an “agent” θ(i′, use(k′)) is anonymous up to a
certain “anonymity set” with respect to j. Alternatively, if
we assume forward causality, the independence assumption
can be viewed as an abstract form of “privacy.” When we
apply our framework to the compositional verification of
the anonymity or privacy property of a specific example,
it will often be a key task to show that the independence
assumption holds. The above remark suggests a possibility
that we can use conventional proof methods for anonym-
ity/privacy when showing the independence assumption,
although we do not go into detail here.
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