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ABSTRACT

A traditional assumption in game theory is that players are opaque
to one another—if a player changes strategies, then this change in
strategies does not affect the choice of other players’ strategies. In
many situations this is an unrealistic assumption. We develop a
framework for reasoning about games where the players may be
translucent to one another; in particular, a player may believe that
if she were to change strategies, then the other player would also
change strategies. Translucent players may achieve significantly
more efficient outcomes than opaque ones.

Our main result is a characterization of strategies consistent with
appropriate analogues of common belief of rationality. Common
Counterfactual Belief of Rationality (CCBR) holds if (1) every-
one is rational, (2) everyone counterfactually believes that everyone
else is rational (i.e., all players ¢ believe that everyone else would
still be rational even if ¢ were to switch strategies), (3) everyone
counterfactually believes that everyone else is rational, and counter-
factually believes that everyone else is rational, and so on. CCBR
characterizes the set of strategies surviving iterated removal of min-
imax dominated strategies: a strategy o; is minimax dominated for
i if there exists a strategy o; for ¢ such that min,,, Ui (o5, ;) >

max,, , u;(0i, —i).

Categories and Subject Descriptors
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1. INTRODUCTION

Two large firms 1 and 2 need to decide whether to cooperate
(C) or sue (S) the other firm. Suing the other firm always has
a small positive reward, but being sued induces a high penalty p;
more precisely, u(C, C') = (0,0);u(C,S) = (—p,r);u(S,C) =
(r,—p),u(S,S) = (r —p,r — p). In other words, we are consid-
ering an instance of the Prisoner’s Dilemma.

But there is a catch. Before acting, each firms needs to discuss
their decision with its board. Although these discussions are held
behind closed doors, there is always the possibility of the decision
being “leaked”; as a consequence, the other company may change
its course of action. Furthermore, both companies are aware of this
fact. In other words, the players are translucent to one another.

In such a scenario, it may well be rational for both companies to
cooperate. For instance, consider the following situation.

e Firm i believes that its action is leaked to firm 2 — ¢ with
probability e.

e Firm i believes that if the other firm 2 — 4 finds out that ¢ is
defecting, then 2 — ¢ will also defect.

e Finally, pe > r (i.e., the penalty for being sued is signifi-
cantly higher than the reward of suing the other company).

Neither firm defects, since defection is noticed by the other firm
with probability €, which (according to their beliefs) leads to a
harsh punishment. Thus, the possibility of the players’ actions be-
ing leaked to the other player allows the players to significantly
improve social welfare in equilibrium. (This suggests that it may
be mutually beneficial for two countries to spy on each other!)

Even if the Prisoner’s dilemma is not played by corporations but
by individuals, each player may believe that if he chooses to de-
fect, his “guilt” over defecting may be visible to the other player.
(Indeed, facial and bodily cues such as increased pupil size are of-
ten associated with deception; see e.g., [Ekman and Friesen 1969].)
Thus, again, the players may choose to cooperate out of fear that if
they defect, the other player may detect it and act on it.

Our goal is to capture this type of reasoning formally. We take
a Bayesian approach: Each player has a (subjective) probability
distribution (describing the player’s beliefs) over the states of the
world. Traditionally, a player ¢ is said to be rational in a state w if
the strategy o; that ¢ plays at w is a best response to the strategy
profile pi_; of the other players induced by i’s beliefs in w;' that is,

'Formally, we assume that 7 has a distribution on states, and at each



ui (04, i—i) > wi(o}, pu—;) for all alternative strategies o for 4. In
our setting, things are more subtle. Player ¢ may believe that if she
were to switch strategies from o; to o7, then players other than 4
might also switch strategies. We capture this using counterfactuals
[Lewis 1973; Stalnaker 1968].2 Associated with each state of the
world w, each player i, and f(w,1,0;) where player i plays o;.
Note that if ¢ changes strategies, then this change in strategies may
start a chain reaction, leading to further changes. We can think of
f(w,i,0}) as the steady-state outcome of this process: the state
that would result if ¢ switched strategies to o. Let u Flwsiyol) be
the distribution on strategy profiles of —i (the players other than ¢)
induced by ¢’s beliefs at w about the steady-state outcome of this
process. We say that ¢ is rational at a state w where ¢ plays o;
and has beliefs p; if w;(os, p—s) > ui(ai,uf(w’i’og)) for every
alternative strategy o, for 3. Note that we have required the closest-
state function to be deterministic, returning a unique state, rather
than a distribution over states. While this may seem incompatible
with the motivating scenario, it does not seem so implausible in our
context that, by taking a rich enough representation of states, we
can assume that a state contains enough information about players
to resolve uncertainty about what strategies they would use if one
player were to switch strategies.

We are interested in considering analogues to rationalizability in
a setting with translucent players, and providing epistemic charac-
terizations of them. To do that, we need some definitions. We say
that a player ¢ counterfactually believes ¢ at w if ¢ believes ¢ holds
even if ¢ were to switch strategies. Common Counterfactual Belief
of Rationality (CCBR) holds if (1) everyone is rational, (2) every-
one counterfactually believes that everyone else is rational (i.e., all
players @ believe that everyone else would still be still rational even
if ¢ were to switch strategies), (3) everyone counterfactually be-
lieves that everyone else is rational, and counterfactually believes
that everyone else is rational, and so on.

Our main result is a characterization of strategies consistent with
CCBR. Roughly speaking, these results can be summarized as fol-
lows:

o If the closest-state function respects “unilateral deviations”—
when ¢ switches strategies, the strategies and beliefs of play-
ers other than ¢ remain the same—then CCBR characterizes
the set of rationalizable strategies.

e If the closest-state function can be arbitrary, CCBR char-

state, a pure strategy profile is played; the distribution on states
clearly induces a distribution on strategy profiles for the players
other than ¢, which we denote pi—;.

%A different, more direct, approach for capturing our original moti-
vating example would be to consider and analyze an extensive-form
variant G’ of the original normal-form game G that explicitly mod-
els the “leakage” of players’ actions in GG, allows the player to react
to these leakage signals by choosing a new action in GG, which again
may be leaked and the players may react to, and so on. Doing this
is subtle. We would need to model how players respond to receiv-
ing leaked information, and to believing that there was a change in
plan even if information wasn’t leaked. To make matters worse, it’s
not clear what it would mean that a player is “intending” to per-
form an action a if players can revise what they do as the result of
a leak. Does it mean that a player will do a if no information is
leaked to him? What if no information is leaked, but he believes
that the other side is planning to change their plans in any case?
In addition, modeling the game in this way would require a dis-
tribution over leakage signals to be exogenously given (as part of
the description of the game G”). Moreover, player strategies would
have to be infinite objects, since there is no bound on the sequence
of leaks and responses to leaks. In constrast, using counterfactuals,
we can directly reason about the original (finite) game G.
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acterizes the set of strategies that survive iterated removal
of minimax dominated strategies: a strategy o; is minimax
dominated for i if there exists a strategy o, for ¢ such that
minuLi ui(of, u_;) > max, , ui(o, p—s); that is,
wi (o}, ;) > u;(o;, p1—;) no matter what the strategy pro-
files 1—; and u’_; are.

We also consider analogues of Nash equilibrium in our setting, and
show that individually rational strategy profiles that survive iter-
ated removal of minimax dominated strategies characterize such
equilibria.

Note that in our approach, each player ¢ has a belief about how
the other players’ strategies would change if ¢ were to change strate-
gies, but we do not require ¢ to explicitly specify how he would
respond to other people changing strategies. The latter approach,
of having each player pick a “meta-strategy” that takes as input the
strategy of other players, was explored by Howard [1971] in the
1970s. It led to complex formalisms involving infinite hierachies
of meta-strategies: at the lowest level, each player specifies a strat-
egy in the original game; at level k, each player specifies a “re-
sponse rule” (i.e., a meta-strategy) to other players’ (k — 1)-level
response rules. Such hierarchical structures have not proven useful
when dealing with applications. Since we do not require players to
specify reaction rules, we avoid the complexities of this approach.

Program equilibria [Tennenholz 2004] and conditional commit-
ments [Kalai et al. 2010] provide a different approach to avoiding
infinite hierarchies. Roughly speaking, each player % simply spec-
ifies a program 11;; player ¢’s action is determined by running ¢’s
program on input the (description of) the programs of the other
players; that is, i’ action is given by II;(IT_;). Tennenholtz [2004]
and Kalai et al. [2010] show that every (correlated) individually
rational outcome can be sustained in a program equilibrium. Their
model, however, assumes that player’s programs (which should be
interpreted as their “plan of action”) are commonly known to all
players. We dispense with this assumption. It is also not clear how
to define common belief of rationality in their model; the study
of program equilibria and conditional commitments has considered
only analogues of Nash equilibrium.

Counterfactuals have been explored in a game-theoretic setting;
see, for example, [Aumann 1995; Halpern 1999; Samet 1996; Stal-
naker 1996; Zambrano 2004]. However, all these papers consid-
ered only structures where, in the closest state where 7 changes
strategies, all other players’ strategies remain the same; thus, these
approaches are not applicable in our context.

2. COUNTERFACTUAL STRUCTURES

Given a game T, let X, (I") denote player ¢’s pure strategies in '
(we occasionally omit the parenthetical I' if it is clear from context
or irrelevant).

To reason about the game I, we consider a class of Kripke struc-
tures corresponding to I'. For simplicity, we here focus on finite
structures. A finite probability structure M appropriate for I is a
tuple (2,8, PR1,...,PRx), where Q is a finite set of states; s
associates with each state w € Q a pure strategy profile s(w) in the
game I'; and, for each player ¢, PR; is a probability assignment
that associates with each state w € () a probability distribution
PRi(w) on Q, such that

1. PRi(w)([si(w)]m) = 1, where for each strategy o; for
player i, [o:]m = {w : si(w) = 0;}, where s;(w) denotes
player ¢’s strategy in the strategy profile s(w);

2. PRi(w)([PRi(w),i]am) = 1, where for each probability
measure 7 and player i, [, i|p = {w : PRi(w) = 7}.



These assumptions say that player ¢ assigns probability 1 to his
actual strategy and beliefs.

To deal with counterfactuals, we augment probability structures
with a “closest-state” function f that associates with each state w,
player i, and strategy o}, a state f(w,i,0;) where player i plays
o’; if ¢’ is already played in w, then the closest state to w where
o’ is played is w itself. Formally, a finite counterfactual structure
M appropriate for T is a tuple (s, f, PR1,...,PR.,), where
(Q,8,PR1,...,PRy) is a probability structure appropriate for I
and f is a “closest-state” function. We require that if f(w,i,0}) =
w’, then

1. si(w') =0o’;
2. if o} = s;(w), then w’ = w.

Given a probability assignment PR; for player 7, we define ¢’s
counterfactual belief at state w (“what 7 believes would happen if
he switched to o} at w) as

PR o1 (w)(w) = >

{w”eQ:f(w,i,o})=w'}

PRi(w)(w").

Note that the conditions above imply that each player ¢ knows what
strategy he would play if he were to switch; thatis, PR . (
L. '
Let Supp(w) denote the support of the probability measure 7.
Note that Supp(PR; ,

PRi(w'), then PR;, ( ) =PR;, ( ") for all strategies o; for

player . But it does not in general follow that ¢ knows his counter-
factual beliefs at w, that is, it may not be the case that for all strate-
gies o7} for player i, PR 1 (w (W)([PRF , ( ),i]ar) = 1. Suppose
that we think of a state as representlng each player’s ex ante view
of the game. The fact that player s;(w) = o; should then be inter-
preted as “i intends to play o; at state w.” With this view, suppose
that w is a state where s;(w) is a conservative strategy, while o}
is a rather reckless strategy. It seems reasonable to expect that 7’s
subjective beliefs regarding the likelihood of various outcomes may
depend in part on whether he is in a conservative or reckless frame
of mind. We can think of PR;G; (w)(w") as the probability that i

ascribes, at state w, to w’ being the outcome of 4 switching to strat-
egy o}; thus, PRva; (w)(w") represents i’s evaluation of the like-
lihood of w’ when he is in a conservative frame of mind. This may
not be the evaluation that i uses in states in the support PR; , (w);
at all these states, 7 is in a “reckless” frame of mind. Moréover,
there may not be a unique reckless frame of mind, so that ¢ may not
have the same beliefs at all the states in the support of PR; ., (w).

M is a strongly appropriate counterfactual structure if it 'is an
appropriate counterfactual structure and, at every state w, every
player ¢ knows his counterfactual beliefs. As the example above
suggests, strong appropriateness is a nontrivial requirement. As we
shall see, however, our characterization results hold in both appro-
priate and strongly appropriate counterfactual structures.

Note that even in strongly appropriate counterfactually struc-
tures, we may not have PR;(f(w,i,07)) = PR;U; (w). We
do have PR;(f(w,%,0})) = PR;,

counterfactual structures if f(w, i, O'Z) is in the support of PRE 5 (W)

( ) in strongly appropriate

(which will certainly be the case if w is in the support of PR ( )).

To see why we may not want to have PR;(f(w, ,07)) = PR; ,/ (w)

in general, even in strongly appropriate counterfactual structures,
consider the example above again. Suppose that, in state w, al-
though ¢ does not realize it, he has been given a drug that affects

w)([oi]ar) =

(W) ={fW,i,0o}) : ' € Supp(PR;(w)}.
Moreover, it is almost 1mmed1ate from the definition that if PR;(w) =

how he evaluates the state. He thus ascribes probability 0 to w. In
f(w,i,0}%) he has also been given the drug, and the drug in par-
ticular affects how he evaluates outcomes. Thus, 7’s beliefs in the
state f(w,1,0;) are quite different from his beliefs in all states in
the support of PR?,UQ (w).

2.1 Logics for Counterfactual Games

Let £(T") be the language where we start with ¢true and the prim-
itive proposition RAT'; and play,(c;) for o; € X;(T"), and close
off under the modal operators B; (player 7 believes) and B; (player
i counterfactually believes) for ¢ = 1,...,n, C'B (common be-
lief), and C'B* (common counterfactual belief), conjunction, and
negation. We think of B;¢ as saying that “¢ believes ¢ holds with
probability 1” and B; ¢ as saying “i believes that ¢ holds with
probability 1, even if ¢ were to switch strategies”.

Let £° be defined exactly like £ except that we exclude the
“counterfactual” modal operators B* and CB*. We first define
semantics for £° using probability structures (without counterfac-
tuals). We define the notion of a formula ¢ being true at a state w
in a probability structure M (written (M, w) = ¢) in the standard
way, by induction on the structure of ¢, as follows:

o (M,w) = true (so true is vacuously true).

o (M,w) = play,(o;) iff o; = s;(w).

o (M,w) [ ~piff (M,w) j .

o (M,w) ¢ Aiff (M,w) | pand (M,w) |= ¢".

e (M,w) | Biyp iff PRi(w)([¢]m) = 1. where [p]n =

{w: (M,w) E e}

(M,w) = RAT; iff s;(w) is a best response given player
i’s beliefs regarding the strategies of other players induced
by PR;.

Let E B (“everyone believes (") be an abbreviation of By A
.. A Byp; and define EB" ¢ for all k inductively, by taking
EB'¢tobe EBpand EB**'ptobe EB(EB"y).

e (M,w) = CByiff (M,w) = EB*¢forall k > 1.

Semantics for £° in counterfactual structures is defined in an iden-
tical way, except that we redefine RAT'; to take into account the
fact that player i’s beliefs about the strategies of players —i may
change if ¢ changes strategies.

o (M,w) = RAT; iff for every strategy o; for player 4,
D PRi(w) (W ua(si(w), s—i(w')) >

w’'eN

> PR o (w)

w'eQ

(@Nui(oi,s-i(w")).

The condition above is equivalent to requiring that

> PRi(w

w'eN

> PRi(w

w’'eN

wui(si(w), s—i(w')) =
U’Z(Jl? S— 7«(f(w/7 i? O-;)))

Note that, in general, this condition is different from requiring that
s;(w) is a best reponse given player 4’s beliefs regarding the strate-
gies of other players induced by PR;.

To give the semantics for £ in counterfactual structures, we now
also need to define the semantics of B} and C B*:



o (M,w) | Bjp iff for all strategies o; €
PRi o (W) ([elamr) = 1.

(1),

o (M,w) = CB*piff (M,w) = (EB*)*pforall k > 1.

It is easy to see that, like B;, B; depends only on 7’s beliefs; as
we observed above, if PR;(w) = PR;i(w’), then PR; ., (w) =
PR . (W) for all o7, so (M,w) | Bfpiff (M,w') = Bfp. It
immediately follows that B¢ = B;B; ¢ is valid (i.e., true at all
states in all structures).

The following abbreviations will be useful in the sequel. Let
RAT be an abbreviation for RAT1A...ANRAT,, and let play (&)
be an abbreviation for play, (o1) A ... A play,,(on).

2.2 Common Counterfactual Belief of Ratio-
nality

We are interested in analyzing strategies being played at states
where (1) everyone is rational, (2) everyone counterfactually be-
lieves that everyone else is rational (i.e., for every player ¢, ¢ be-
lieves that everyone else would still be rational even if ¢ were to
switch strategies), (3) everyone counterfactually believes that ev-
eryone else is rational, and counterfactually believes that everyone
else is rational, and so on. For each player 4, define the formu-
las SRATF (player i is strongly k-level rational) inductively, by
taking SRATY to be true and SRATF T to be an abbreviation of

RAT; A Bf (Aj2:SRATY).

Let SRAT™ be an abbreviation of /\?:1 S RAT;“.
Define CC BR (common counterfactual belief of rationality) as
follows:

e (M,w) E CCBRIiff (M,w) E SRAT* ¢ forall k > 1.

Note that it is critical in the definition of SRAT} that we require
only that player ¢ counterfactually believes that everyone else (i.e.,
the players other than 7) are rational, and believe that everyone else
is rational, and so on. Player ¢ has no reason to believe that his own
strategy would be rational if he were to switch strategies; indeed,
B RAT; can hold only if every strategy for player 4 is rational
with respect to ¢’s beliefs. This is why we do not define CCBR as
CB*RAT?

We also consider the consequence of just common belief of ra-
tionality in our setting. Define W RAT} (player i is weakly k-level
rational) just as SRATY, except that B] is replaced by B;. An easy
induction on k shows that W RAT*' implies W RAT" and that
W RAT* implies B;(W RAT*).* 1t follows that we could have
equivalently defined WRATZ-]€+1 as

RAT; A By(Nj—yW RATY).

Thus, WRAT** is equivalent to RAT A EB(W RAT*). As a
consequence we have the following:

PROPOSITION 2.1: (M,w) = CB(RAT) iff (M,w) = WRAT*

forall k > 0.

3Interestingly, Samet [1996] essentially considers an analogue of
CB*RAT. This works in his setting since he is considering only
events in the past, not events in the future.

*We can also show that SRAT**! implies SRAT™, but it is not
the case that SRATY implies Bf SRATY, since RAT does not
imply By RAT.
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3. CHARACTERIZING COMMON COUN-
TERFACTUAL BELIEF OF RATIONAL-
ITY

It is well known rationalizability can be characterized in terms
of common belief of common belief of rationality in probability
structures [?; ?]. In the full version of the paper’ we show that if
we restrict to counterfactual structures that respect unilateral de-
viations—where in the closest state to w where player ¢ switches

strategies, everybody else’s strategy and beliefs remain same—common

counterfactual belief of rationality characterizes rationalizable strate-
gies. In a sense (which is made precise in the full version of the pa-
per), counterfactual structures respecting unilateral deviations be-
have just like probability structures (without counterfactuals).

We now characterize common counterfactual belief of rational-
ity without putting any restrictions on the counterfactual structures
(other than them being appropriate, or strongly appropriate). Our
characterization is based on ideas that come from the characteriza-
tion of rationalizability. It is well known that rationalizability can
be characterized in terms of an iterated deletion procedure, where
at each stage, a strategy o for player ¢ is deleted if there are no
beliefs that ¢ could have about the undeleted strategies for the play-
ers other than 7 that would make o rational [Pearce 1984]. Thus,
there is a deletion procedure that, when applied repeatedly, results
in only the rationalizable strategies, that is, the strategies that are
played in states where there is common belief of rationality, being
left undeleted. We now show that there is an analogous way of
characterizing common counterfactual belief of rationality.

3.1 Iterated Minimax Domination

The key to our characterization is the notion of minimax domi-
nated strategies.

DEFINITION 3.1: Strategy o; for player i in game I is minimax
dominated with respect to $°_; C X_;(T") iff there exists a strategy
o; € (1) such that

min  w;(0],7—;) > max (o, T—;).
€, e,

In other words, player 4’s strategy o is minimax dominated with
respect to X2, iff there exists a strategy o’ such that the worst-case
payoff for player 7 if he uses ¢’ is strictly better than his best-case
payoft if he uses o, given that the other players are restricted to
using a strategy in 3_;.

In the standard setting, if a strategy o; for player ¢ is dominated
by o} then we would expect that a rational player will never player
04, because o, is a strictly better choice. As is well known, if o;
is dominated by o, then there are no beliefs that i could have re-
garding the strategies used by the other players according to which
o; 1s a best response [Pearce 1984]. This is no longer the case in
our setting. For example, in the standard setting, cooperation is
dominated by defection in Prisoner’s Dilemma. But in our setting,
suppose that player 1 believes that if he cooperates, then the other
player will cooperate, while if he defects, then the other player will
defect. Then cooperation is not dominated by defection.

So when can we guarantee that playing a strategy is irrational in
our setting? This is the case only if the strategy is minimax domi-
nated. If o; is minimax dominated by cf;, there are no counterfac-
tual beliefs that ¢ could have that would justify playing ;. Con-
versely, if o; is not minimax dominated by any strategy, then there

5 Available at http://www.cs.cornell.edu/home/halpern/papers/minimax.pdf.



are beliefs and counterfactual beliefs that ¢ could have that would
justify playing ;. Specifically, ¢ could believe that the players in
—i are playing the strategy profile that gives ¢ the best possible util-
ity when he plays o;, and that if he switches to another strategy o,
the other players will play the strategy profile that gives i the worst
possible utility given that he is playing o;.

Note that we consider only domination by pure strategies. It
is easy to construct examples of strategies that are not minimax
dominated by any pure strategy, but are minimax dominated by a
mixed strategy. Our characterization works only if we restrict to
domination by pure strategies. The characterization, just as with
the characterization of rationalizability, involves iterated deletion,
but now we do not delete dominated strategies in the standard sense,
but minimax dominated strategies.

DEFINITION 3.2: Define NSD% (T') inductively: let NSD9(T") =
X; and let NSD?“(F) consist of the strategies in NSD% (") not
minimax dominated with respect to NSD’ij (). Strategy o sur-
vives k rounds of iterated deletion of minimax strategies for player
iifo € NSD¥(T). Strategy o for player i survives iterated dele-
tion of minimax dominated strategies if it survives k rounds of

iterated deletion of strongly dominated for all k, that is, if o €
NSD$*(T') = N, NSD¥(T). I

In the deletion procedure above, at each step we remove all
strategies that are minimax dominated; that is we perform a “max-
imal” deletion at each step. As we now show, the set of strategies
that survives iterated deletion is actually independent of the dele-
tion order.

Let S°, ..., S™ be sets of strategy profiles. S = (5°,S*,...,8™)

is a terminating deletion sequence for I' if, for 5 = 0,...,m — 1,
S7*1 C S7 (note that we use C to mean proper subset) and all
players 4, S} *1 contains all strategies for player ¢ not minimax
dominated with respect to S ; (but may also contain some strate-
gies that are minimax dominated), and S;" does not contain any
strategies that are minimax dominated with respect to S™;. A set
T of strategy profiles has ambiguous terminating sets if there exist
two terminating deletion sequences S = (T,51,...,5m), S =
(T, S1,...,S../) such that S,,, # S, ,; otherwise, we say that T
has a unique terminating set.

PROPOSITION 3.3.: No (finite) set of strategy profiles has am-
biguous terminating sets.

Proof: Let T  be a set of strategy profiles of least cardinality that has
ambiguous terminating deletion sequences S = (T,51,...,5m)
and §' = (T, S4,...,5..,), where S,, # S’.,. Let T' be the
set of strategies that are not minimax dominated with respect to 7.
Clearly T” # ) and, by definition, 7" C S1NS}. Since T”, S1, and
S1 all have cardinality less than that of 7', they must all have unique
terminating sets; moreover, the terminating sets must be the same.
For consider a terminating deletion sequence starting at 7”. We can
get a terminating deletion sequence starting at S; by just appending
this sequence to Sy (or taking this sequence itself, if S1 = T"). We
can similarly get a terminating deletion sequence starting at S7.
Since all these terminating deletion sequences have the same final
element, this must be the unique terminating set. But (S1, ..., Sm)
and (S1,...,S,,/) are terminating deletion sequences with Sy, #
S’ ,, a contradiction. i

m

COROLLARY 3.4 The set of strategies that survivies interated
deletion of minimax strategies is independent of the deletion order.
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REMARK 3.5: Note that in the definition of NSD¥(I"), we re-
move all strategies that are dominated by some strategy in 3;(T"),
not just those dominated by some strategy in NSfol(l" ). Nev-
ertheless, the definition would be equivalent even if we had con-
sidered only dominating strategies in NSfol(F). For suppose
not. Let k be the smallest integer such that there exists some strat-
egy 0; € NSDF™Y(T') that is minimax dominated by a strategy
ol ¢ NSDFY(T), but there is no strategy in NSD*~*(T") that
dominates ;. That is, o, was deleted in some previous itera-

tion. Then there exists a sequence of strategies o), ... ,ol and
indices ko < k1 < ... < kg = k — 1 such that 60 = &,

ol € NSij (1), and for all 0 < j < q, o is minimax domi-
nated by o7t with respect to NSD? - (T). Since NSD*=2(T") C
NSD?(T) for j < k—2, an easy induction on j shows that o min-
imax dominates o977 with respect to NSD*=2 for all 0 < j < q.
In particular, o minimax dominates o? o’ with respect to
NSDF2. 11

The following example shows that iteration has bite: there exist
a 2-player game where each player has k actions and k£ — 1 rounds
of iterations are needed.

EXAMPLE 3.6: Consider a two-player game, where both play-
ers announce a value between 1 and k. Both players receive in util-
ity the smallest of the values announced; additionally, the player
who announces the larger value get a reward of p = 0.5.° That is,
u(z,y) = (y+py) ife >y (x,2+p)ify >z and (z,x)
if © = y. In the first step of the deletion process, 1 is deleted for
both players; playing 1 can yield a max utility of 1, whereas the
mininum utility of any other action is 1.5. Once 1 is deleted, 2 is
deleted for both players: 2 can yield a max utility of 2, and the min
utility of any other action (once 1 is deleted) is 2.5. Continuing this
process, we see that only (k, k) survives. Il

3.2 Characterizing Iterated Minimax Domi-
nation

We now show that strategies surviving iterated removal of min-
imax dominated strategies characterize the set of strategies consis-
tent with common counterfactual belief of rationality in (strongly)
appropriate counterfactual structures. As a first step, we define a
“minimax”’ analogue of rationalizability.

DEFINITION 3.7.: A strategy profile & in game I" is minimax
rationalizable if, for each player i, there is a set Z; C 3;(T") such
that

e 0, € Z;;
o for every strategy o, € Z; and strategy oy € ¥;(T),

T,I?eazx,i wi(o), 7—¢) > T,Ii%ig,i wi(o), m—i).

THEOREM 3.8 The following are equivalent:
(a) & € NSD=(T);

(b) & is minimax rationalizable in T';

This game can be viewed a a reverse variant of the Traveler’s
dilemma [Basu 1994], where the player who announces the smaller
value gets the reward.



(c) there exists a finite counterfactual structure M that is strongly
appropriate for 1" and a state w such that

(M,w) = play(&) Ai=y SRATY
forall k > 0;

(d) for all players 1, there exists a finite counterfactual structure
M that is appropriate for I and a state w such that

(M,w) | play,(o:) A SRATY
forall k > 0.

The proof of Theorem 3.8 can be found in the full version of the
paper. In the full version of the paper, we additionally characterize
analogues of Nash equilibrium in counterfactual structures. These
results allow us to more closely relate our model to those of Ten-
nenholtz [2004] and Kalai et al. [2010].

4. DISCUSSION

We have introduced a game-theoretic framework for analyzing
scenarios where a player may believe that if he were to switch
strategies, this intention to switch may be detected by the other
players, resulting in them also switching strategies. Our formal
model allows players’ counterfactual beliefs (i.e., their beliefs about
the state of the world in the event that they switch strategies) to be
arbitrary—they may be completely different from the players’ ac-
tual beliefs.

We may also consider a more restricted model where we re-
quire that a player 7’s counterfactual beliefs regarding other play-
ers’ strategies and beliefs is e-close to player ¢’s actual beliefs in
total variation distance’—that is, for every state w € €, player
i, and strategy o} for player i, the projection of PR; o (w) onto
strategies and beliefs of players —i is e-close to the pro}ection of
PR;(w) onto strategies and beliefs of players —i.

We refer to counterfactual structures satisfying this property as e-
counterfactual stuctures. Roughly speaking, e-counterfactual struc-
tures restrict to scenarios where players are not “too” transparent to
one another; this captures the situation when a player assigns only
some “small” probability to its switch in action being noticed by
the other players.

As we show in the full paper, O-counterfactual structures behave
just as counterfactual structures that respect unilateral deviations:
common counterfactual belief of rationality in O-counterfactual struc-
tures characterizes rationalizable strategies. The general counter-
factual structures investigated in this paper are 1-counterfactual
structures (that is, we do not impose any conditions on players’
counterfactual beliefs). We remark that although our characteriza-
tion results rely on the fact that we consider 1-counterfactual struc-
tures, the motivating example in the introduction (the translucent

prisoner’s dilemma game) shows that even considering e-counterfactual

structures with a small € can result in there being strategies consis-
tent with common counterfactual belief of rationality that are not
rationalizable. We leave an exploration of common counterfactual
belief of rationality in e-counterfactual structures for future work.
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